
Franzo et al. Vet Res           (2020) 51:88  
https://doi.org/10.1186/s13567-020-00817-6

RESEARCH ARTICLE

Avian Metapneumovirus subtype B 
around Europe: a phylodynamic reconstruction
Giovanni Franzo1*  , Matteo Legnardi1, Giulia Mescolini2, Claudia Maria Tucciarone1, Caterina Lupini2, 
Giulia Quaglia2, Elena Catelli2 and Mattia Cecchinato1

Abstract 

Avian Metapneumovirus (aMPV) has been recognized as a respiratory pathogen of turkey and chickens for a long 
time. Recently, a crescent awareness of aMPV, especially subtype B, clinical and economic impact has risen among 
European researchers and veterinarians. Nevertheless, the knowledge of its epidemiology and evolution is still limited. 
In the present study, the broadest available collection of partial G gene sequences obtained from European aMPV-B 
strains was analyzed using different phylodynamic and biostatistical approaches to reconstruct the viral spreading 
over time and the role of different hosts on its evolution. After aMPV-B introduction, approximatively in 1985 in France, 
the infection spread was relatively quick, involving the Western and Mediterranean Europe until the end of the 1990s, 
and then spreading westwards at the beginning of the new millennium, in parallel with an increase of viral popula-
tion size. In the following period, a wider mixing among aMPV-B strains detected in eastern and western countries 
could be observed. Most of the within-country genetic heterogeneity was ascribable to single or few introduction 
events, followed by local circulation. This, combined with the high evolutionary rate herein demonstrated, led to the 
establishment of genetically and phenotypically different clusters among countries, which could affect the efficacy of 
natural or vaccine-induced immunity and should be accounted for when planning control measure implementation. 
On the contrary, while a significant strain exchange was proven among turkey, guinea fowl and chicken, no evidence 
of differential selective pressures or specific amino-acid mutations was observed, suggesting that no host adaptation 
is occurring.
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Introduction
Avian Metapenumovirus (aMPV) is a well-known patho-
gen affecting particularly turkeys and chickens, although 
also other avian species including guinea fowls [1]⁠, pheas-
ants [2]⁠ and ducks [3] ⁠can be infected. aMPV has been 
associated with upper respiratory tract infections in tur-
keys and chickens, which can lead to relevant clinical 
signs and economic losses, especially in presence of sec-
ondary infections [4]⁠.

aMPV is an icosahedral, enveloped virus belonging 
to the family Pneumoviridae, genus Metapneumovi-
rus, and is featured by a single-stranded negative-sense 
RNA genome approximately 15  kb-long encoding for 
8 genes located in the following order: 3′-Nucleopro-
tein (N), Phosphoprotein (P), Matrix (M), Fusion (F), 
Matrix 2 (M2), Small hydrophobic (SH), attachment 
(G) and large polymerase (L)-5′ [5] ⁠. While L and P are 
non-structural proteins involved in genome replication, 
the others code for the nucleocapsid, matrix and enve-
lope structural proteins [5] ⁠. Among those, the research 
has focused especially on the G protein, a glycoprotein 
involved in the viral attachment, and the F one, a fusion 
protein fundamental for the fusion of the viral enve-
lope with the cell membrane. Unfortunately, extensive 
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studies investigating the interaction of these proteins 
with the host receptors and immune response are 
largely lacking. Nevertheless, they are considered likely 
targets of the host immunity because of their location 
on the virus surface [6, 7] ⁠. Particularly, preliminary 
studies have suggested the presence of T cell epitopes 
on the G protein and its directional evolution after vac-
cination introduction, supporting its immunological 
relevance [8] ⁠. Moreover, the higher genetic heteroge-
neity of the G gene compared to others, including the 
F one, makes it suitable for molecular epidemiological 
studies and strain characterization and has promoted a 
more intensive sequencing activity over time.

After its first detection in South Africa in the late 1970s, 
aMPV and/or related syndromes were described in sev-
eral European countries: the United Kingdom [9]⁠, France 
[10]⁠, Spain [9]⁠, Germany [11]⁠, Hungary [12]⁠ and Italy [13, 
14]⁠. Since then, aMPV has been detected in most areas 
of the world where poultry are raised commercially [5]⁠. 
Initial serological assays based on monoclonal antibodies 
evidenced a certain variability among aMPV strains [15–
17]⁠, which was then confirmed by genetic analysis [18]⁠, 
leading to the differentiation between aMPV subtype 
A and B. In the US, previously considered aMPV free, 
a new, highly divergent subtype (named aMPV-C) was 
detected in 1996 [19]⁠. Differently from subtype A and B, 
which show a worldwide distribution, including Europe, 
Africa, Asia and South America continents, aMPV-C cir-
culates mainly in the US, even if it has been sporadically 
described in minor species (Muscovy duck and pheasant) 
in Korea, France and China [19–22]⁠. Its presence in Chi-
nese commercial chickens has also been reported once 
[23]⁠. Finally, a retrospective study performed on strains 
isolated from turkeys in France in 1985 demonstrated 
the presence of a different subtype, designated subtype D 
[24]⁠, which has never been reported again.

Because of their broader distribution and high detec-
tion frequency, subtype A and B were long considered a 
relevant threat for the poultry industry. However, most 
recent epidemiological studies performed in Europe have 
consistently reported the absence of aMPV-A, which was 
clearly outclassed by aMPV-B [25–28]⁠.

Paradoxically, although those studies have demon-
strated the high prevalence of this subtype and the con-
cern among researchers and field veterinarians on its role 
as a primary pathogen is rising, our knowledge of aMPV-
B molecular epidemiology, spreading patterns, popula-
tion dynamics and evolutionary rate is still at its infancy.

Aiming to fill this gap, a phylodynamic analysis has 
been performed on the broadest available dataset of par-
tial G gene sequences obtained from European aMPV-B 
strains.

Materials and methods
aMPV sequence dataset
All freely available European aMPV-B G gene sequences 
were downloaded from Genbank. Sequences were 
included in the study only if collection year and coun-
try were available. When known, the host species was 
recorded. No clusters of multiple sequences originating 
from the same outbreak were selected. Reference vaccine 
strains were also included.

All sequences were aligned at codon level and then 
back-translated to nucleotides using the MAFFT [29]⁠ 
method implemented in TranslatorX [30]⁠.

Since the presence of recombinant or vaccine strains 
can severely affect the topology reconstruction, popula-
tion parameter estimation and obscure the temporal sig-
nal, these sequences were removed from the dataset.

The presence of recombination events was evaluated 
using GARD [31]⁠ method, implemented in Datamonkey. 
A preliminary phylogenetic tree was reconstructed using 
IQ-Tree [32]⁠, selecting as the best substitution model the 
one with the lowest Akaike Information Criteria, calcu-
lated by the software itself. Potential vaccine or vaccine-
derived strains were removed based on a combination of 
the following criteria:

1.	 Strong clustering (bootstrap support > 70) with refer-
ence vaccines;

2.	 Percentage of identity higher than 99% compared to 
reference vaccines;

3.	 Evaluation of marker positions;
4.	 Expert opinion, evaluating the temporal relationship 

between vaccine commercialization or use and the 
collection year of the strain.

When available, data on vaccine administration, flock 
history and country-specific molecular epidemiology 
were taken into account for strain classification.

The refined alignment was trimmed to include the 
longest region still achieving a full coverage among the 
sequences. The list of sequences included in the final 
dataset is reported in Additional file 1.

The presence of an adequate phylogenetic signal was 
assessed by likelihood mapping analysis performed with 
IQ-TREE.

After strain selection, a new phylogenetic tree was gen-
erated, and TempEst was used to preliminarily evaluate 
the temporal signal of the aMPV-B phylogeny and there-
fore the applicability of molecular clock-based methods.

Phylodynamic analysis
The time to the most recent common ancestor (tMRCA), 
substitution rates and population dynamics were jointly 
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estimated using a Bayesian serial coalescent approach 
implemented in BEAST 1.8.4 [33]⁠.

The best substitution model was selected based on the 
Bayesian Information Criterion calculated using Jmodel-
Test [34]⁠ while the molecular clock was selected by com-
paring the different models (strict vs relaxed molecular 
clock) based on Bayesian Factor (BF), which was calcu-
lated through estimation of the marginal likelihood of 
the different models using the path sampling (PS) and 
stepping stones (SS) methods [35]⁠. The non-parametric 
Skygrid model [36]⁠ was selected to infer viral past popu-
lation dynamics (i.e. Effective population time × genera-
tion time; Ne × t).

The reconstruction of viral migration among countries 
was simultaneously performed using the discrete-trait 
phylogeographic approach described by Lemey et al. [37]⁠. 
A Bayesian stochastic search variable selection (BSSVS) 
was also implemented to allow the calculation of a BF test 
that identified the most parsimonious description of the 
spreading process.

A comparable ancestral discrete trait reconstruc-
tion, coupled with BSSVS, was used to estimate the viral 
flux among available hosts. The best migration model, 
i.e. symmetric vs asymmetric, was selected based on 
Bayesian Factor (BF), calculated through estimation of 
marginal likelihood of the different models (different 
combinations of host and country symmetric and asym-
metric models were tested) using the PS and SS methods, 
as previously described. The more complex model was 
considered an improvement over the simpler one if the 
relative BF was higher than 5.

All parameters were estimated performing a 1 billion 
generation Markov Chain Monte Carlo run. Results were 
analyzed using Tracer 1.6 and accepted only if the esti-
mated sample size (ESS) was greater than 200 and the 
convergence and mixing were adequate. After the exclu-
sion of a burn-in equal to 20% of the run length, param-
eter estimation was summarized in terms of mean and 
95% Highest Posterior Density (HPD). Maximum clade 
credibility (MCC) trees were constructed and annotated 
using Treeannotator (BEAST package).

SpreaD3 [38]⁠ was used to display the spreading pro-
cess over time and to calculate the BF associated to each 
migration route. The transition rates among countries 
were considered statistically supported when the BF was 
greater than 5.

Selective pressures
The action of selective pressures was compared between 
chicken and turkey (guinea fowl was excluded due to 
the limited sequence availability) using the dNdSDis-
tributionComparison.bf implemented in HyPhy [39]⁠. 
Differences in the site-by-site selection patterns among 

different hosts were investigated using the batch files 
CompareSelectivePressure.bf implemented in the same 
program. The presence of episodic directional selec-
tion was also tested on the whole dataset with the MEDS 
method [40]⁠, marking the sequences collected in chick-
ens as foreground branches.

Results
Dataset
Out of the 202 sequences initially included in the study, 
71 were excluded since they were classified as likely vac-
cine or vaccine-derived strains. Therefore, the final data-
set included 131 sequences, encompassing a region of 
330 bp, originating from 9 countries (i.e. France, Greece, 
Italy, Romania, Russia, Spain, the Netherlands, Ukraine 
and the United Kingdom) in the period 1985–2019.

Despite the limited size of the considered region, the 
likelihood mapping analysis demonstrated the pres-
ence of an adequate phylogenetic signal. Similarly, Tem-
pEst investigation revealed that the positive correlation 
between genetic divergence and sampling time (i.e. 
R = 0.68) was high and suitable for phylogenetic molecu-
lar clock analysis.

Phylodynamic analysis
The tMRCA of European aMPV-B strain was esti-
mated in 1981.17 (95HPD 1971.93–1985.28) and the 
evolutionary rate was 1.21 · 10−3 (7.11 · 10−4–1.83 · 10−3 
substitutions per site per year). The Bayesian skygrid 
reconstruction of the relative genetic diversity evidenced, 
after the marked rise following aMPV-B introduction, a 
substantially constant viral population size until approxi-
mately 2015, when a certain decrease in population size 
was observed (Figure  1). A symmetric migration model 
was preferred over the asymmetric one based on BF cal-
culation for both country and host species. The phylo-
geographic reconstruction demonstrated a tendency of 
aMPV-B strains to form mainly country-specific clusters, 
being single introduction events able to explain most 
of the genetic variability observed within country (Fig-
ure 2A and Additional file 2). Particularly, the first aMPV-
B introduction was estimated to have occurred in France 
in 1981 (95HPD 1971.93–1985.28), followed by a migra-
tion to Italy few years later in 1984 (95HPD 1980.38–
1986.98). These countries were the most likely source of 
further spreading to other European countries, including 
the Netherlands in 1987 (95HPD 1984.07–1989.73) and 
the United Kingdom in 1989 (95HPD 1987.33–1992.25), 
and then to Russia, in 1996 (95HPD 1989.71–2000.9). 
Russia was subsequently involved in the spreading to 
Ukraine in 2007 (95HPD 2003.62–2008.61), Spain in 
2005 (95HPD 2000.97–2007.51) and also back to Italy in 
2012 (95HPD 2008.97–2014.96). In the following years, 
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Italy, in particular, was responsible for the introduction of 
new aMPV-B strains to Spain in 2011 (95HPD 2008.38–
2011.18), Greece in 2012 (95HPD 2010.23–2012.99) and 
France in 2012 (95HPD 2008.97–2014.95). A late, poten-
tial connection, was also estimated between Spain and 
Romania in 2015 (95HPD 2012.38–2016.95) (Figure  2A 
and Additional file 2). 

However, only migration routes from France to Italy 
and the Netherlands, from Italy to Greece and Spain, 
from Spain to Romania and from Russia to Ukraine were 
well supported statistically (Figure 3).

When collection host species was evaluated, a certain 
tendency to host-specific clustering was displayed (Fig-
ure 2B). However, several exceptions were demonstrated, 
especially in countries like Italy where both species are 
reared in close proximity. Guinea fowl derived strains 
were part of three different clades, and the respective 
ancestors were always predicted to circulate in turkeys. 
Accordingly, statistically supported transmission routes 
were observed between chicken and turkey, and between 
turkey and guinea fowl.

Selective pressures
The analysis of differential diversifying selection acting 
on strains collected from chickens and turkeys reported 

only one position, i.e. aa 83, where chicken collected 
strains appeared under a stronger selection. On the other 
hand, episodic directional selection acting on strains 
introduced in chickens affected only position 102, where 
a tendency to mutate toward alanine was observed (Fig-
ures 4 and 5).

However, when the action of selective forces, the pro-
portion of selected sites and selective regimes (i.e. both 
proportion of involved sites and selective strength) were 
compared between the alignment of strains collected 
from chickens and turkeys, no statistically significant dif-
ferences were detected.

Discussion
Although aMPV is a relevant pathogen for the poultry 
industry in Europe, our knowledge of its molecular epi-
demiology is still remarkably poor and based on a limited 
number of studies performed by few research groups. 
The present study aims to provide a more comprehensive 
description of its epidemiology and evolution, based on a 
robust modelling and statistical approach.

Two initial obstacles had to be overcome. At first, the 
low number of freely available sequences confirms the 
limited aMPV sequencing activity of most European 
research groups. This scenario is further complicated 
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Figure 1  Mean relative genetic diversity (Ne × t) of the European aMPV population over time. The upper and lower 95HPD values are 
reported as shaded areas. The mean tMRCA is reported as a dotted vertical line.
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by the lack of a consensus on the genomic region tar-
geted for sequencing, thus creating poorly overlapping 
(and therefore incomparable) datasets. Nevertheless, 
the recent release of a relevant number of sequences 
(Mescolini et  al., unpublished) collected from different 
countries over time allowed to increase the aMPV strain 
representativeness. Although the limited sample size and 
the relatively short analyzed genomic region surely rep-
resent unavoidable limits of the study, the analysis of 
the phylogenetic and temporal signal demonstrated that 
the dataset was informative enough to obtain reliable 
results. Secondly, the vast use of live attenuated vaccines 
able to circulate for a long time in the field, potentially 
even as revertant strains [41–43]⁠, complicates the differ-
entiation of actual field strains from the vaccine or vac-
cine-derived ones. Since vaccine strains are continuously 
introduced in poultry farms but do not display any evolu-
tion (at least not before being administered to animals), 
the sequencing of the same vaccine strain year after year 
surely obscures and biases the temporal signal [44]⁠. The 
selected approach to remove vaccine-derived strains 
seemed effective since a high temporal signal could be 

proven in the refined sequence dataset. Especially, a rel-
evant improvement in the correlation coefficient between 
genetic divergence and sampling time was demonstrated 
compared to the initial database (i.e. R = 0.68 vs R = 0.36).

Based on these results, the origin of aMPV-B could be 
reliably estimated. Interestingly, the tMRCA of aMPV-B 
in Europe was inferred in the 1981.17 (95HPD 1971.93–
1985.28) in France, which closely fits with the earlier 
reports based on epidemiological evidence [10]⁠, sug-
gesting at the same time a prompt identification of this 
emerging disease and the robustness of our estimates. 
Thereafter, the infection spread was relatively quick, 
involving initially Western and Mediterranean Europe 
until the end of the 1990s, and then spreading westwards 
at the beginning of the new millennium.

In the following period, a wider mixing among aMPV-
B strains detected in eastern and western countries could 
be observed. France, Spain and particularly Italy seem to 
have played a major role in the aMPV-B spread in the last 
years. Explaining the reasons behind the observed sce-
nario is challenging due to the limited available informa-
tion. The rapid diffusion among European countries has 
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Figure 2  Time calibrated phylogenetic trees. The tree branches have been colour-coded according to the collection country (A) or host species 
(B) predicted with the highest posterior probability.
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been demonstrated for Infectious bronchitis virus (IBV) 
QX and Q1 genotypes [45, 46]⁠; it is therefore not unex-
pected for another respiratory virus like aMPV to fol-
low similar pathways. The live poultry trade could have 
allowed the viral transmission over long distances and 
the creation of a European Single Market could have 
facilitated the process, together with the poultry indus-
try intensification and globalization increasing the viral 
migration rate in the last decades. It must be stressed 
that the differential sequence availability, increasing 
over time, could also partially justify the observed pat-
tern, allowing the model to detect more contacts among 
counties in recent years. The pivotal role of some coun-
tries like France and Italy in aMPV-B epidemiology could 
be linked to the higher number of turkeys, tradition-
ally considered the main viral host species, historically 
reared in these countries. However, many recent studies 
have reported a high aMPV detection frequency also in 
chickens [25–28] and the present results demonstrate a 
relevant strain exchange between the two species, making 
unlikely the preeminent role of turkeys in aMPV epide-
miology. Alternatively, the high proportion of sequences 
obtained from Italy and other countries could have led to 
an overestimation of their epidemiological role. Another 
fascinating hypothesis brings into play the wild birds in 
long distances aMPV spreading, as initially suspected to 

justify its introduction in the United Kingdom [47, 48]. 
Because of the presence of migratory flyways like the 
Black sea/Mediterranean flyway overflying both Medi-
terranean countries and Russia, wild species could be 
involved in the bidirectional viral migration between 
these regions. Unfortunately, there are no current clear 
pieces of evidence of aMPV-B presence in wild birds to 
support this hypothesis [49]⁠. Additionally, an alternative 
path involving intermediate steps in the viral dispersal 
could have been missed due to the absence of sequences 
compliant with our inclusion criteria (e.g. aMPV was 
reported in Hungary, Poland and Croatia in the middle of 
the 1990s) [5].⁠

Therefore, a more intense sampling activity both in tur-
keys and chickens, coupled with data sharing, would be 
of sure benefit to improve the understanding of the actual 
aMPV spreading patterns in Europe, aiding its control.

Despite this uncertainness, the tendency of aMPV to 
establish in a country and form a monophyletic, inde-
pendent clade appears quite clear and few multiple intro-
duction events were noted. Therefore, similarly to what 
reported for IBV, the introduction of a new strain is a rel-
atively rare phenomenon [45, 50]⁠. However, the capacity 
of preventing its maintenance and spread within-country 
appears limited, suggesting the inefficacy of currently 
implemented biosecurity measures.

Figure 3  Map reporting the well-supported migration paths (i.e. BF > 5) among European countries. 
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Of note, the estimated viral population size, after the 
rise occurred in the first years following its introduction, 
remained substantially stable, as expected for an endemic 
infection, until approximately 2015, when a certain con-
traction was estimated. The adoption of vaccination 
programs even in broilers in different countries could 
reasonably explain a lower viral circulation. This evi-
dence is in contrast with the increase in aMPV relevance 
reported by field veterinarians. However, the perceived 
increase in aMPV detection frequency could be actually 
due to a more intensive diagnostic activity, rather than a 
true epidemiological change.

Although no formal studies had been performed, 
aMPV was traditionally considered a slowly evolving 
virus, especially compared to other RNA viruses affect-
ing poultry. Our estimations, on the other hand, revealed 

a substitution rate fully within the range of the RNA 
viruses [45, 46, 51]. The high propensity to mutate could 
have been expected considering the presence of subpop-
ulation even in vaccine strains [52]⁠, the easiness of those 
strains to undergo reversion to virulence [43]⁠, and the 
evidence of aMPV-B vaccine driven evolution in Italy [8, 
53]⁠.

A non-negligible heterogeneity could be observed at 
the amino acid level also. As expected, members of the 
same clade tended to show similar amino acid mutations, 
although several exceptions were identified, potentially 
ascribable to both dead-end or-low-fitness variants or 
to new emerging ones. Because the clade structure was 
highly correlated with geographic clustering (Figure 4), it 
can be concluded that strains with different phenotypic 
features circulated in different countries. aMPV vaccines, 

Figure 4  Plot reporting the alignment of the amino acids of the partial G gene with respect to their position in the phylogenetic tree 
(strains have been colour-coded according to the collection country with the highest posterior probability). Amino acid positions under 
diversifying and directional selection have been reported.
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although able to reduce disease occurrence and viral 
shedding, are not equally effective in preventing infec-
tion and viral circulation, probably contributing to the 
above-mentioned within-country viral persistence. If this 
phenotype variability affects vaccine efficacy should be 
carefully evaluated in order to allow the selection of the 
best vaccine based on the epidemiological situation.

On the other hand, no clear association was identified 
between amino acid sequence and host, at least in the 
considered region (Figure 5).

The analysis of directional selective pressure acting on 
strains circulating in chickens evidenced only one site, i.e. 
codon 102, under this kind of selection. Similarly, a differ-
ential diversifying selection was reported only for codon 
83. However, in both cases, the phenotype variability was 
limited to a single clade and the contribution of other fac-
tors is therefore hard to be excluded. Moreover, when the 
action of selective forces, proportion of selected sites and 

selective regimes acting in the two hosts were compared, 
no statistically significant differences could be detected.

Taken as a whole, these results provide no evidence to 
claim a host-specific adaptation of aMPV-B strains. If 
other sites in the viral proteins allow for a higher fitness 
in chickens remains to be established.

The present study demonstrates that, after its first 
introduction, aMPV-B was able to rapidly spread in 
Western European countries and in the Eastern ones 
thereafter. Nevertheless, the molecular epidemiologi-
cal scenario is determined mainly by single introduc-
tion events followed by independent rapid evolution. 
Since this has led to the presence of strains with different 
amino acid profiles in different countries, the efficacy of 
currently available vaccines should be carefully evaluated.

Although relevant, the obtained results are surely lim-
ited by the lack of data due to the scarce sequencing 
activity, poor standardization of the sequenced region 

Figure 5  Plot reporting the alignment of the amino acids of the partial G gene with respect to their position in the phylogenetic tree 
(strains have been colour-coded according to the collection host species with the highest posterior probability). Amino acid positions 
under diversifying and directional selection have been reported.
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(generating not comparable information) and reluctance 
to share data. All these issues should be significantly 
improved to allow a proper comprehension of aMPV epi-
demiology, posing the basis for a more effective control.
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