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Obesity in women is increased by the loss of circulating estrogen after menopause. 
Shift work, which disrupts circadian rhythms, also increases the risk for obesity. It is 
not known whether ovarian hormones interact with the circadian system to protect 
females from obesity. During high-fat feeding, male C57BL/6J mice develop profound 
obesity and disruption of daily rhythms. Since C57BL/6J female mice did not develop 
diet-induced obesity (during 8 weeks of high-fat feeding), we first determined if daily 
rhythms in female mice were resistant to disruption from high-fat diet. We fed female 
PERIOD2:LUCIFERASE mice 45% high-fat diet for 1 week and measured daily rhythms. 
Female mice retained robust rhythms of eating behavior and locomotor activity during 
high-fat feeding that were similar to chow-fed females. In addition, the phase of the 
liver molecular timekeeping (PER2:LUC) rhythm was not altered by high-fat feeding in 
females. To determine if ovarian hormones protected daily rhythms in female mice from 
high-fat feeding, we analyzed rhythms in ovariectomized mice. During high-fat feeding, 
the amplitudes of the eating behavior and locomotor activity rhythms were reduced 
in ovariectomized females. Liver PER2:LUC rhythms were also advanced by ~4 h by 
high-fat feeding, but not chow, in ovariectomized females. Together these data show 
circulating ovarian hormones protect the integrity of daily rhythms in female mice during 
high-fat feeding.

Keywords: circadian, c57Bl/6J, female, bioluminescence, liver, eating rhythm, high-fat diet, obesity

inTrODUcTiOn

Disruption of circadian rhythms contributes to obesity and its comorbidities. Circadian rhythms 
are approximately 24-h fluctuations in physiology and behavior that are synchronized to the 
environment. In mammals, the circadian system is composed of a network of clocks that are 
located in nearly every tissue in the body. The master circadian clock in the suprachiasmatic 
nucleus (SCN) in the brain receives information about the timing of the environmental light–dark 
cycle and in turn coordinates the timing (or phases) of the other clocks located throughout the 
body (1, 2). Numerous epidemiological studies of shift workers as well as laboratory studies of 
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healthy people showed that disruption of the circadian system 
increases the risk for obesity and metabolic dysfunction (3–10).

Animal studies have probed the mechanisms underlying 
the reciprocal interactions between the circadian system and 
metabolism. Disabling the molecular timekeeping mechanism 
of circadian clocks in rodents altered glucose regulation and 
caused obesity (11–14). And, conversely, diet-induced obesity 
disrupted the circadian system (15–19). We and others found 
the daily rhythm of eating behavior was altered during high-fat 
feeding such that mice ate across the day instead of eating mostly 
at night, which is the normal feeding time for rodents (15, 16). 
This disrupted eating rhythm was a determinant of obesity since 
restricting high-fat diet feeding only to the nighttime inhibited 
obesity (20, 21). We also previously showed that high-fat feeding 
disrupted the temporal coordination between the timing of body 
clocks by altering the phase of the liver circadian clock (16).

The drawback of these previous animal studies, including 
our own, was they were performed exclusively in male animals. 
This is problematic because obesity and its related complications 
develop differently in men and women. Pre-menopausal women 
are protected from the negative consequences of obesity such as 
the metabolic syndrome (22). However, the loss of estrogen after 
menopause increases the risk of life-threatening, obesity-related 
complications such as cardiovascular disease and stroke (22–24). 
To our knowledge, no study has investigated the integrity of 
metabolic circadian rhythms in females or the role of ovarian 
hormones in regulating high-fat diet-induced disruption of daily 
rhythms. In this study, we addressed these questions by investi-
gating daily rhythms in intact and ovariectomized female mice 
during high-fat feeding.

MaTerials anD MeThODs

animals
Heterozygous C57BL/6J PERIOD2:LUCIFERASE (PER2:LUC) 
(2) and wild-type littermate (N23 to 25 generations of back-
crossing with C57BL/6J mice, Jackson Laboratory, Bar Harbor, 
ME, USA) mice were born and raised in 12-h light/12-h dark 
(12L:12D; light intensity ~350  lux) at Vanderbilt University. At 
weaning (21 days old), mice were group housed (2–4 mice/cage). 
Genotype was determined by measuring bioluminescence from 
tail snips from 21-day-old mice. All mice (breeders and pups) 
were fed chow (13.5% kcal from fat, LabDiet 5L0D) ad libitum 
until they underwent experimental diet manipulations. All 
procedures were conducted in accordance with the guidelines 
of the National Institutes of Health Guide for the Care and Use 
of Laboratory Animals and were approved by the Institutional 
Animal Care and Use Committee at Vanderbilt University (pro-
tocol number M/13/081).

experimental Protocols
Experiment I. Effect of Chronic High-Fat Diet 
Consumption on Body Weight in Female Mice
Heterozygous PER2:LUC C57BL/6J and wild-type female mice 
were single housed in cages (33 cm × 17 cm × 14 cm) with locked 
running wheels (wheels could not rotate) in light-tight boxes 

in 12L:12D (light intensity 200–300  lux; temperature inside 
light-tight boxes: 25.5 ± 1.5°C) at 7 weeks old and maintained 
on chow ad  libitum. Beginning at 8  weeks old, mice were fed 
either chow or 45% high-fat diet (Research Diets D01060502) 
for 8 weeks. Body weight was measured weekly (always within 
3 h before lights off).

Experiment II. Effects of Acute High-Fat Diet 
Consumption on Circadian Organization and the 
Eating Behavior and Locomotor Activity Rhythms 
in Female Mice
Heterozygous PER2:LUC C57BL/6J female mice were single 
housed in cages with locked running wheels at 7  weeks old in 
light-tight boxes in 12L:12D and fed chow. Body weight and food 
intake were measured weekly (always within 3 h before lights off). 
Locomotor activity and eating behavior were continuously meas-
ured. Beginning at 8 weeks old, mice were fed either chow or 45% 
high-fat diet for 1 week. At 9 weeks old, tissues were explanted 
and cultured to measure bioluminescence rhythms.

Experiment III. Effect of Ovariectomy in Mediating 
High-Fat Diet Effects on Daily Rhythms
Heterozygous PER2:LUC C57BL/6J female mice were ovariecto-
mized at 6 weeks old and single housed following the surgery in 
light-tight boxes in 12L:12D. Body weight and food intake were 
measured weekly (always within 3 h before lights off). Locomotor 
activity and eating behavior were continuously measured. Mice 
were fed chow ad libitum for 2 weeks. Beginning at 8 weeks old, 
mice were fed either chow or 45% high-fat diet for 1 week. At 
9 weeks old, livers were explanted, cultured, and bioluminescence 
rhythms were measured.

Bioluminescence recording and analysis
Within 1.5 h before lights out, tissue explants were prepared as 
previously described (25). In the first experiment (Figure S1 in 
Supplementary Material), SCN, arcuate complex, pituitary, liver, 
lung, aorta, spleen, and white adipose tissue were collected from 
each mouse and cultured as previously described (16). In the 
subsequent experiments in intact and ovariectomized mice, only 
liver explants were cultured from female mice. Bioluminescence 
was measured with the LumiCycle in 10-min intervals 
(Actimetrics Inc., Evanston, IL, USA). The data were detrended 
(by subtracting the 24 h moving average) and smoothed (0.5 h 
adjacent average) using LumiCycle software. Then ClockLab 
analysis software was used to determine the phase (peak of 
bioluminescence occurring between 12 h and 36 h in culture) of 
PER2:LUC expression.

Behavior recording and analysis
General locomotor activity data were collected every minute using 
passive infrared sensors (sensors record a maximum of one count 
every 6 s; model 007.1, Visonic LTD). Double-plotted actograms 
of locomotor activity were created with Clocklab (6-min bins; 
scaled setting). Cosinor analysis was performed for each mouse 
on activity profiles of 5 days of chow feeding or 5 days of high-fat 
feeding with Clocklab software. Cosinor analysis fits a cosine 
curve to the time series data and determines the amplitude (half 
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FigUre 1 | Female c57Bl/6J mice are resistant to diet-induced 
obesity. Body masses (mean grams ± SD) of female C57BL/6J mice fed 
either chow (blue circles, n = 8) or 45% high-fat diet (red circles, n = 9) for 
8 weeks. High-fat feeding began at 8 weeks old (at red arrow).
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of the peak-to-trough value), mesor (midline or rhythm-adjusted 
mean), and acrophase (the timing of the peak of the rhythm) of 
the rhythm (period was 24 h) (27). Mean activity profiles were 
generated by averaging daily locomotor activity in 6-min bins 
during either chow or high-fat feeding for all mice.

Eating behavior was continuously recorded using an infrared 
video camera (PYLE PLCM22IR Flush Mount Rear View Camera 
with 0.5 lux Night Vision, Pyle Audio Inc., Brooklyn, NY, USA) 
interfaced to a computer with VideoSecu4 (16). Eating behavior 
was analyzed in 1-min bins (coded as 1 for eating behavior and 
0 for no eating behavior) as previously described (16). Eating 
behavior data were plotted in circular histograms and analyzed 
with circular statistics (Oriana 4.0; Kovach Computing Services, 
Wales, UK). Circular histograms show the distribution of eating 
events across the day (lights on 0–12). Circular statistics were 
used to determine the vector of the rhythm. Grand mean vec-
tors describe the phase (direction) and amplitude (length) of the 
mean rhythms of female mice (n =  5) during chow (day 7) or 
high-fat diet (days 9 and 14) feeding.

Ovariectomy surgery
At 6 weeks of age, female mice were ovariectomized as described 
previously (28). Briefly, animals were anesthetized under inhaled 
isoflurane and administered analgesic pre-operatively. After 
midline dorsal skin incision, two lateral incisions of the dorsal 
peritoneal wall were made and ovaries were removed. Peritoneal 
incisions were closed with single simple interrupted stiches and 
the skin incision was closed with autoclips. Mice were housed 
individually following surgery and allowed to recover for 7 days 
prior to study.

statistical analyses
Two-way Repeated Measures ANOVA (with post  hoc Fisher 
LSD test) was used to determine if body weight was affected by 
high-fat diet compared to chow consumption over time and to 
determine the effects of sex, diet, and ovariectomy on eating 
behavior rhythms (OriginPro 2016, Northhampton, MA, USA). 
Independent t-tests (two-tailed) were used to compare the 
phases of liver PER2:LUC rhythms in intact or ovariectomized 
mice (OriginPro 2016). Paired t-tests (two-tailed) were used to 
compare the amplitudes, phases, and mesors of the locomotor 
activity rhythms. Circular data were plotted and analyzed using 
Oriana 4.0. The mean vector of each day of behavior data (for 
individual mice) was determined by Rayleigh’s uniformity test to 
indicate the angle (μ) and degree of clustering (length; r). Grand 
mean vectors (to analyze groups of mice) were analyzed using 
Hotelling’s one sample test. The length of the vector describes the 
uniformity of the distribution of activity such that short vectors 
indicate that activity is more evenly distributed across the cycle. 
Significance was ascribed at p < 0.05.

resUlTs

Female c57Bl/6J Mice are resistant to 
Diet-induced Obesity
Male C57BL/6J mice become obese when they consume high-
fat diet (29, 30). We first tested whether female C57BL/6J mice 

fed 45% high-fat diet developed diet-induced obesity. We fed 
female mice chow or high-fat diet for 8  weeks and measured 
body weight weekly (Figure 1). Although all mice gained weight 
over the 8-week experiment (time: F = 40.83, p < 0.001), there 
was no significant interaction between diet and time (F = 2.6, 
p = 0.11). Therefore, female mice were resistant to diet-induced 
weight gain.

high-Fat Feeding Does not alter 
Molecular Timekeeping rhythms in 
Tissues in Female Mice
We previously found that consumption of high-fat diet disrupted 
the temporal relationship between tissue molecular rhythms in 
male mice by advancing the phase of the liver circadian clock 
rhythm (16). Thus, we next determined the effects of high-fat 
diet consumption on circadian rhythms in central and peripheral 
tissues in female mice. PERIOD2 is a component of the molecular 
timekeeping mechanism of the circadian clock and is a target 
gene of the Clock/Bmal1 transcription factor network (31, 32). 
In PER2:LUC mice, the luciferase gene is knocked in to the 3′ end 
of the Period2 locus resulting in the expression of the PER2:LUC 
fusion protein (2). We assessed the molecular circadian clock 
rhythm by measuring bioluminescence from tissues explanted 
from PER2:LUC reporter mice (2).

We fed female mice either chow or high-fat diet for 1 week and 
measured rhythms of PER2:LUC bioluminescence in explanted 
tissues (Figure S1 in Supplementary Material). Similar to our pre-
vious study in males, we found that the phases of the PER2:LUC 
rhythms in the SCN, pituitary, lung, aorta, spleen, arcuate 
nucleus, and white adipose tissue were not affected by high-fat 
diet consumption. We also found that the phase of the liver 
PER2:LUC rhythm was not affected by high-fat feeding in female 
mice (Figure S1 in Supplementary Material). This surprisingly 
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FigUre 2 | high-fat diet does not alter the phase of the liver circadian 
clock in female mice. (a) Female C57BL/6J PER2:LUC mice were fed 
chow (blue circles) or high-fat diet (red circles) for 1 week and liver explants 
were cultured. (B) The mean phases (±SD) of the peaks of the 
bioluminescence rhythms were plotted relative to last lights on (12L:12D 
cycle indicated by white and black bars, respectively). Number of livers/total 
number cultured: Chow 7/7; High-fat diet: 5/7 (p = 0.60).
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contrasted with our previous finding that the phase of the liver 
PER2:LUC rhythm was advanced by ~5 h in male mice consum-
ing high-fat diet (16). We therefore repeated the experiment in 
female mice, cultured only livers, and confirmed the phase of the 
liver PER2:LUC rhythm was not altered by 1 week of high-fat diet 
consumption (Figure 2: p = 0.60).

The eating Behavior rhythm is not affected 
by high-Fat Feeding in Female Mice
Several studies, including our own, have shown that the amplitude 
of the daily rhythm of eating behavior was markedly reduced or 
eliminated during high-fat diet consumption in male C57BL/6J 
mice (15, 16, 26, 33). We examined the eating behavior rhythm 
in females using an infrared video camera (Figure 3; Figure S2 in 
Supplementary Material; data from all mice shown in Figure S3 
in Supplementary Material). During chow feeding, females had a 
robust, high-amplitude eating behavior rhythm characterized by 
a few snacks during the day and the majority of eating during 
the night [a pattern indistinguishable from chow-fed males (16)] 
(Figure  3A: days 5–7; Figures  3B,E). During the first 24  h 
of high-fat diet feeding, females exhibited continuous eating 
behavior, resulting in a low-amplitude eating behavior rhythm, 
which is also similar to males on high-fat diet (16, 26, 33) 
(Figure 3A: day 9; Figures 3C,F). However, by 1 week of high-fat 
feeding, females had high-amplitude robust daily rhythms of 
eating behavior (Figure 3A: days 11–14; Figures 3D,G). Thus, 
females displayed the novelty response to palatable high-fat 

diet, but this response extinguished and their chow-like eating 
behavior rhythm returned. These data demonstrate that high-fat 
diet was not aversive to females. In fact, caloric intake increased 
15% during 1  week of high-fat feeding, but the females did 
not gain more weight than chow-fed controls (Figure S2 in 
Supplementary Material; caloric intake did not increase dur-
ing chow feeding). Moreover, females had fewer eating events 
(Figure S4A in Supplementary Material: intact) and ate fewer 
grams of food (Figure S4B in Supplementary Material: intact) 
during high-fat feeding compared to chow. These data suggest 
that the females had the appropriate homeostatic response to 
the calorie-dense high-fat diet by reducing the mass of food 
eaten in an attempt to scale down caloric intake to constrain 
their body weight gain.

We next compared the amplitudes and phases of the eating 
behavior rhythms between males [data from our previous study 
using an identical protocol (26)] and females during chow and 
high-fat feeding (Figures 3H,I). There was a significant interac-
tion of sex and diet (F =  12.3, p =  0.02) on the amplitudes of 
the eating behavior rhythms (Figure  3H). Compared to chow, 
1 week of high-fat feeding significantly reduced the amplitude of 
the eating behavior rhythm in males (p = 0.04), but not females 
(p =  0.99). There were no significant effects of sex and/or diet 
on the phase of the eating behavior rhythms (Figure 3I). Thus, 
although female mice initially responded to high-fat diet with 
disrupted low-amplitude eating behavior, within 1 week female 
mice, unlike males, reverted to the high-amplitude eating rhythm 
of chow-fed mice.

The amplitude of the locomotor activity 
rhythm is not affected by high-Fat 
Feeding in Female Mice
The amplitude of the locomotor activity rhythm is reduced 
in male C57BL/6J mice (15, 18, 33). Thus, we next measured 
the locomotor activity rhythm with infrared motion sensors 
in female mice fed chow for 1 week and then high-fat diet for 
1 week (Figure 4, actograms from all mice shown in Figure S5 
in Supplementary Material; n = 5). In contrast to male mice, we 
found the amplitude and phase of the locomotor activity rhythm 
were not affected by high-fat feeding (Figure  4; Table  1). The 
mesor, or mean level of activity, was reduced slightly during 
high-fat feeding compared to chow feeding (Table 1).

Ovariectomy abolishes Protection of Daily 
rhythms from high-Fat Diet Feeding
We and others have previously shown that female mice are 
susceptible to diet-induced obesity after ovariectomy (34–37). 
Thus, we next determined if ovarian hormones were required 
to confer protection of daily rhythms from high-fat feeding in 
females. We ovariectomized female mice and then fed them 
chow or high-fat diet for 1  week (Figure S6 in Supplementary 
Material). In contrast to intact females, the phase of the liver 
PER2:LUC rhythm was advanced ~4 h in ovariectomized mice 
fed high-fat diet compared to those fed chow (Figure  5).

We next measured daily rhythm of eating behavior 
(Figure 6) in ovariectomized females fed chow or high-fat diet. 
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FigUre 3 | The eating behavior rhythm is robust in females fed high-fat diet. Eating behavior was measured with infrared video cameras. (a) Representative 
actogram of eating behavior (1-min bins) of a female mouse fed chow (days 1–7, blue) and then switched to 45% high-fat diet (days 9–14, red, HFD added at red 
asterisk on day 8). Each vertical line is an eating event (1-min bins). Representative circular histograms show the distribution of eating behavior across the day 
(10-min bins) in an individual mouse during one day of chow [(B): day 7], during the first day of HFD [(c): day 9], and during the sixth day of HFD feeding [(D): day 
14]. Scale: inner circle, 0; middle circle, 5; outer circle, 10. Grand mean vectors of eating behavior show the average eating behavior of female mice (n = 5) during 
chow [(e): day 7] and HFD [(F): day 9; (g): day 14] feeding. Scale: inner circle, 0; middle circle, 0.3; outer circle, 0.6. Lights were on from 0 to 12. Circular statistics 
are shown in Table S1 in Supplementary Material. Mean (±SD) amplitudes [(h), y-axis: length of grand mean vector] and phases [(i), y-axis: phase in ZT of grand 
mean vector] of male (n = 5) and female (n = 5) mice. Male data were taken from our previous study (26).
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TaBle 1 | cosinor analysis of locomotor activity rhythms in intact female 
mice.

amplitude Phase Mesor

Chow 2.5 ± 1.1 17.2 ± 0.4 1.5 ± 0.6
High-fat diet 2.2 ± 1.1 18.0 ± 0.6 1.3 ± 0.6
p 0.19 0.06 0.03

FigUre 5 | high-fat diet feeding advances the phase of the liver 
clock in ovariectomized females. (a) Representative traces of 
PER2:LUC bioluminescence recorded from ovariectomized mice fed chow 
(blue) or 45% high-fat diet (red) for 1 week (y-axis: counts per second). 
Phases were determined from the peaks of bioluminescence occurring 
between 12 and 36 h in culture (indicated by arrows). (B) Mean phases 
(±SD) of liver PER2:LUC rhythms from chow (n = 6)- and high-fat diet 
(n = 6)-fed ovariectomized mice (p < 0.001).

FigUre 4 | The amplitude of the locomotor activity rhythm in 
females is not affected by high-fat feeding. Locomotor activity was 
measured with passive infrared sensors. (a) Representative actogram of 
locomotor activity (6-min bins; scale: 5) of a female mouse fed chow (days 
1–7) and then switched to 45% high-fat diet (days 9–14, high-fat diet added 
at red asterisk on day 8). (B) Group average activity profiles (y-axis: 
counts/6 min bin) of females fed chow (blue) for 1 week and then high-fat 
diet (red) for 1 week (n = 5 mice).
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Ovariectomized females fed chow had robust, high-amplitude 
eating behavior rhythms (Figure  6A: days 5–7; Figures  6B,E; 
all mice shown in Figure S7 in Supplementary Material). The 
amplitude of the eating behavior rhythm was reduced by high-
fat feeding in ovariectomized females such that eating events 
were spread across the day and night (Figure  6A: days 9–14; 
Figures 6C,D,F,G; all mice shown in Figure S7 in Supplementary 
Material). The low-amplitude eating rhythm persisted 7 days after 
high-fat diet was introduced (Figures 6D,G). When we compared 

the amplitudes of the eating behavior rhythms between intact 
and ovariectomized females, there was a significant interaction 
of ovariectomy and diet (F = 9.2, p = 0.04) on the amplitudes of 
the eating behavior rhythms (Figure  6H). Compared to chow, 
1  week of high-fat feeding significantly reduced the amplitude 
of the eating behavior rhythm in ovariectomized females 
(p  =  0.04), but not intact females (p  =  0.74). There were no 
significant effects of ovariectomy and diet on the phase of the 
eating behavior rhythm (p = 0.06). Ovariectomized females ate 
more calories during high-fat feeding compared to chow feeding 
(Figure S6 in Supplementary Material). Similar to intact females, 
ovariectomized mice had fewer eating events (Figure S4A in 
Supplementary Material: OVX) and ate fewer grams of food 
(Figure S4B in Supplementary Material: OVX) during high-fat 
feeding compared to chow.

We also measured the locomotor activity rhythm in ovariecto-
mized females fed chow and high-fat diet (Figure 7). Immediately 
upon addition of high-fat diet, consolidated bouts of locomotor 
activity dissipated into shorter activity bouts (Figure 7A). This 
effect of high-fat diet persisted for the entire week of high-fat 
feeding. The amplitude and mesor (mean) of the locomotor 
activity rhythm were also reduced during high-fat feeding in 
ovariectomized females (Figure  7B; Table  2). There were no 
significant effects of ovariectomy and/or diet on the phase of the 
locomotor activity rhythm.
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FigUre 6 | The eating behavior rhythm is compromised in ovariectomized females fed high-fat diet. Eating behavior was measured with infrared video 
cameras. (a) Representative actogram of eating behavior (1-min bins) of an ovariectomized female mouse fed chow (days 1–7, blue) and then switched to 45% 
high-fat diet (days 9–14, red, high-fat diet added at red asterisk on day 8). Each vertical line is an eating event. Representative circular histograms show the 
distribution of eating behavior across the day (10-min bins) in an individual ovariectomized female mouse during 1 day of chow [(B): day 7], during the first day of 
HFD [(c): day 9], and during the sixth day of HFD feeding [(D): day 14]. Scale: inner circle, 0; middle circle, 5; outer circle, 10. Grand mean vectors of eating 
behavior show the average eating behavior of ovariectomized female mice (n = 5) during chow [(e): day 7] and HFD [(F): day 9; (g): day 14] feeding. Scale: inner 
circle, 0; middle circle, 0.3; outer circle, 0.6. Lights were on from 0 to 12. Circular statistics are shown in Table S1 in Supplementary Material. Mean (±SD) 
amplitudes [(h), y-axis: length of grand mean vector] and phases [(i), y-axis: phase in ZT of grand mean vector] of intact (n = 5; data from Figure 3) and 
ovariectomized (n = 5) female mice.
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TaBle 2 | cosinor analysis of locomotor activity rhythms in ovariectomized 
female mice.

amplitude Phase Mesor

Chow 1.6 ± 0.6 17.0 ± 0.7 0.9 ± 0.4
High-fat diet 0.6 ± 0.1 17.1 ± 0.8 0.6 ± 0.2
p 0.02 0.77 0.06

FigUre 7 | The locomotor activity rhythm is reduced by high-fat 
feeding in ovariectomized female mice. Locomotor activity was 
measured with passive infrared sensors. (a) Representative actogram of 
locomotor activity (6-min bins; scale: 5) of an ovariectomized female mouse 
fed chow (days 1–7) and then switched to 45% high-fat diet (days 9–14, 
high-fat diet added at red asterisk on day 8). (B) Group average activity 
profiles (y-axis: counts/6-min bin) of ovariectomized females fed chow (blue) 
for 1 week and then high-fat diet (red) for 1 week (n = 5 mice).
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DiscUssiOn

Obesity and metabolic dysfunction are linked to disruption of 
circadian rhythms in human and animal studies. Studies in male 
mice have shown that high-fat feeding alters tissue, hormone, 
and behavior (eating and locomotor activity) rhythms (15–18). 
The disruption of daily rhythms in male mice is accompanied by 
development of profound obesity. However, the effects of high-
fat feeding on daily metabolic rhythms in females have not been 
investigated. In this study, we showed that, in contrast to male 
mice, daily rhythms in females are protected from disruption by 
high-fat feeding.

Molecular rhythms of circadian gene expression and 
metabolites are altered in the livers of male mice fed high-fat diet 

acutely and chronically (15, 16, 19, 26, 33). We have postulated 
that temporal misalignment of the liver circadian clock and 
its rhythmic outputs are determinants of obesity. The current 
study further supports this hypothesis. We found the phase of 
the liver circadian clock is not affected by high-fat feeding in 
female mice, which are also resistant to diet-induced obesity. 
After ovariectomy, female mice are susceptible to diet-induced 
obesity (34, 35, 37), and the phases of their liver molecular 
clocks are markedly altered (liver phase is advanced 4  h). It 
is possible that circulating estrogen, or lack thereof, directly 
alters the circadian clock in the liver. Indeed, estradiol has been 
shown to alter the PER2:LUC rhythms in cultures of explanted 
uteruses and kisspeptin neurons(38, 39). Moreover, estrogen 
receptor signaling in the liver is incredibly responsive to estrogen 
in vivo (40). In future studies, we will investigate the mechanism 
whereby estrogen or other ovarian hormones regulate the phase 
of the liver circadian clock.

Disruption of the eating behavior rhythm contributes to the 
development of diet-induced obesity in males (20). When given 
high-fat diet, the amplitude of the eating rhythm is markedly 
reduced such that male mice eat throughout the 24-h day (light 
and dark phases) (15, 16). Restricting high-fat feeding to only 
the nighttime, which is when mice consume most of their calo-
ries, protects males from diet-induced obesity (20). In contrast 
to males, we found that females were resistant to the effects of 
high-fat diet on daily rhythms. Thus, in females, the daily rhythm 
of eating behavior in female mice is robust during high-fat feed-
ing such that eating is consolidated during the nighttime. This 
robust eating behavior rhythm during high-fat feeding is lost 
after ovariectomy. Thus, ovarian hormones play a critical role in 
maintaining circadian feeding behavior rhythms despite high-fat 
diet feeding in female mice.

Our study also suggests that ovarian hormones differentially 
regulate the effects of high-fat feeding on the daily eating rhythm 
and homeostatic regulation of caloric intake. Ovariectomy 
abolished protection of the eating rhythm from high-fat feed-
ing. In contrast, both intact and ovariectomized females had 
reduced eating events and food intake (measured in grams of 
food consumed) during high-fat feeding compared to chow. 
Thus, in ovariectomized mice, the homeostatic reduction in 
food intake is intact, since the mice eat significantly less of 
the calorie-dense high-fat diet compared to chow (Figure S4 
in Supplementary Material), while the daily eating rhythm is 
markedly altered.

The role of ovarian hormones in maintaining circadian 
rhythms may be critical in protecting females from diet-induced 
obesity. It is likely that estrogen plays a major role in regulat-
ing circadian eating behavior during high-fat feeding. Previous 
studies have shown that estrogen acutely reduces feeding and 
the daily rhythm of food intake varies across the estrous cycle 
in rats (41, 42). In this study, we did not control for the estrous 
cycle in the intact females. It will be interesting to determine 
in future studies if the amplitude of the eating behavior rhythm 
during high-fat feeding fluctuates with the stage of the estrous 
cycle. In future studies, we will treat ovariectomized females with 
estrogen to determine if this restores protection of daily rhythms 
during high-fat feeding.

http://www.frontiersin.org/Endocrinology/
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Studies in rodents and humans have demonstrated the roles of 
estrogen in controlling energy homeostasis and glucose metabo-
lism [for review, see Ref (43)]. While the prevalence of obesity is 
equivalent in males and pre-menopausal women, obesity preva-
lence increases sharply in post-menopausal women (42%) (44). 
Estrogen deficiency after menopause predisposes women to obe-
sity, the metabolic syndrome, and type 2 diabetes (22). Likewise, 
ovariectomy increases adiposity in rodents, and this increase in 
adiposity is prevented by estrogen replacement (41, 45). Thus, 
estrogens play an important role in energy homeostasis in both 
humans and rodents. We hypothesize that estrogen may play a 
role in protecting daily rhythms from the effects of high-fat feed-
ing in female mice since ovariectomy abolished this protection. 
Alternatively, other ovarian hormones, such as progesterone, may 
confer protection of rhythms from high-fat feeding. Future stud-
ies will determine whether estrogen or other ovarian hormones 
are responsible for this protection.

The SCN controls the daily rhythm of food intake (46). It is 
possible that estrogen acts directly on SCN neurons to control 
the eating behavior rhythm. However, we speculate instead that 
estrogen acts downstream of the SCN to protect the daily rhythm 
of eating behavior from high-fat feeding. The reasons are twofold. 
First, the circadian rhythm in the SCN and its outputs are only 
moderately, at best, altered by high-fat feeding (15, 16, 18). This is 
in contrast to our observation that the eating behavior rhythm is 
all but eliminated during high-fat feeding in male mice and ova-
riectomized female mice (16). Second, the circadian rhythm in 
the SCN and its outputs are only moderately affected by manipu-
lations of estrogen signaling (47). Moreover, estrogen receptors 
are expressed in few cells in the SCN (48). Taken together, we 
propose that estrogen acts outside of the SCN, perhaps in other 
feeding-related hypothalamic nuclei, to modulate the eating 
behavior rhythm during high-fat feeding.

High-fat feeding reduces the amplitude of the locomotor 
activity rhythm in male C57BL/6J mice (15, 18, 33). In contrast 
to males, the amplitude of the locomotor activity rhythm in 
female mice was not altered by high-fat feeding. Consistent 
with a previous study, the amplitude of the activity rhythm was 
reduced by ovariectomy in chow-fed mice (49). Additionally, in 
the absence of ovarian hormones, the amplitude of locomotor 
activity was reduced by half during high-fat feeding relative to 
chow feeding. Thus, ovarian hormones were also required to 
protect the daily activity rhythm. Similar to previous studies in 
males (15, 18), high-fat diet feeding reduced the mean activity 
level in both intact and ovariectomized females. Estrogen could 
act directly on SCN neurons or outside of the SCN to regulate the 
amplitude of the locomotor activity rhythm. It is difficult, if not 
impossible, to address this question because there is currently no 
way to eliminate the function of estrogen receptors exclusively in 
SCN cells (e.g., there is no Cre driver that is exclusively expressed 
in SCN cells).

Diet-induced obesity studies in rodents have provided prom-
ising avenues for “repairing” circadian disruption and improving 
metabolism. For example, restricting eating to specific times of 
day, called time-restricted feeding, is gaining traction as a plau-
sible behavioral strategy to reduce obesity (50). However, while 
proof-of-concept for this therapy is strong in studies of male 
mice (20), our study suggests this therapy may not be effective 
in females. This study highlights the necessity of studying female 
models of diet-induced obesity when developing and testing 
novel therapeutics.

The current study elucidates protection of daily rhythms 
as a putative mechanism whereby females are resistant to 
diet-induced obesity. Notably, daily rhythms in females, 
compared to males, respond oppositely to high-fat feeding. 
Understanding the circadian mechanisms conferring obesity 
and designing therapeutics will employ distinct approaches 
in males and females.
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