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There are thousands of papers published every year investigating the properties and possible applications of

ionic liquids. Industrial use of these exceptional fluids requires adequate understanding of their physical

properties, in order to create the ionic liquid that will optimally suit the application. Computational

property prediction arose from the urgent need to minimise the time and cost that would be required to

experimentally test different combinations of ions. This review discusses the use of machine learning

algorithms as property prediction tools for ionic liquids (either as standalone methods or in conjunction

with molecular dynamics simulations), presents common problems of training datasets and proposes

ways that could lead to more accurate and efficient models.
Introduction

Over the past decades, ionic liquids (ILs) have been a topic of
intensive research worldwide. A simple search of the term “ionic
liquids” at the Web of Science shows thousands of new papers
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being published each year, with almost 9000 papers being
published in 2020, even excluding the newer trend for Deep
Eutectic Solvents. This phenomenon is very much expected,
considering that there is a worldwide need to increase the effi-
ciency of industrial processes, while reducing their ecological
footprint.1 ILs are highly promising materials for this goal, as
they can be ne-tuned to t the needs of a specic application,
while their thermal and chemical stabilities and negligible
vapour pressures make them easily recyclable. According to
numerous studies, ILs can be ideal candidates for a plethora of
different applications such as reaction solvents, catalysts,
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Review Chemical Science
lubricants, electrolytes, extraction media, drug delivery systems
etc.2–5

The synthetic exibility associated with ILs has led to them
being described as ‘designer solvents’.6 However, throughout
their history there has been insufficient understanding of how
the properties of ionic liquids arise from the molecular struc-
tures of their constituent ions. Until recently, the usual way of
studying and understanding the properties of ILs was essen-
tially by trial and error. Researchers, based on their empirical
knowledge and intuitive understanding of ILs and their prop-
erties, conceptualised a combination of anions and cations that
could have the desired properties and then made homologous
series of ILs – hoping that even if the initial attempt was fruit-
less they would get sufficient feedback to achieve the required
properties with a second attempt. However, this method is time-
consuming and expensive. Therefore, the need for a prediction,
or at least an initial estimation, of the emergent properties of
any IL based solely on the structures of its ions becomes
evident. Many experts on ILs have indicated that the signicant
lack of physical data impedes their industrial
commercialisation.7

Structure–Property Relationship (SPR) has been studied for
many years, with major applications being polymer and phar-
maceutical research.8–10 SPR has been studied from early in IL
research, since the natures of the anions and cations, and the
interactions between these are usually directly translated to the
IL's physical properties.11 Therefore, there is a quite extensive
qualitative understanding of the basic properties of very
popular IL families, which makes it easy for the researchers to
nd an IL with ‘low melting point’, ‘a wide electrochemical
window’ or ‘increased hydrophobicity’. However, in practise the
knowledge of general physicochemical characteristics of an IL
family is not sufficient when the researcher wants to design
tailor-made ILs for specic applications. In this case an accurate
prediction of the properties is required that goes beyond the
generalities of ‘low viscosity’ or ‘high conductivity’. There is the
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need for quantitative structure–property relationship (QSPR)
studies and the creation of mathematical models that can
predict accurate numerical results based solely on structural
data of the IL.12,13

QSPR for ILs is a difficult and computationally challenging
research area, something that can be understood from the fact
that there are fewer available predictive models than for other
commonly used chemicals (such as pharmaceuticals or molec-
ular solvents). The difficulty lies in the complexity of inter- and
intramolecular interactions and that these interactions are not
completely understood for all types of ILs. Every experimentalist
researcher of ILs has experienced making ILs that don't behave
as they expected. This can result in modifying the existing
theories in order to rationalise and include those outliers –

a process which can prove extremely time consuming – or oen
to that particular IL being excluded from future studies.

In 1952, computer scientist Arthur Samuel created his
famous checkers playing program, introducing a new era for
Computer Science, the eld of articial intelligence.14 Samuel's
checkers player was the rst program that could learn while it
was running and become a better player aer each game. The
idea that a program could evolve on its own, without the need of
manual modications on the code, was a technological mile-
stone that would have a major impact in the evolution of
Computer Science. Fast forward to the 21st Century, and the
evolution of the calculation power of modern computing
systems has given machine learning methods (ML) the capacity
to perform complicated calculations with extreme time and
resources efficiency which are being used by major technolog-
ical companies.15 There are many detailed manuscripts on the
history and evolution of ML, some indicative works are cited
here.16,17

MLmethods are currently being implemented in research in
a wide range of scientic elds, including chemical discovery
and molecular design.18 The secret behind their popularity is
that in a space of unlimited molecules and synthetic pathways,
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Fig. 1 Web of science search of “Ionic Liquids” and “Machine Learning”
(search January 2021).

Fig. 2 Categorisation of AI computational methods discussed in this
work.

Chemical Science Review
ML can use complex statistical systems to provide the
researcher with a view of greater possibilities to guide their
research.19 In contrast to other elds (such as drug discovery,
toxicology research, synthetic pathways etc.) ML has only been
used in IL discovery over the past decade, with only a small
number of published papers (Fig. 1). This is the main point of
discussion of this review paper. Why in an otherwise very much
computer-aided research eld (there are thousands of available
papers on molecular dynamics, Monte-Carlo, ab initio etc.
calculations) is there so limited literature on ML methods for
properties prediction?
Presentation of the ML methods used
in IL research

In order for this work to be helpful, we have to present some
short denitions and descriptions of signicant terms that will
be very frequently used below. Articial Intelligence (AI) is
a term which, nowadays, it is being widely used – without being
followed by a strict denition. According to the very popular
textbook by Russel and Norvig, AI refers to the “creation of
human-like behaviour which can plan, learn, perceive or
process a natural language”.20 The term intelligence as applied
to computers is different to intelligence as it is used in the
everyday world. An intelligent machine is not necessarily one
that can perform very difficult calculations, but rather
a machine that gets feedback from the results it produces and
re-uses these in order to continuously improve its methods.21

Machine learning refers to the creation of algorithms,
a sequence of guidelines that help the computer to solve
a specic task, sorting and correlating enormous amounts of
data. ML offers the computer an automated step-by-step
learning capability, enabling it to perform complicated tasks
that the user could not program by hand.22 These algorithms
use statistics in order to correlate large data sets. Input data are
fed to the ML learning algorithm, which by using a so-called
task-specic feature extractor creates a series of constructed
articial features. The articial features, which do not neces-
sarily correspond to physical properties of the chemical system
being studied, become the input for the regression algorithm
(or classier), which tries to correlate these with the studied
6822 | Chem. Sci., 2021, 12, 6820–6843
property (modelling). There are a great number of different
techniques developed for modelling, such as Support Vector
Machines (SVMs), Articial Neural Networks (ANNs) etc.23 Fig. 2
shows the AI methods that are discussed in this work.

A crucial point in ML methods is data representation. For
many years the bottleneck of ML research was the construction
of feature extractors that could transform raw data to a format
suitable for the algorithm. This led to the discovery and our-
ishing of Deep Learning (DL) techniques, which are methods
with multiple levels of representation of data.24 Raw data go
through multiple non-linear nodes, which transform the initial
representation to another – usually more abstract – form, which
then makes it much easier for the algorithm to t very complex
equations (Fig. 3).

In order for the reader to better understand the advantages
and limitations of the methods discussed further below, we
believe it is crucial to have an adequate understanding of the
concepts of over- and undertting. Most regression models are
not supposed to go through all the given data points, instead
they are creating the curve with the minimum possible residual
distance from the measured points.26 Overtting is the model-
ling error that occurs when the function is t too closely to
a limited set of data and it is a common problem when an
algorithm creates an excessively complex model (with too many
parameters). As a result, the model picks noise or random
uctuations and considers them as parts of the function. On the
other hand, undertting refers to the case when the created
function can't capture the complexity of the data space and
wrongly over-simplies it. An undert model can neither model
the training data nor create/predict new data points.27

The obvious question arising from this discussion is “how
many parameters are enough?”. This is not an easily-answered
question, as this really depends on the complexity of the
contributions to the phenomenon being investigated. Enrico
Fermi in 1953 was asked whether he was impressed with the
agreement between his measured data and computationally
calculated values performed by other groups. In his reply he
© 2021 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 Schematic representation of the promise versus reality of the use of ML for chemical reaction prediction. Reprinted with permission from
Kammeraad et al.25 Copyright 2020 American Chemical Society.
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quoted Johnny von Neumann saying ‘with four parameters I can
t an elephant and with ve I can make him wiggle his trunk’.28

This anecdote has given rise to a debate among theoreticians,
trying to prove whether it is actually possible, but has indicated
a very signicant point of computational research, that the
complexity or arbitrariness of parameters can play a crucial role
in statistical tting of measured data.29,30

Articial Neural Networks (ANNs), which constitute the basis
for most DL algorithms, consist of large successive layers of
processing units which lead to different levels of representa-
tions and therefore different levels of learned abstraction (see
Fig. 4 and 5).31 Conventional ANNs get as input the articial
features from the raw data and layer aer layer, try to correlate
these with the studied property – until they reach the nal layer
which is property prediction.

Advances in DL algorithms have led to further evolution of
ANNs: Deep Neural Networks (DNNs). These methods learn
Fig. 4 Comparison between conventional ML and DL workflows.
Redrawn from Visvikis et al.33

© 2021 The Author(s). Published by the Royal Society of Chemistry
specic patterns extracted directly from the raw data (automatic
feature extraction), rather than the extracted features used by
conventional ML methods. Furthermore, they are more
computationally efficient in nding non-linear correlations.
Following the principles of DL, non-linear transformations can
be applied from one layer to the next and so on, thus creating an
algorithm that can more easily learn more abstract features.32

Although they are not identical, the terms ANN and DNN are
oen interchanged in the literature, making it difficult for
a reader with limited knowledge of the subject to directly
understand the used method.

However, DNNs have their aws, which have to do mainly
with the existence of many hyperparameters, parameters whose
values dene the network's structure and guide the training
process, which require a lot of computational time and effort to
ne-tune. Moreover, because of the numerous layers and their
incredible correlation capacity, they are very vulnerable to
overtting the data – as they tend to recognise and model rare
correlations that appear in the dataset, but might not actually
have physical signicance.34

Although ANNs are arguably the most widely used AI tech-
nique in chemical research (and many other elds), they do
have their aws and some researchers look for alternatives. The
most signicant disadvantages relevant to chemical research
are the strong dependence between input and output, long
training times with many epochs (number of passes of the
training set completed by the algorithm), the need for very large
and diverse datasets and their susceptibility to overtting.35,36

Trying to overcome these problems, many researchers turn to
Support Vector Machines (SVM), which at least in the case of IL
property prediction, is the second most popular method of
choice.

SVMs work on the simple rule of depicting the training data
as vectors in space and trying to categorise these with the widest
Chem. Sci., 2021, 12, 6820–6843 | 6823



Fig. 5 Conventional feedforward ANNs (FFANN) (a) differ from DNNs (b) by having only one hidden neuron layer. Bias terms (output of the NNs
when input is zero) are not connected in DNN for simplicity.

Chemical Science Review
possible gap between them. New (unseen) data are plotted in
the space and they are integrated into either of the categories
based on the side of the gap to which they belong.37 SVMs
investigate the possible hyperplanes, a space of N-dimensions
which offers maximum separation between two categories,
through various non-linear transformations, in which the given
data will be linearly separable and then translate this separation
to the initial training space.38 These models are able, in short
times and with smaller datasets than ANNs, to solve problems
related with data classication and regression. However, they
require the solution of quadratic equations in order to effec-
tively describe a given dataset. Simplication of the problem
comes by transformation of the quadratic equations to linear
using the least-square method (LSSVM), thus reducing the
system to a set of 2N + 2 equations with 2N + 2 variables (N is the
number of provided data points).39,40 The LSSVM approach has
turned SVMs from classication to regression algorithms
capable of reportedly very high precision and higher possibili-
ties of reaching a global minimum, in comparison to ANNs
which very oen terminate at local minima of the equations.41,42

The last ML method that will be discussed in this work are
Decision Trees (DTs). DTs have gained popularity because of
their simplicity and efficiency in dealing with high dimensional
data, but they are weaker in prediction accuracy than the
methods described above. There is a plethora of QSPR studies
using classication and regression decision trees (CARTs),
usually on datasets with many different molecular descrip-
tors.43–45 The creation of a CART is based on a very simple
method. Initially a tree is created by partitioning the initial data
points (root node) to ‘child’ (or leaf) nodes. The aim of this step
is for every created child subgroup to be more homogeneous
than the ‘parent’. DTs are very prone to overtting, therefore it
is quite usual for researchers to create trees with a very large
number of nodes, in order to avoid that problem. However, this
results in many nodes being ‘weaker’, i.e., not useful to the
system. Then comes the second step, which is pruning, with the
aim to remove any unnecessary splits of the tree. Unlike NNs,
DTs don't use articial features, but the predictive features
correspond to actual chemical parameters (such as HOMO/
6824 | Chem. Sci., 2021, 12, 6820–6843
LUMO energies, molecular volumes, molecular weight etc.)
Finally, the CART with the lowest error on a test set prediction is
selected as the optimal tree. Prediction of a property reaching
a terminal leaf node is calculated as the average value from all
training set points that have reached the same node.46,47 A
simple form of a DT algorithm is shown in Fig. 6.

DTs have a fundamental disadvantage in that a simple tree
structure suffers from a large bias, while a complex tree has
a large variance. In order to overcome these problems,
researchers use various ensemble methods, which try to group
together many simple trees (week learners) in order to create
a strong learner.48 There are two basic categories of ensemble
methods, bagging and boosting. Bagging aims to reduce the
variance of a DT by splitting the training data to subsets,
training different trees and use an average of those models –

which has proven as more efficient than a single DT. Random
Forest (RF) is an extension of bagging, which as an addition
uses a subset of the existing predictive features, instead of using
all of them to grow the trees. RF offers the advantage of
handling better high dimensional data.49 Boosting is the
ensemble method which creates a sequence of many simple
trees (weak learners) in order to achieve one strong learner.
Each tree is focused on reducing the tting error received from
Fig. 6 Structure of a simple DT.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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the previous tree. Gradient boosting is an extension of this
method, which uses of a loss function that detects residuals.
New learners t to the residuals from previous steps, trying to
recover the loss (difference between actual and predicted value)
so that the model improves faster.50 A basic advantage of the
Gradient Boostingmethod is that it supports the use of different
kinds of loss functions (higher versatility) and also it provides
accurate results even if there are interactions between the
studied parameters.48
ILs as input data

When QSPR models are being set up, a major decision point is
how the researchers will translate chemistry to maths. QSPR
correlations can use input data either directly from experi-
mental measurements or create descriptors based upon the
molecular structure. The vast majority of properties prediction
methods (both classical computational and ML methods) for
complex molecules are based on group-contribution theory
(GC).51–54 GC models break down molecules into characteristic
sub-structures (descriptors), which then can be correlated with
specic effects on the compound's properties. The simplest,
and most used, GC models study rst-order correlations
between the model and the studied property, in which the
property arises as a simple sum of the contributing factors. Over
recent years, the increase in the available computational power
has made more complicated second and third order models
more popular (eqn (1)).55

f(X) ¼ P
NiAi +

P
MjBj +

P
WkCk (1)

f(X) is the value of a studied property X at given conditions (e.g.
viscosity at given temperature and pressure), Ai, Bj and Ck are
rst, second and third order contribution factors – corre-
sponding to the number of performed regressions, N, M and W
show how many of each factor appears in a molecule.

The number of descriptors and the complexity of chemical
structures are signicant parameters that affect the results of
the model, but they are decided on a trial-and-error basis with
each researcher following a different route. Especially for IL
systems, the occurring interactions are numerous and complex.
Therefore, there are limitations on how accurately somebody
can depict an IL with such descriptors.56 ML models are usually
data-hungry and if not properly adjusted they tend to create
hundreds of parameters and overt the results – something that
should be avoided by all means. The general rule is that the
model should remain as simple as possible, to give meaningful
predictions and as general as possible, in order to be able to
encompass a large range of molecules. Moreover, there are
studies that show that, in some cases, increasing the order of
the correlation factor makes the models more complicated but
does not actually improve their accuracy.57

Another method of transforming chemical structures to
descriptors was introduced by Valderrama et al.58,59 Their mass
connectivity index (MCI) offers the capability, by using simple
calculations, to connect the mass of the functional groups in
a molecule with the type of connection (branching, double
© 2021 The Author(s). Published by the Royal Society of Chemistry
bonds etc.). However, the simplicity of the method comes with
the limitation of not being able to dene intermolecular inter-
actions (such as hydrogen bonding) to the index, which is
important for nding QSPRs in ILs. They used their MCI as an
input descriptor for a neural network that predicts viscosity with
promising results for a small range of studied ILs.60 However,
apart from their works, MCI has not been used as input for any
of the other ML studies for ILs.

Molecular descriptors, such as those discussed above, present
the limitation of requiring researchers to nd sets of relevant
descriptors for each case and also usually they have to deal with
high dimensional data. In order to overcome those problems
another category of methods has been created, which works
directly on molecular structures. Graph-convolution NNs trans-
form the molecular structures to a set of neural ngerprints,
which are used in order to translate structures to graphs
(vectors).61 A popular representation of structures uses graph
nodes to represent atoms, while the edges describe bonds.62

Graph theoretical approaches have been used to describe and
analyse various different chemical systems.63–65 The used network
can be set in order to optimise the efficiency of extracted char-
acteristics, thus improving the accuracy of the model. There are
few published works on graph-based frameworks for encoding
chemical structures for ILs, however these works tend to focus
solely on one family of anions or cations and therefore their
extension and generalisation might still be limited.66–68

Another family of descriptors used in QSPR methods are
those of quantum chemical (QC) or thermodynamic nature. QC
descriptors use values from quantum calculations, such as
HOMO and LUMO energies, polarity, electron affinity, electro-
negativity etc.69–71 Similar to the other techniques, a variety of
such descriptors are calculated for a dataset of ILs with known
properties and then correlation methods are used to choose
those which appear to have more signicant relations to the
properties.72 Based on QC descriptors theory, some studies have
used descriptors based on COSMO-RS s-proles (molecular
surface charge distributions).73 COSMO-RS offers the capability
of property estimation, which however requires DFT calcula-
tions that usually run on high performance computing
systems.74,75 Unlike DFT calculations, a pre-trained ML algo-
rithm might be able to run on an average office computer.
Stocker et. al. recently published a very interesting study about
the use of ML in chemical reaction networks, which shows that
the prediction of new data points using ML methods is per-
formed much faster than with DFT calculations, with equal
accuracy.76 Using COSMO-RS s-proles as data for MLmethods,
seems promising and has been implemented in various clas-
sical property regression models with very promising
results,77–79 but so far with only few implementations to ML
algorithms.80–85
Prediction of physical and chemical
properties of ILs

As discussed above, ML methods are superior versus classical
data analysis techniques in two main aspects, data
Chem. Sci., 2021, 12, 6820–6843 | 6825



Table 1 Summary of works using ML methods for prediction of properties in IL

Property IL family Method Distinct ILs Training/test set points Ref.

Viscosity Im, Py, Quin, Pyr, Ox, Pip, Mo, Azp,
Guan, N, P, S, dicationic

FFANN 1484 11031/613 53

Im, Py, Pyr, N, P FFANN 81 654/81 96
Im, AA, N, Guan, Quin, Mo, Ox, P, Pip, Py,
Pyr, Pyrr, S

LSSVM 443 1254/418 40

Im, Py, Pyr, P, Quin, N FFANN 66 612/124 99
Im, Py, Pyr, P, N, Mo, Pip, S ELM (FFANN) 89 1205/297 100
Im, Py, Pyr, P, N MLP (FFANN) 33 651/72 163
Im, N, Py, Pyr, P, Pip, Mo, S, Cprop, Azp,
Guan, Trz, Bic, Pz, Thur, Quin, thz, amd,
ox, pipz, tetraz

FFANN and LSSVM 1974 1437/159 and 4479/453 97

Im, Py, N FFANN 31 327/31 60
Density Im MLP (FFANN) and RBF n/a 317/68 93

Im, N, Py, Pyr, P, Pip, Mo, S, Cprop, Azp,
Guan, Trz, Bic, Pz, Thur, Quin, thz, amd,
ox, pipz, tetraz

MLR, FFANN and LSSVM 1999 5632/625 94

Im, Py, Pyr FFANN 50 399/83 54
Melting point Trz, Pyr, Py, Pip, P, Mo, Im, N, S PLSR, SVM, RF, GBM and k-nn 2212 1486/726 88

Im, Py, Pip, P, N FFANN 62 50/12 87
Im Regression trees and SVR 281 and 134 225/22 and 107/13 90
Trz, Pyr, Py, Pip, P, Mo, Im, N, S KKR 2212 1770/442 92
Im, N, P, Py, Pyr, S PLSR, GBM, Cubist, RF, CART 467 1646/1501 164
Py FFANN, DT 126 n/a 47
Guan CPG NN 101 81/20 86
Py RNN 126 84/42 67

Surface tension Im, Py, P FFANN 79 616/132 165
Toxicity Im, Py, Pyr, P, N, Pip, Mo, Quin, S GFA and LSSVM 270 203/67 116

Im, Py, Pyr, Pip, N, Quin ELM (FFANN) 119 100/19 118
Im, Py, Pyr, Pip, P, N, Quin MLR and ELM 160 128/32 120
Im, Py, Pyr, Pip, N, P, Mo CCN and SVM 292 204/88 115
Im, Py, Pyr, Pip, P, N, Mo ELM 142 113/29 121

CO2 solubility Im, N, P MLFNN (FFANN) 144 (pre-trained on H2S) 102
Im, P, Pyr MLP and ANFIS 14 546/182 101
Im, N, Py, Pyr MLR and LSSVM 21 16/5 103
Im, N, Guan, Py, Pyr, P, Ur PLSR, CTREE and RF 158 5424/5424 71
Im, P LSSVM 11 128/385 104
Im, P MLP 20 907/208 105
Im, Pyr, P DNN, RNN and CNN 13 n/a (ratio 7/3) 106
Im, Pyr, P MLP 13 595/149 166
Im, PY, Pyr, P, N LSSVM, MLR, RF and DT 36 1241/414 108
Im, Py, Pyr, Pip, N, P, S FFANN and SVM 124 8093/2023 107

H2S solubility Im, N, P MLFNN (FFANN) 513/165 102
Im MLFNN (FFANN) 11 372/93 109
Im, N ELM (FFANN) 37, 27 1025/257 84,110
Im ANFIS, MLP, RBF 13 554/1140 111
Im LSSVM 9 590/62 112
Im SGB (DT) 11 369/96 113
Im, N ELM (FFANN) 28 1055/263 114

Chemical Science Review
classication and prediction. The predictive ability of these
algorithms is being investigated in depth in ILs research, with
the main aim being the accurate prediction of physical and
chemical properties. Viscosity, density, melting point, toxicity
and solubility of harmful gases are properties of that have been
of particular interest, as they are process-relevant and can lead
to the design of new commercially usable ILs with respect to the
demands of Green Chemistry and Sustainability. Below we
present the existing studies on ML for the prediction of various
properties in ILs; details about the families of the studied of ILs,
6826 | Chem. Sci., 2021, 12, 6820–6843
as well as the number of training and test datasets can be found
in Tables 1 and 2.

Physical properties

Melting point. Carrera et. al.47 (2005) predicted the melting
points of pyridinium bromide salts, using DTs and a NN. The
structure of each IL was represented in the DTs using a sum of
1085 molecular descriptors. The descriptors chosen by the trees
as more signicant were investigated for their ability to train
a NN. The prediction results were not very accurate (deviations
of around 40 �C between tested experimental and predicted
© 2021 The Author(s). Published by the Royal Society of Chemistry
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melting points), but this was one of the earliest works that
showed that ML methods can be very promising for the
prediction of IL properties. Following up on their research, in
2008 they published another work86 predicting the melting
points of guanidinium ILs. This work included a NN with
a similar structure as the one studied before. The structures of
ILs were represented by a set of 184 molecular descriptors. It is
important to recognize here that this is one of the very few
works, in which the team synthesized a set of new ILs to test the
accuracy of their results. The comparison showed differences
up to 70 �C between the predicted and experimental melting
points.

Bini et. al.67 (2008) worked on the same set of pyridinium
bromide salts as the earlier work by Carrera et. al., using
a recursive neural network (RNN). In this work, the researchers
used graph convolution theory to avoid the manual creation of
input descriptors. The accuracy of prediction was similar to that
of Carrera et. al., but their work signicantly reduced the
required effort to translate the molecular structure to format
understood by a computer.

Fatemi and Izadian87 (2012) used a multilayer perceptron NN
(MLP-NN), which is type of ANN that is trained more easily on
nonlinear correlations. A set of 62 ILs from various families (see
Table 1) was investigated, using molecular descriptors as input
data for the NN. The study showed improved accuracies
compared to earlier studies, but the authors state that MLP-NNs
are useful only in the cases that accuracy is preferred over
speed.

Venkatraman et. al.88 (2018) investigated both linear and
nonlinear approaches for the prediction of themelting points of
different families of ILs, using DTs and SVMmodels. They used
a bespoke training set of more than 2000 ILs extracted from
selected papers, which they transformed to computer input
using quantum mechanical descriptors obtained by computa-
tionally low-cost PM6 calculations. They compared their results
to the prediction model provided by COSMO-RS. This study
showed moderate absolute accuracy, but behaved well when
predicting relative differences or trends in melting point
differences. Following up on their study, in 2019 the same group
published an extensive library of property prediction (including,
but not limited to, melting point, viscosity, glass transition
temperatures, density etc.).89 The prediction was based on
variety of different ML methods, from which the best perform-
ing model on each property was selected. This work is very
important for property prediction, as they have created a pool of
over 8 million ILs predicted properties, which can be used for
guided synthesis of task-specic ILs (always taking into account
possible accuracy limitations).‡
‡ We tested the deviation of the published library's prediction to experimental
results on two ILs recently published from our group,284 namely [N5551][NTf2]
and [P5551][NTf2] and the comparison of the experimental and predicted values
(given in parentheses) are for [N5551][NTf2]: density at 25 �C: 1156 (1206 � 14)
kg m�3, viscosity at 25 �C: 480 (452 � 136) mPa s, melting point: 37 (18 �
29) �C, and for [P5551][NTf2]: density at 25 �C: 1152 (1246 � 14) kg m�3,
viscosity at 25 �C: 206 (264 � 60) mPa s, melting point: 20 (62 � 50) �C.

© 2021 The Author(s). Published by the Royal Society of Chemistry
Cerecedo-Cordoba et. al.90 (2019) noticed that the published
works until then on ML for IL property prediction were not
signicantly more accurate than classic QSPR methods and
hypothesized that this was due to the struggle to deal with many
different types of IL families at once. Therefore, they decided to
work solely on imidazolium ILs. They created a framework
based on different clustering methods and simple regression
models, from which in each case the best combination was
selected. The authors claim that the clustering architecture can
predict the melting point of those ILs better than other
proposed models and offers the advantage that this can be
easily expanded to any IL dataset and property. Following up on
their research, in 2020 they created NeuroFramework,91

a framework that trains NNs that can be used for the prediction
of the melting points of ILs. Similar to their previous research,
this framework, although tested for melting points, can be
expanded to any property.

Low et. al.92 (2020) investigated the effect of descriptor choice
on melting point prediction. They used Venkatraman's dataset
of 2200 ILs and quantum mechanical descriptors. Aer trying
different combinations of models and descriptors they
concluded that the most accurate model shows a deviation
between predicted and experimental melting points of around
30 �C, and the absence of structure-related descriptors means
that given a suitable training set, the model can be used for any
family of ILs.

Density. The work of Valderrama et. al.54 (2009) is one of the
earliest works for the prediction of IL densities using ML that
combines GC theory with an ANN. This study considered only
25 possible functional groups, therefore the number of possible
cations and anions for study was quite limited. The accuracy of
this method was very good for test data excluded from the
training set, while for other – completely unknown structures –
acceptable accuracy for engineering calculations can be
achieved.

Naja-Marghmaleki et. al.93 (2016) used two different ANNs
to predict the densities of neat ILs and IL-water mixtures, for
various imidazolium ILs. The authors compared their two
methods, which have very similar prediction accuracies. This
work presented a slightly different scope compared to the other
published works, the need to model not only the properties of
pure ILs, but also of their mixtures – since they are used very
oen in chemical research.

Paduszyński94 (2019) created a database of predicted IL
densities based on a combination of three different ML
methods, MLP, FFANN and LSSVM. The author claims superior
accuracy compared to the, by then, state-of-the-art model.95 It is
worth noting that both the training dataset (more than 2000 ILs)
and the methodology followed by Paduszyński are more
complex than those presented previously, both of which
contribute to the improved results.

Viscosity. Valderrama et. al.60 (2011) were one of the rst
groups to investigate the prediction of viscosity trends in ILs.
They trained an ANN using their MCI as input (see subsection
ILs as input data) and testing the result in 26 ILs –mostly based
on the imidazolium cation family. The results were satisfactory,
leading to general deviations less than 5% of the experimental
Chem. Sci., 2021, 12, 6820–6843 | 6827
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value and showing that MCI can indeed be used as input
parameters for IL property prediction.

Dutt et. al.96 (2013) followed another path, although also
using an ANN; they didn't include any structural features as
input data, instead they only provided as input the logarithm of
viscosity at 323.15 K and the inverse of the reduced reference
temperature. They compared their results to commonly used
empirical viscosity equations (such as Vogel–Tamann–Fulcher
and linear Arrhenius model) and concluded that the ANN offers
the advantages of showing lesser overall residual errors and that
they don't seem problematic in any specic ion family.

Paduszyński and Domańska53 (2014) were the rst to
combine GC theory with ANNs for the prediction of viscosities
of ILs, based on a database of 1484 ILs. Their study showed that
the worst accuracy was obtained for ammonium and dicationic
ILs, which they attributed to the lack of sufficient data for these
IL families. In 2019 Paduszyński97 extended his model, to
include data from more than 2000 ILs, using a combination of
FFAAN and LSSVM models. This method showed superior
prediction capacity compared to classical QSPR methods, but
the author recognised that interpretation of the parameters as
understandable molecular properties is unfeasible. In 2021 the
methodology was extended to the prediction of surface tension
of ILs.98

Fatehi et. al.99 (2017) noticed that many of the so far
proposed methods required other experimental measurements
as input data (such as density) and thus they created an ANN
which aimed to predict viscosities of pure ILs based solely on
their molecular structures. Moreover, unlike the methods pre-
sented above, their algorithm considered the effect of pressure
on the ILs' viscosities. The algorithm showed a good tting to
both training and test data for the studied IL systems, with
authors claiming that it can be expanded to other similar
systems.

Kang et. al.100 (2017) used a newly-discovered extreme
learning machine (ELM) algorithm to predict viscosities of ILs,
using s-prole descriptors as input data. ELM is a FFANN
algorithm which benets from fast learning speed and good
generalisation capabilities. The study showed very interesting
results and proved that the viscosities can be adequately pre-
dicted in a wide temperature and pressure range with no
structural input data, using only thermodynamic data.

Baghban et. al.40 (2017) used a LSSVM model, implementing
GC theory. This model represented the structures as a sum of 46
pre-determined substructures in the molecule and required
temperature as an input. Unlike Fatehi et. al. this model doesn't
take into account the effect of pressure on the viscosity of ILs,
but follows the same general idea of predicting the property
based solely on structural data.
§ For CO2 and H2S solubility studies, many researchers use experimentally
inaccessible critical properties, boiling points or acentric factors of ILs. These
properties are in fact calculated from modied Lydersen–Joback–Reid group
contribution methods.285,286
Solubility of gases

CO2 solubility. Baghban et. al.101 (2015) investigated the CO2

solubility in a selection of 14 ILs using an MLP-ANN and
compared the results with those obtained from classic ther-
modynamic equations, such as Peng–Robinson and Soave–
Redlich–Kwong. Thermodynamic properties of the ILs (such as
6828 | Chem. Sci., 2021, 12, 6820–6843
critical temperature and pressure§) were used as the model
input, without any molecular structure descriptors. The ANN
model shows improved prediction accuracy compared to the
thermodynamic models, as it uses more complex nonlinear
correlations.

Hamzehie et. al.102 (2015) trained a FFANN to predict the
solubility of both H2S and CO2 in commonly used ILs and
amine mixtures. Similar to the previous case, no structural
characteristics are provided as inputs for the model, instead
thermodynamic properties and the apparent molecular weight
of the solution were used. The authors trained and tested their
algorithm on H2S data and then used the CO2 solubility data to
test the extrapolation capacities of their method. The results
showed that the algorithm has adequate extrapolation capac-
ities that can include different types of gases.

Mehraein and Riahi103 (2017) compared the prediction abil-
ities of a multiple linear regression and a nonlinear LSSVM
model on CO2 solubilities for 21 commonly used ILs. Unlike the
methods discussed above, the authors here used molecular
structure descriptors as input for their models, aer optimising
their geometries based on PM6 level of theory. The LSSVM
model showed improved results compared to the linear model.
This study also provided some useful insight on the structural
parameters that affect CO2 solubility (based on the signicance
of the input descriptors), revealing that the cation size, struc-
tural asymmetry and the polarity of ions signicantly affect the
results.

Venkatraman and Alsberg71 (2017), similar to their studies
on melting point discussed above, used descriptors based on
COSMO-RS, in combination with different ML methods, to nd
the model which can better predict CO2 solubility. A RF
nonlinear trees ensemble showed improved results compared
to other methods, with the predictions however not being
equally reliable for all IL families (phosphonium and ammo-
nium ILs showed larger deviations). The authors state that
hydrogen bonding and interactions between CO2 and ILs
should be considered, as they would improve the model, but
they are more computationally demanding.

Ghazani et. al.104 (2018) worked on the prediction of the
absorption of CO2 containing common gaseous impurities
(mainly focused on greenhouse gases). A LSSVM algorithm was
trained on experimental data of ternary mixtures containing two
gases and an IL, providing as input no structural details for the
ILs. The results were compared to other ML methods (RBF-ANN
and MLP-ANN) and showed superior performance.

Mesbah et. al.105 (2018) focused on the prediction of the
solubility of CO2 and supercritical CO2 in 20 common ILs using
an MLP-ANN. The authors studied a wide temperature and
pressure range, 278–450 K and 0.25–100 MPa respectively. No
molecular structure descriptors we used in this model either,
the solubility of CO2 was expressed as function of molecular
weight, critical temperature and pressure of the ILs. The model
© 2021 The Author(s). Published by the Royal Society of Chemistry



Table 2 Explanation of cations abbreviations presented in Table 1.
Structures given in the ESI (see ESI)

Cation names Cation names

Im: Imidazolium Cprop:
Cyclopropanium

Py: Pyridinium Guan: Guanidinium
Quin: Quinolinium Trz: Triazolium
Pyr: Pyrrolidinium Bic: Bicyclic
Pyrr: Pyrroline Pz: Pyrazolium
S: Sulfonium Thur: Thiouronium
Ox: Oxazilidinium Cs: Cyclic sulfonium
Pip: Piperidinium Thz: Thiazolium
Mo: Morpholinium Amd: Amidium
Azp: Azepanium Pipz: Piperazinium
N: Ammonium Tetraz: Tetrazolium
P: Phosphonium Ur: Uronium
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showed accurate tting and prediction capacity in a very wide
temperature and pressure range, reaching to supercritical CO2.
The authors note the advantage of their method of achieving
high accuracy without the need for any physical data as input.

Deng et. al.106 (2019) predicted the solubility of CO2 in ILs
using deep learning methods. They trained three different NNs
on CO2 solubility data in ILs, using only IL molecular weight
and critical properties as input and compared their results to
classic thermodynamic models. As expected, the deep learning
methods showed improved prediction capabilities than the
classic thermodynamic models, showing smaller prediction
bias. The authors correctly state that the extrapolation of this
model would require larger and more diverse datasets.

Song et. al.107 (2020) combined group contribution theory
with two ML models, an ANN and a SVM. Both models were
trained on a large database of more than 10 000 CO2 solubility
points under different experimental conditions (both tempera-
tures and pressures considered) for 124 ILs. 51 molecular
structure descriptors were used in total, with 13 cation cores, 28
anions and 10 different substituent groups. Both ML models
showed high accuracies, with the ANN showing slightly better
results. However, the authors here note a signicant restriction
of all ML models, since they are not dened by thermodynamic
principles, there is no theoretical guarantee that the produced
prediction is not an outlier. The results are purely statistical,
which means that there is always a possibility (however low or
high this might be) that for a random structure the model will
fail.

Aghaie and Zendehboudi108 (2020) performed a comparative
study between different ML methods and input parameters, in
order to identify the optimum model for the prediction of CO2

solubility in ILs. The studied models were LSSVM, FT, RF and
multilinear regression, each trained and tested on two different
datasets, one with thermodynamic data and the second with
structural descriptors as inputs. In both datasets RF and DTs
show improved prediction capacity compared to the other
methods. At the same time, the models with molecular struc-
ture inputs were more reliable than those with thermodynamic
properties inputs.

H2S solubility. Shaei et. al.109 (2014) used ANNs in order to
predict the solubility of H2S in 11 common ILs. Only the critical
properties of ILs were used as input data for the model. The
ANNs were trained on a dataset of experimental measurements,
using different training techniques (namely back propagation –

BP and particle swarm optimisation – PSO). The PSO-ANN
showed better tting and prediction capacity than the BP
method and creates a viable alternative to classic thermody-
namic prediction models, as the relative deviations are very
similar.

Zhao et. al.84,110 (2016) used an ELM algorithm, which they
trained on COSMO-RS s-proles and simple molecular struc-
tural fragment descriptors respectively. The authors created an
extensive dataset with almost 1300 data points for H2S solubility
in 37 ILs. Both models showed satisfactory accuracy, with the s-
prole descriptors having the advantage of providing more
molecular interaction information, while the molecular
© 2021 The Author(s). Published by the Royal Society of Chemistry
fragment descriptors presented an easier alternative for less
experienced user.

Amedi et. al.111 (2016) evolved Baghban's101 method for CO2

solubility, in order to study the case of H2S. In their study they
included both binary mixtures of H2S + ILs and ternary mixtures
of H2S + CO2 + ILs. The input data and methodology followed
was identical to their previously published work, with the MLP-
ANN showing again better results compared to the other
models.

Fattahi et. al.112 (2017) used an LSSVM model to predict H2S
solubility in ILs and mixtures of amines with molecular
solvents. The model input variables in this case are tempera-
ture, pressure, the apparent molecular weight of the system and
the mass concentration of the solutions. Their study showed
that molecular weight was the most signicant factor of the
model. The overall accuracy of the algorithm was adequate.

Soleimani et. al.113 (2017) used a gradient boosting DT to
calculate the solubility of H2S in 11 ILs as a function of the ILs'
critical properties. The DT's performance was compared to an
LSSVM and showed more accurate prediction results. It is
known that DTs are advantageous due to the simplicity of their
structure, compared to other ML methods, but due to the small
range of training and test data no other conclusions can be
extracted from this study.

Kang et. al.114 (2018) used their ELM algorithm, previously
tested on IL viscosity prediction100 and expanded it to H2S
solubility. The method was trained on 1300 data points in 28
distinct ILs of various anions and cations. Unlike their previous
study, where they used molecular structure descriptors, here
they presented new descriptors based on electrostatic potential
surface. The advantage of this method, also in comparison to
the critical properties required by previously discussed
methods, is that no experimental data are needed as input, all
the descriptors needed can be theoretically calculated. The
model showed high prediction accuracy and presented a viable
alternative for researchers who want to get a solubility estimate
without running preliminary experiments or physical
measurements on the studied ILs.
Guan: Guanidinium
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Toxicity

Basant et. al.115 (2015) investigated the acetyl cholisterenase
enzyme (AChE) inhibition potential of ILs using SVMs. The
input data were coded using Moses Descriptor Community
Edition, by choosing 211 molecular descriptors. Out of those
descriptors, the ones that had low variance were disregarded.
The SVM outputs were compared to previously developed QSPR
models and showed higher statistical condence. Their work
helped to identify which structural characteristics of the ILs are
mostly responsible for AChE inhibition and also, their algo-
rithm can be trained and generalised for more IL families easily.

Ma et. al. published two works in 2015116,117 predicting the
cytotoxicity of ILs to Leukemia Rat Cell Line (IPC-81) and the
ecotoxicity of ILs on Vibrio scheri. The anion and cation
molecular descriptors used in their studies were produced by
Dragon soware and included 0D–3D structural features. In
both cases, the results obtained by a LSSVM nonlinear model
appeared superior to the linear model, which veries once more
that the structure–property relationship is complex in the IL
chemical space and simpler linear models sometimes fail to
accurately predict the studied property.

Cao et. al.118 (2018) used the same dataset to predict the cyto-
toxicity towards Leukemia Rat Cell Line (IPC-81) using quantum
chemical descriptors. They compared multiple linear regression,
ELM and SVM algorithms trained on the same dataset. Their
study showed that ELM has superior tting and prediction
capacity compared to their SVM (linear regression performed
signicantly worse than the other two) and also highlighted that
the lipophilicity of the cation plays a major role in the cytotoxicity
of the IL, although this was known already previously from
conventional studies.119 Although their results were not signi-
cantly improved compared to Ma et. al., this study does show that
quantum chemical s-proles, can be used to model the cytotox-
icity behaviour of ILs. Zhu et. al.120 (2019) expanded this work to
AChE inhibition and showed that their ELM methodology can
provide accurate results for ecotoxicity of ILs too. In 2020 Kang et.
al.121 further progressed their work on Vibrio scheri by using
electrostatic potential surface area descriptors as input, thus
improving the accuracy of their previously published algorithm.
Common issues with datasets

ML correlation methods are highly dependent on the quality of
the datasets, this is probably the most signicant part of the
algorithm, the part that makes training possible.122 AI is
doomed to fail if the training data are not ‘good enough’.
Hence, we discuss below the parameters that make a dataset
‘good’ and how these apply to IL research. As we shall see, the
composition of the ILs' literature, which has come about
through historical circumstances and was never designed for
the purpose of supporting ML approaches, imposes limitations
on the generalizability of results.
Size

Unfortunately, nobody can answer the question “how much
data is enough to train a ML algorithm?”, as it signicantly
6830 | Chem. Sci., 2021, 12, 6820–6843
depends on various factors, such as the complexity of the model
(e.g. number of inputs/outputs, the relationship between
parameters, the quality of the data). Every algorithm is different
and shows different sensitivity to the size of training set. A
general practice followed by researchers is to try to get compa-
rable prediction accuracy between the training and the test set.
ML algorithms tend to overt when they lack enough data, but
this is not only related to the absolute number of the training
data, but also to the diversity of the set, which will be further
discussed below.

There are studies on the effect of training set size on QSPR
models that show there is no simple correlation between the
size of the set and the predictive ability of the model, but it is
rather dependent on the studied property.123 Obviously, if the
training set includes a large percentage (e.g. 70%) of the total
dataset, then the models usually show high predictive capabil-
ities, but the effect of training set size reduction is not
straightforward. Also, as noted by Hughes et al., some proper-
ties such as melting points are more difficult to predict than
others, in this case because the input descriptors can't properly
describe the change in chemical interactions between solid and
liquid phase.124 For example, it is quite common for ILs that
increasing the alkyl chain length has complex effects on the
melting point, with even the direction of effect being different
for shorter or longer chains, due to different preferable inter-
actions or molecular arrangements caused by the alkyl chain
itself.125,126 In order for an algorithm to understand and model
such complex behaviors, an adequate number or such examples
in the training set is needed.

Although the appropriate size of the training dataset is very
much model- and problem-specic, there are some general
rules that are good for every scientist to know. Generally, a ‘too
small’ training set will result in poor data prediction. A model
with too many correlation parameters will overt a small
training set. On the other hand, a model with far fewer corre-
lation parameters than needed to describe the property, is likely
to undert the training set. In both cases, the result will be
predictions with high degrees of uncertainty, whose perfor-
mance will signicantly depend on the similarity of the test to
the training set.127
Diversity

The case of imbalanced datasets is a very common problem in
data science.128 In IL research imbalanced datasets can occur
when the experimental data for one family of ILs (which is
usually the alkylimidazolium ILs) signicantly outnumber the
other families. Most standard ML algorithms assume as default
a properly balanced dataset and therefore it is possible that the
model ts better the majority samples, while the minority cases
are prone to major classication or prediction errors.129

The concept of balanced datasets is the direct response to
‘the bigger the dataset the better the algorithm will perform’. It
is very important to keep a balance between creating a large and
a diverse training set. Until recently, the IL community has
mostly focused on alkylimidazolium salts, while other IL fami-
lies came to the forefront only later. As a result, it is very
© 2021 The Author(s). Published by the Royal Society of Chemistry
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common that available physical data on alkylimidazolium ILs
dominate over the others. However, creating a dataset that has
over 60% data on these ILs alone, leads naturally to the algo-
rithm overtting on these data, giving more accurate results on
imidazolium salts, but producing higher uncertainty for the
other ILs. Relevant examples of this under-representation can
be found in the works of Baghban et. al.101 (65% of the dataset
on imidazolium ILs and the rest on different families) and Song
et. al.107 (only 1 sulfonium IL from the 124 ILs of the dataset).
Hence, it is always important for the reader take note of the
authors description of the dataset, so that they are aware of the
limitations imposed by its composition and to not over-
interpret the results.

Under-representation can also exist even within an IL family.
The distribution of atoms in the ILs signicantly affects the
chemical interactions of their ions, resulting in isomers with
different physical properties. Characteristic examples are the 1-
ethyl-2,3-dimethylimidazolium and 1-propyl-3-
methylimidazolium bistriuoromethylimide ILs ([C2C1C1im]
[NTf2] and [C3C1im][NTf2], respectively), which although they
are structural isomers, have very different melting points, with
[C2C1C1im][NTf2] being solid at room temperature and [C3C1im]
[NTf2] having a melting point below �40 �C. In order for the
algorithm to be able to correlate the properties to the given
structures and make accurate predictions in such cases, all
types of isomers should be equally (or at least comparably)
represented in the datasets.

In order to make our case about under-representation of ILs
clearer, we estimated the whole chemical space of isomers that
encloses a specic dataset. We implemented Pólya's method to
enumerate the number of isomers for acyclic alkyl chains as
a function of the number of carbon atoms, which was taken
from Fujita's work.130 This method does not take into account
stereoisomerism (enantiomers and diastereomers), and there-
fore, the number obtained thereof represents only the lower
limit of the total numbers of possible isomers. However, highly
strained branched alkyl substituents which might not be ther-
modynamically stable, such as those analogous to tert-butyl,
Fig. 7 (a) Logarithmic plot of the isomer count for imidazolium cations
functionalized substituents that are shown in the paper.
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were not excluded from the count, but they represent only
a marginal fraction of the total.131 Details about the enumera-
tion method are further discussed in the ESI.†

As a basis for this analysis we used the work of Paduszyń-
ski,97 as it is one of the largest and most diverse datasets of all
the published works. Fig. 7 and 8 show the cases of two of the
most widely studied families of ILs, imidazolium and
ammonium-based cations. The prole is very similar for all the
presented cases, for smaller numbers of side-chain carbons (<4
carbons) the training set occupies a satisfactory percentage of
the chemical space (in some cases up to 70%), while for larger
numbers of carbons (>10 carbons) typically there are only
a couple of studied IL. This behaviour is expected, as longer-
chain ILs are usually more difficult to synthesise, so the avail-
able physical data on those are very limited.

To understand the impact of this, the algorithm will try to
predict a chemical space of 108 ILs, based only on 1 or 2
representative examples. As a result, the model will probably try
to extrapolate the behaviour of these isomers from the behav-
iour of the better-represented small carbon number space. Here
we face a very interesting question, will a change in the distri-
bution of carbons on an alkyl chain affect the properties the
same way for an IL with 10 carbons as for an IL with 4? Will
changing the distribution of carbons on an alkyl chain affect the
properties of a low- and a high-molecular weight IL in an
analogous way? To our knowledge there is no available pub-
lished work responding to these questions, therefore it is
unknown whether making the assumption that they will can be
safely used for the extrapolation of the behaviour of ILs. As will
be discussed further below, extrapolation is not a wise choice in
ML models, especially when based on such uncertainties. It is
also important to point out that in our calculations we only
explored the chemical space created by the structural isomers of
the cations. Since the properties of ILs come as a result of
cation–anion combinations, by introducing different anions the
chemical spaces are automatically increased by many orders of
magnitude. The number of structural isomers (excluding
enantiomers and diastereomers) for the imidazolium cation
in the work of Paduszyński;85 (b) taking into account the 86 different
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Fig. 8 (a) Logarithmic plot of the isomer count for ammonium ILs in the work of Paduszyński;85 (b) taking into account the 64 different
functionalized substituents that are shown in the paper.
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with a total of 55 carbon atoms with acyclic alkyl chains
substituents only is already in the order of magnitude of the
Avogadro number (�1023), this implies that the chemical space
of ILs is astronomically large.
Consistency

IL prediction methods rely heavily on experimental data. It is
extremely time consuming for scientists to synthesize an IL
from scratch and measure its properties of interest, in order to
create their own datasets. Therefore, we start by looking in the
literature in order to collect as much as possible of the required
data. However, comparing measurements from different works,
requires that the researchers have deep understanding of the
methods used and whether they are indeed comparable.

A characteristic example of such a case is rheology. Viscosity
is a widely studied property, especially for ILs (see Table 1). ILs
that are too viscous are generally not industrially preferable,
therefore accurate prediction of the ILs' viscosities has great
economic value, and can reduce the need to synthesise many
ILs in order to nd one with a suitable viscosity. There are many
different techniques for viscosity measurements (e.g. dropping
ball, ow cups, capillary and vibrational viscometers), but are all
relative measuring systems. The obtained results are highly
dependent on the instrument's architecture and they can't be
simply compared to each other.132,133 Absolute measuring
systems, which don't depend on the size and shape of the
device, can provide the researchers with absolute viscosity
values, but they are based on specic standards, such as DIN
53019 or ISO 3219.134 It is very common among the studies that
we have cited in this work that they create their datasets from
a large variety of published works, without taking into account
the technique or conditions applied to each study. As a result,
the consistency of the datasets is compromised.

Many of the studied properties in ILs, such as gas solubil-
ities, density and viscosity are dependent on the experimental
conditions, such as temperature and pressure. In order to
achieve high prediction accuracy, it is very important to main-
tain dataset consistency throughout the dataset concerning any
6832 | Chem. Sci., 2021, 12, 6820–6843
such parameters. Let's take the hypothetical scenario where
a training set is created from 2 papers measuring the solubility
of a gas in different families of ILs. If the two subsets have been
measured over different pressure ranges, then theML algorithm
will overt the non-overlapping range for only one of the
families. Therefore, the mid-range pressure predictions will be
based upon data from both families of ILs and be more
generally applicable, but the start- or endpoints will be based
upon data from just one of the families of ILs and will likely not
give accurate results beyond this family. Therefore, it is
important to lter the dataset in order to include the same
range of parameters from the experimental measurements. A
characteristic example of this case could be observed in the
work of Baghban et. al.,40 where the dataset includes viscosities
of amino acid ILs only at 353 K, so the prediction of other
temperatures will be based on approximations from the other IL
families. Similarly, Fatehi et. al.,99 train their NN on 66 ILs, from
which only 7 have experimental values above 373 K (all of these
are methylimidazolium ILs), so the predictions at these
temperatures will be based strictly on those. Similar examples
can be found in most of the works presented in Table 1.84,113
Certainty of data quality

Last, but not least, a major issue in IL research, as well as in
every ML application, is the quality of the available physical
data.135 It is very common in the literature of ILs data for
different values to be reported for the same property for
a particular IL. A very characteristic example of that is the
melting point of a very commonly studied IL, [C2C1im][BF4], for
which the available data vary from 5.8 to 16 �C.136 There are also
many studies of reaction kinetics, which is another domain
where ML methods could be useful,137 that show that common
impurities, such as moisture or unreacted starting materials
can signicantly affect the results.138

In order for results to be reproducible, the ILs have to be
either ultrapure (<0.1% of impurity levels)139 or the level of
purity has to be clearly stated in each work. This has become
more common in works published in the last few years, but
© 2021 The Author(s). Published by the Royal Society of Chemistry
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there are minimal purity data from earlier IL research, which
unfortunately makes their use very limited without re-testing
the results. For example, it is quite common, especially when
synthesized at high temperatures, for ILs to have a character-
istic red-brown colour. A lot of effort is taken, e.g. by multiple
recrystallizations or treatment with activated charcoal, to
remove the colour from the salt. However, the origin of these
colours is still a mystery, since these ILs do not show any
distinct impurity peaks in IR or NMR and, oen, they may not
affect the properties.138 Receiving a colourless IL is very oen
used as an indication of purity. However, as many of the
property-affecting factors, such as metal ions, halides or water,
don't add any color to the IL, they need to be quantied
separately.140

This causes a major issue when selecting ILs for the training
datasets. One way of dealing with the issue would be to consider
each impurity as an independent factor affecting the physical
properties and try to integrate it in the prediction model.
However, this would make the algorithm very complicated and,
to our knowledge, this hasn't been implemented by any
researcher so far (probably due to the lack of enough data on
impurities). Most researchers manually handle their datasets,
by excluding data points that seem as outliers or by just trusting
that the ILs in the published works are pure enough. Manual
handling of data is problematic by default, because it is not easy
to handle thousands of data points and sometimes, especially
when predicting gas solubilities in ILs, the outliers are not as
apparent as in the case of viscosity or density.

Another factor which falls under the data quality category, is
how representative is the training set of the studied chemical
space. It is fundamental in data science to use the ML results
only for interpolation of experimental values. Extrapolation is
not a good practice, since many common ML methodologies
function as ‘black-boxes’, the researcher can never be certain of
the true equation hidden behind a NN. A very characteristic
example of the poor extrapolation potential of ML is presented
by Pavlo Dral for the simple function of jxj0.5 (Fig. 9).141
Fig. 9 Interpolation vs. extrapolation with ML of the function jxj0.5
(black line). ML predictions (blue line) were obtained with kernel ridge
regression trained on 25 randomly drawn points (red dots) from x ˛ [0;
5]. Reprinted with permission from Pavlo Dral.141 Copyright 2020
American Chemical Society.
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For ILs properties prediction analogous cases would be
predicting properties for shorter/longer alkyl chains, or lower/
higher temperatures, than the training set's threshold, intro-
ducing new functional groups etc (see Diversity subsection).
Achieving high accuracy in those types of predictions would be
a matter of luck, rather than an efficient algorithm.

Showing the extrapolation incapability of ML in a simple
mathematical function as the one described above, should raise
major concerns for extrapolation in complicated chemical
spaces. Collecting appropriate training data for high-
dimensional spaces, such as chemical space, is a major
problem in data science because of the so-called ‘Curse of
Dimensionality’.142 There are various methods that are being
used in order to minimise the amount of training data needed
and reduce the data extrapolation as much as possible (such as
farthest point sampling and structure-based sampling), but the
readers should refer to more relevant literature for information
on those.143,144

The difficulty in extracting consistent, high quality data from
the literature leads to the possibility of collecting bespoke data
sets as inputs for ML approaches. Recent years have seen
incredible advances in high throughput experimental tech-
niques.145–147 Attempts have been made to apply high
throughput techniques to the measurement of physical data for
ILs148–150 and to couple this with ML.151 However, the range of
ionic liquids to which this has been applied has been restricted
by the multistep synthesis and complex purication that many
ILs require. Hence, these attempts have been restricted to those
ILs that are synthetically more accessible, such as protic
ILs.152,153 As has been described above, one cannot simply
extrapolate these results to other families of ILs. Another very
useful alternative is the design and use of automated robotic
platforms, which could synthesise and/or test the physical
properties of the studied systems.154 These platforms, although
they are capable of collecting huge amounts of data in short
times, in the case of ILs would still be delayed by synthesis and
purication procedures.

Interestingly, there is a well-known methodology, which
could support the more accurate implementation of ML algo-
rithms, and this is Design of Experiments (DoE). There are
several studies, unrelated to chemistry research, which use DoE
frameworks to ne tune the selection of initial hyperparameters
and reduce in general the complexity of ML tuning.155,156 On the
other hand, ML could substantially help the aim of DoE by
detecting non-obvious factor effects and interactions (falsely
considering interrelated factors as independent is a common
problem in DoE approaches).157 ML algorithms could
completely replace the DoE approaches, as theoretically they are
able to create correlations by taking into account all the possible
factors inuencing a process. However, in reality we are
signicantly restricted by the lack of enough computational
power (and sometimes data) to create and run such complex
models. Therefore, the combination of the two methods is
indeed relevant and will keep being useful for the foreseeable
future. Over the last few years, combinations of ML and DoE
have been used to optimise materials design158–160 or various
Chem. Sci., 2021, 12, 6820–6843 | 6833
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synthetic procedures,161,162 however to our knowledge this hasn't
yet been expanded to the IL area.
Machine learning for molecular
dynamics simulations

Machine learning still has to gain traction in the ionic liquid
community. In this section, we will compare machine learning
to a well-established theoretical method, that of molecular
dynamics (MD) simulation. Molecular dynamics uses numerical
integration of Newton's equations of motion to predict how the
positions of atoms (or groups of atoms) evolve over time.
Statistical thermodynamics is then used to derive macroscopic
properties, both structural and dynamic. An MD simulation
thus typically consists of the steps shown in Fig. 10, and ML can
be used to enhance virtually every aspect of MD. Naturally,
‘Machine Learning’ is a much more general term, and encom-
passes methods that can be seen as a sophisticated tool for
tting and statistical analysis. We will give a brief overview here
of the use of molecular dynamics in ionic liquids, how it differs
from machine learning methods, and how the two approaches
can be used synergistically. The ML examples we present are
largely from outside the eld of ionic liquids, but the general
concepts can and undoubtedly will be used for ionic liquids as
well. A good overview of the approaches presented in this
section can be found in ref. 141, 167–169.

Over the past two decades, MD simulations have substan-
tially advanced the understanding of ionic liquids by modelling
the structure and dynamics of the liquid phase.170–172Many ionic
liquids, in particular those with long alkyl or peruoroalkyl side
chains, show pronounced nanosegregation into polar, non-
polar, and in some cases uorous domains.172 MD simula-
tions provided invaluable insight into how and when these
domains form.173–180 Even in cases where the liquid structure
can be probed experimentally with scattering experiments, MD
simulations are required to trace back the observed features to
structural motifs on the molecular scale.181,182 One of the crucial
Fig. 10 Typical steps of an MD simulation.
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advantages here is that MD simulations based on classical force
elds allow for targeted modications which are not possible
experimentally. For example, several groups used MD simula-
tions with articial, deliberate changes in the dihedral param-
eters to increase the barriers for rotation around specic bonds,
thus separating out the effects of conformational
exibility.183–186

Despite the astounding successes of classical MD simula-
tions, one of the central problems remains the choice of a force
eld, i.e. the rst step in Fig. 10. MD simulations rely on the
availability of accurate forces and energies as a function of
atomic positions. For ionic liquids in particular, polarizability is
more and more recognised as an essential element for the
accurate prediction of structure and dynamics.178,187–192 It is to
some degree possible to mimic the effects of electronic polar-
izability with scaled charges, however this comes at the expense
of lost accuracy.193,194 Even in cases where explicit treatment of
polarizability is not necessary, choosing a reasonable set of
atomic charges along with well-balanced bonded parameters is
a nontrivial task.195–199 The vast number of possible ionic liquids
is yet another serious challenge for force eld development, and
transferable force elds are required to not be limited to one
particular system.195,200–207

Molecular dynamics simulations can be used to predict
a wide range of properties of ionic liquids from thermal tran-
sitions to transport, structural, or spectroscopic proper-
ties.74,199,208–216 The prediction of properties withMD simulations
has two facets. First, the predicted property can be compared
with known experimental values to validate the method or force
eld, similar to the test sets for ML algorithms.217,218 Properties
such as density, self-diffusion coefficients or surface tension are
commonly used for this purpose.210,211,215,219,220 Good agreement
between experiment and MD simulation suggests that the
relevant physics are reasonably reected by the model, which is
then used to either gain mechanistic understanding or to
predict a different property. The second facet is thus the use of
MD simulations to predict hitherto unknown properties.
Similar problems to ML methods arise in the sense that the
© 2021 The Author(s). Published by the Royal Society of Chemistry
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more widely applicable models (i.e. generic classical force
elds) perform poorly for quantitative predictions, whereas
interpolation of properties of similar compounds can be done
much more reliably. An exception are ab initio MD simulations,
which do not rely on a force eld and can be used to predict
ionic liquid properties, if sufficient computational resources are
available.74,208,209,221

One way in whichMD simulations andmachine learning can
be used synergistically is to automate the construction of force
elds, an otherwise complex and laborious task. Broadly
speaking, machine learning as an advanced ‘tting tool’ can be
used to obtain a force eld by tting forces and/or ener-
gies.167,222–225 Thus, machine learning interatomic potentials
(MLIP) are usually trained on high-level ab initio methods to
yield accurate energies (and forces) as a function of atomic
coordinates.226–230 An example are High Dimensional Neural
Network Potentials (HDNNP), which aim to fully replace the ab
initio method once trained.222,231–233 The MLIP can be re-trained
‘on the y’ every few steps using a high level ab initio
method.233–235 This implementation avoids the issues associated
with extrapolation (as described in the previous section), a good
illustrative example is given by Botu and Ramprasad,235 as well
as in Fig. 11. However for all MLIP, some effort has to be made
to incorporate physical constraints such as conserved quantities
or invariance with respect to rotation and exchange of identical
particles.167,223,236

Purely ab initio molecular dynamics – as opposed to those
based on classical force elds – become more and more feasible
for ionic liquids, but remain computationally expensive.205,208,237

Machine learning can be of use to enhance and accelerate the
quantum chemical method itself, rather than providing
a complete substitute such as in MLIP.168,238 For example, a D-
learning scheme can be used which learns only the difference
between a cheap low level method (semi-empirical, classical,
Fig. 11 Scheme of the general approach to automatically construct
a force field using ML, in this case HDNNP. The ML algorithm is trained
using the output (forces, energies) of a more expensive higher level
method. The simulation is evolved using theMLIP, and re-trained every
few steps to avoid extrapolation. Once converged, the computation-
ally inexpensive MLIP can be used for production purposes. Reprinted
by Gastegger et al.233 – published by The Royal Society of Chemistry.
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etc.) and an accurate high level method (DFT, post-HF
etc.).168,239–242

Just as important as the simulation itself is the nal step
shown in Fig. 10, i.e. the post processing of the trajectory.
Analysis tools such as TRAVIS243,244 are invaluable to extract
structural and dynamic information from a trajectory which by
itself does not provide information to a human reader.
Purposeful post processing and visualisation is crucial to
understand the behaviour of bulk ionic liquids by means of MD
simulation.245–247 MD simulations can thus serve as a bridge
between molecular features and bulk properties.248,249

The high dimensionality of an atomistic trajectory can in
some cases be reduced to just a few dimensions which can be
understood by a human. Such low dimensional collective vari-
ables have already been used to describe nucleation and solute
conformations in ionic liquids.250–252 ML can be employed to
nd collective variables to describe complex transitions, which
can then be used to bias and analyse the system.169

Furthermore, there are several studies where machine
learning has been used to extract information from or in
combination with an MD simulation. In a recent publication,
Jung and Yethiraj used a deep neural network DNN to predict
the phase diagrams of mixtures of ionic liquids with poly(-
ethylene oxide).253 An example outside the ionic liquid
community is the decomposition of 1,2-dioxetane, which has
been investigated using ab initio MD simulation.254,255 Machine
learning models were then used to identify the required
conditions for different decomposition pathways and life-
times.254,255 This example shows that machine learning can
indeed provide conceptual insights.

To conclude this section, we would like to consider the
bigger picture, i.e. the purpose of the process shown in Fig. 10.
ManyMD simulations in the ionic liquid community are used to
understand a well characterised system, rather than as an actual
prediction tool for the unknown. Machine learning, on the
other hand, is oen used as an interpolation or ‘tting’ tool
trained on an experimental database. However, ML and MD can
also be combined to take advantage of each. For example, MD
simulations are well suited to study electrostatic screening in
ionic liquids.256,257 Although not specic to ionic liquids,
Kadupitiya et al. developed a ML model to predict the ion
density prole of a conned electrolyte.258–260 TheMLmodel was
trained on MD simulations and takes simple parameters as
input, such as the concentration of a salt, the connement
length, or the ion diameters.258

Machine learning can be used to enhance molecular
dynamics simulations and vice versa. The examples outlined
above show the great benets of such a synergistic combina-
tion, exploiting the strengths of each method and avoiding their
weaknesses. It is without doubt that the exciting advances made
by machine learning will be used increasingly by the ionic
liquid community, once knowledge spreads and the required
algorithms become implemented in common soware pack-
ages. Machine learning promises faster and more accurate
simulations as well as new tools for the interpretation of results,
and the future will show to what degree these promises trans-
late to practise.
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Future aspects

Research to date on the applications of ML algorithms to ionic
liquids has proven that these are competitive with other
computational algorithms in terms of classication and can
provide excellent prediction capacity (within the constraints
described above). Indeed, the majority of studies (see Table 1)
had this as their primary objective, or in some cases to compare
the effectiveness of different ML approaches to provide such
predictions. However, there is much more they can offer. ML
models generally show a trade-off between transparency of their
decision-making process and the accuracy of prediction. For
example, DTs offer incredible possibilities for the user in terms
of understanding and post-processing the decision making
process, however they are not able to generate such complex
correlations as DNNs – which in their majority still have to be
considered as ‘black boxes’ and be trusted without investigating
how they reached a result.261,262

Understanding the intermediate steps of the decision-
making process could prove extremely benecial for the IL
research eld. Working in the basis of physical sciences
research, researchers are trying to interpret the natural
phenomena andmodel themmathematically in order to predict
the behaviour of the studied, as well as unknown systems. ML
can help with that, because it offers the advantage that it doesn't
need to understand chemistry in order to detect correlations.
Given a dataset of independent measurements, we can train an
algorithm that will eventually manage to identify the relevant
features that signicantly contribute to the studied property.

Explainable AI (XAI) refers to the process of creating AI
models which use interpretable parameters as part of their
decision-making process.263 The signicance of this is enor-
mous, starting with data protection and copyrights. As per 2018,
according to General Data Protection Regulation (GDPR)
Fig. 12 Subtopics of ML applications for chemistry research, categorised
some attempts demonstrated; green: fields of major attention. Reprinte
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citizens of EU are granted the “right to explanation” if they are
affected by a decision-making algorithm.264 Obviously, this right
cannot be claimed when the complexity of an AI algorithm
obscures the rationale behind the recommended decision.

XAI practises can have a signicant impact on chemical
research, as they can help researchers to improve their under-
standing and knowledge on the investigated properties or
processes.265 In IL research there have been some initial
attempts to explain the effect of specic parameters for simpler
(rst order) linear regression algorithms.107 Greaves et al. used
two different ML algorithms, a NN and a multiple linear
regression algorithm to predict the reaction rate of a bimolec-
ular nucleophilic substitution in different ILs. In their work they
showed that, although NN gives the best statistical tting, it
doesn't give the possibility of judging which descriptors are
signicant. On the other hand, the linear regression algorithm,
which also provides adequate results, clearly shows which
descriptors mostly affect the model.56 According to their study,
the reaction rate is mostly affected by three cation descriptors,
namely the number of secondary sp3 hybridised carbons, the
number of rotatable bonds and molar refractivity.

While using rst-order models allows easier understanding
of the signicant contributions to any property, due to the
simplicity of their nature; the same simplicity means that this
comes at the cost of lower accuracy in predicting complex
behaviours, such as viscosity. Low et. al. very accurately state in
their work that many semi-empirical predictions could likely be
rened by using a higher level of theory during initial parameter
selection, instead of using the arbitrarily-engineered features
that are popular in many models.92 In practise this would mean
choosing IL descriptors that are based on distinctive properties
(such as HOMO–LUMO gap, or s-proles) instead of an articial
representation that has no meaning in physical space (such as
SMILES descriptors).
by the number of published works. Red: highly underexplored; yellow:
d by Pflüger and Glorius267 – Published by John Wiley & Sons.
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On the other hand, explaining the parameters of non-linear
correlations, such as those easily detected by NNs is far more
difficult. Paduszyński has effectively modelled the viscosity
dependency of a very large dataset of ILs, concluding that the
interpretation of the resulting parameters is not practically
feasible. He even argues that these models might not be useful
for evolving our fundamental knowledge of viscous behaviour of
ILs.97 Probably the most signicant part of creating explainable
models is the representation of the initial data, arbitrary
representations almost certainly will result in non-transparent
and non-interpretable models. There are various systems
trying to achieve post-hoc or ante-hoc explainability of decision
making, in order to increase the scientists' trust towards AI.266

Püger and Glorius mention that in order for us to understand
what machines learn “XAI must nd its way into chemistry”,
which requires adequate understanding of both the algorithms
and the chemistry.267 Indeed, extremely complex algorithms
that are only understood by a specialised computer scientist
and input data that are only understood by a theoretical chemist
are the bottleneck for the progress of this eld. Such systems
have started being implemented in several chemistry-related
studies,265,268,269 but they are still not popular in IL research.
Recent work by Ding et. al. implemented the shapely additive
explanation (SHAP) method, in order to interpret the models
and quantify how each parameter affects predictions.270 Their
work is a valuable step towards XAI in ILs.

It is true that there is an innite space of unexplored possi-
bilities to use AI not just for predicting, but also for enhancing
our understanding of ‘hidden’ factors affecting physical and
chemical processes, which is yet not reachable (Fig. 12).
However, in the near future, these problems will be overcome.
New generations of scientists will be far more familiar with
those methods and will be more multidisciplinary trained and
able to analyse and understand the results. The preliminary
work that is currently conducted will create a solid basis in
order for deeper exploration and understanding of the under-
lying knowledge.

Concluding remarks

Machine learning has recently become a widely studied eld
used for understanding material phenomena.271 Its superior
classication and prediction capabilities make ML algorithms
an extremely useful tool for computational scientists of all
disciplines, as they are able to analyse enormous datasets in
short times.272 Regarding chemical research, ML-based
methods have heretofore been mainly used for property
prediction for polymers273 and pharmaceuticals,274 systems of
high economic signicance which are also thoroughly studied
experimentally.

Over the past few years, ML-based research has expanded to
complex ionic systems and, eventually, to ILs. The majority of
published works in this eld explore the use of ML techniques
either for the prediction of their physical properties, or for
solubility of gases in ILs, with the purpose of the study being to
demonstrate that ML can be a useful tool. Others have
compared how different ML algorithms have performed for
© 2021 The Author(s). Published by the Royal Society of Chemistry
particular predations. In this review we collected and discussed
the available literature on the use of ML in the ILs' eld, and
have noted the impacts of common problems with the literature
of ILs physical properties, such as the diversity of ILs that have
been studied and the quality of the data. These compromise the
quality of the datasets available and, as a result, limit the scope
and quality of the possible predictions.

At this point it is important to note that we intentionally did
not attempt quantitative comparison of the accuracy across
different models. To be able to do this, it is very important to
compare the performance of multiple different ML algorithms
consistently. This is not always easily performed by the data
supplied in a scientic paper, as there are numerous different
accuracy indicators and their use is not consistent across
different works, with each researcher having different denition
of a successful model. Moreover, in order to conclude which
model is superior, we would need to train them on the same
dataset and test them on the same test set. Datasets are oen
biased, which means that the nature of the dataset makes the
model perform better or worse in specic cases (e.g. perform
better for imidazolium than phosphonium ILs).275 Also, the test
sets in most cases are derived by excluding some ILs from the
training set, so the tested examples are not completely inde-
pendent from the training set, as they come from the same set
of experimental measurements. In order to compare and judge
the performance of the algorithms, one would have to
encumber them with the same bias (same training set) and the
test their performance on a truly independent, randomly
selected test set. Creation of standardised, unbiased and truly
independent datasets for training and testing algorithms is
something that has been widely studied in many other elds of
computer science and ML research, but not yet for ILs.276 This is
primarily, as discussed in above, due to the lack of many
trustworthy physical data for ILs and also, since the synthesis
and study of ILs is usually hard and time-consuming, such work
would require incredible effort and collaboration of many
researchers.

Furthermore, we tackled another interesting point of ML
application, ML-enhanced MD simulations. The majority of
works on this area use ML methods to automate the production
of input parameters for MD simulations (i.e. force elds,
quantum chemical calculations) or for post-processing of the
resulting trajectories, taking advantage of the classication and
statistical analysis capabilities of such algorithms. This results
in faster setup and analysis of MD simulations, but doesn't fully
utilise the ML's prediction capacity. Therefore, it is apparent
that ML methods show great potential, not as antagonists, but
rather as enhancers of MD simulations. There also seem to be
some initial attempts to combine ML and MD methods to
predict behaviours of non-experimentally characterised
systems, which however have not expanded to IL research. This
could eventually lead to exceptional results, however it is still
early days and such research requires collaboration of inter-
disciplinary teams with high expertise in both computer science
and computational chemistry.

Finally, we would like to conclude this work with a look into
the future. All the cases described above are about the simplest
Chem. Sci., 2021, 12, 6820–6843 | 6837
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case of having neat ILs. However, there is the growing interest in
using mixtures of ILs with molecular solvents or other ILs in
order to overcome common problems (such as high viscosity).277

However, these new solvent systems are extremely complicated
and require a thorough characterisation on their own. Opti-
mising such systems creates a complex chemical space, whose
exploration dramatically increases the number of experimental
measurements, as changing the composition of the mixture
dramatically alters its properties. Therefore, there is an urgent
need to minimise the number of samples that are needed in
order to have an accurate representation of the space (DoE and
high throughput screening).278 There are only limited published
works on ML-assisted screening of such complex
mixtures,151,279–281 but this is certainly one of the areas where ML
models can ourish.282 Similarly to the case of MD simulations,
combining different methods can certainly enhance their
capabilities, but requires a great amount of expertise and
interdisciplinarity. Someone could say that we are still in the
prehistoric period of ML-aided research, although much effort
is given in order to include suchmodels in commercial soware
packages. One thing is certain, onceMLmodels become broadly
available to users, they will completely change data analysis and
experimental design. Automated robots that perform complex
tasks, while getting feedback from ML models in order to
improve their output have already been created and show
extraordinary results.283
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129 V. López, A. Fernández and F. Herrera, Inf. Sci., 2014, 257,

1–13.
130 S. Fujita, J. Comput. Chem., Jpn., 2007, 6, 59–72.
131 R. S. Paton and J. M. Goodman, J. Chem. Inf. Model., 2007,

47, 2124–2132.
132 C. W. Macosko, Rheology Principles, Measurements and

Applications, John Wiley & Sons, 1994.
133 S. Fujita, J. Comput. Chem., Jpn., 2007, 6(1), 59–72.
134 E. ISO, Plastics—Polymers/resins in the liquid state or as

emulsions or dispersions—Determination of viscosity using
a rotational viscometer with dened shear rate (ISO), 1993,
p. 3219.

135 P.-L. Kang, C. Shang and Z.-P. Liu, Acc. Chem. Res., 2020, 53,
2119–2129.

136 K. R. Seddon, A. Stark and M.-J. Torres, Pure Appl. Chem.,
2000, 72, 2275–2287.

137 A. Schindl, R. R. Hawker, K. S. S. McHale, K. T.-C. Liu,
D. C. Morris, A. Y. Hsieh, A. Gilbert, S. W. Prescott,
R. S. Haines, A. K. Cro, J. B. Harper and C. M. Jäger,
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213 G. Raabe and J. Köhler, J. Chem. Phys., 2008, 128, 154509.
214 V. V. Chaban and O. V. Prezhdo, J. Phys. Chem. Lett., 2014, 5,

1973–1977.
215 A. Mondal and S. Balasubramanian, J. Phys. Chem. B, 2014,

118, 3409–3422.
216 M. LS Batista, J. AP Coutinho and J. RB Gomes, Curr. Phys.

Chem., 2014, 4, 151–172.
217 W. F. van Gunsteren and A. E. Mark, J. Chem. Phys., 1998,

108, 6109–6116.
218 W. F. van Gunsteren, X. Daura, N. Hansen, A. E. Mark,

C. Oostenbrink, S. Riniker and L. J. Smith, Angew. Chem.,
Int. Ed., 2018, 57, 884–902.

219 B. Doherty, X. Zhong, S. Gathiaka, B. Li and O. Acevedo, J.
Chem. Theory Comput., 2017, 13, 6131–6145.
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