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Maximal growth rate is a basic parameter of microbial lifestyle
that varies over several orders of magnitude, with doubling times
ranging from a matter of minutes to multiple days. Growth
rates are typically measured using laboratory culture experi-
ments. Yet, we lack sufficient understanding of the physiology of
most microbes to design appropriate culture conditions for them,
severely limiting our ability to assess the global diversity of micro-
bial growth rates. Genomic estimators of maximal growth rate
provide a practical solution to survey the distribution of microbial
growth potential, regardless of cultivation status. We devel-
oped an improved maximal growth rate estimator and predicted
maximal growth rates from over 200,000 genomes, metagenome-
assembled genomes, and single-cell amplified genomes to survey
growth potential across the range of prokaryotic diversity; exten-
sions allow estimates from 16S rRNA sequences alone as well
as weighted community estimates from metagenomes. We com-
pared the growth rates of cultivated and uncultivated organisms
to illustrate how culture collections are strongly biased toward
organisms capable of rapid growth. Finally, we found that organ-
isms naturally group into two growth classes and observed a
bias in growth predictions for extremely slow-growing organ-
isms. These observations ultimately led us to suggest evolutionary
definitions of oligotrophy and copiotrophy based on the selec-
tive regime an organism occupies. We found that these growth
classes are associated with distinct selective regimes and genomic
functional potentials.
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The growth rates of prokaryotes vary widely, with doubling
times ranging from under 10 min for laboratory-reared

organisms (1) to several days for oligotrophic marine organ-
isms (2, 3) and even as high as many years for deep subsurface
microbes (4–6). Even under optimal nutrient conditions and in
the absence of competition, species will vary in their maximal
potential growth rates as a function of their ability to rapidly
synthesize cellular components and replicate their genomes (7–
10). Broad lifestyle differences can be detected across habitats,
with many oligotrophic marine systems harboring slow-growing
organisms relative to nutrient-rich habitats like the human gut
(9, 11). Yet, optimal, or even adequate, culture conditions for the
majority of prokaryotic organisms are unknown (12, 13), mak-
ing it difficult to assess the true diversity of microbial maximal
growth rates. Although growth media for some species can be
predicted based on their phylogeny (14), cultivation is laborious
and impractical in a high-throughput manner for many ecosys-
tems such as deep sea waters. Moreover, as we show here, even
comprehensive culturing efforts targeted at a specific ecosys-
tem (e.g., the human gut) tend to be biased toward fast-growing
members of the community. By estimating maximal growth rates
directly from environmentally derived sequences, it may be possi-
ble to build a comprehensive and unbiased snapshot of microbial
growth across different habitats.

A beacon of hope, maximal growth rates predicted using
genome-wide codon usage statistics (9), appear to capture over-

all trends in the growth rates of natural communities (15).
Because the genetic code is degenerate, genes may vary in
their usage of alternative codons for a given amino acid. Highly
expressed genes demonstrate a biased usage of alternative
codons, optimized to cellular transfer RNA (tRNA) pools (16–
21). Vieira-Silva and Rocha (9) showed that among several
possible genomic indicators of growth (e.g., ribosomal RNA
[rRNA] copy number and proximity to the origin of replication,
tRNA copy number, etc.), high codon usage bias (CUB) in genes
coding for ribosomal proteins and other highly expressed genes is
the best predictor of high maximal growth rates and can be used
to make accurate predictions even with partial genomic data.
Their growthpred software leverages this bias to predict maximal
growth rates from genomic data (9).

We extend the work of Vieira-Silva and Rocha (9) by assess-
ing additional dimensions of codon usage (20, 22). In doing
so, we are able to substantially improve our predictive perfor-
mance. Additionally, we provide a correction based on species
abundances to the method when applied to bulk community
data from metagenomes, an important but previously neglected
correction. Together, we provide an implementation of these
methods in an R package (gRodon). Using our method, we
assay growth rates in over 200,000 prokaryotic genomes (23–25),
including representative reference genomes, environmentally
derived metagenome-assembled genomes [MAGs (26–30)], and
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single-cell amplified genomes [SAGs (31, 32)], in order to sur-
vey the natural diversity of prokaryotic growth rates. We provide
this comprehensive set of over 200,000 predictions as a com-
piled database of estimated growth rates (estimated growth rates
from gRodon online [EGGO]). This database reveals a strong
bias in existing reference genomic databases toward fast-growing
organisms. Finally, we observe a bias in growth predictions for
slow-growing organisms, ultimately leading us to suggest an evo-
lutionary definition of oligotrophy based on the selective regime
an organism occupies.

Results and Discussion
Predicting Maximal Growth Rates.
More than one aspect of codon usage is associated with growth.
We measured three features of codon usage: 1) the CUB of a
user-defined set of highly expressed genes relative to an expecta-
tion calculated from the genome-wide codon usage pattern (20),
2) the CUB of highly expressed genes relative to an expecta-
tion calculated from the codon usage pattern of highly expressed
genes only, and 3) the genome-wide codon pair bias (22). Details
of these calculations are in Materials and Methods. In practice,
we take the set of highly expressed genes to be those coding
for ribosomal proteins because these genes are expected to be
highly expressed in most organisms (9). The first measure cap-
tures CUB in the classical sense, and the measure independent
of length and composition (MILC) metric we use (20) controls
for overall genome composition as well as gene length. The sec-
ond measure captures the “consistency” of bias across highly
expressed genes, with the intuition that if highly expressed genes
are optimized to cellular tRNA pools, then they will share a com-
mon bias (low values indicate high consistency). This quantity
can be thought of as the “distance” between highly expressed
genes in codon usage space, where we expect these genes to be
close together when they are highly optimized for growth. The
third measure, codon pair bias, captures associations between
neighboring codons, which have been suggested to impact trans-
lation (22, 33, 34). Specifically, it has been shown that altering
the frequency of different codon pairs (but not the overall codon
or amino acid usage) can lead to lower rates of translation, and
this strategy has been used to produce attenuated polioviruses
[potentially to engineer novel vaccines (22)]. Because it is much

more difficult to accurately estimate pair bias due to the large
number of possible codon pairs, we do so on a genome-wide
scale, calculating pair bias over all genes rather than just for
highly expressed genes (our R package includes a “partial” mode
for when this is not possible due to partial genomic information).
Consider that if there are 64 codons, the number of possible
ordered pairs is 4,096, and accordingly, far more data will be
needed to reliably estimate the frequencies of all of these pairs
than the original set of codons.

We fit our model using all available completely assembled
genomes in RefSeq (1,415) for the set of 214 species with doc-
umented maximal growth rates compiled by Vieira-Silva and
Rocha (9). All three of these measures were significantly associ-
ated with growth rate in a multiple regression (CUB, P =2.2×
10−37; consistency, P =8.1× 10−15; codon pair bias, P =5.3×
10−6; linear regression). Furthermore, comparing nested mod-
els, incorporating first CUB, then consistency, and finally, codon
pair bias, we found that each nested model fit the data signif-
icantly better than the last (addition of consistency, P =4.2×
10−11; addition of codon pair bias, P =4.0× 10−6; likelihood
ratio test).
gRodon accurately predicts maximal growth rates. The gRodon
model fit the available maximal growth rate data well (adjusted
R2 =0.63) (Fig. 1A). Our model demonstrated a significantly bet-
ter fit to growth data than a linear model fit on the output of
growthpred (ANOVA, P =1.1× 10−8) (SI Appendix, Fig. S1).
Notably, gRodon provided a better fit to the data than growthpred
at both high and low growth rates (SI Appendix, Fig. S2).

We considered the possibility of overfitting our model to the
data, which would inhibit our ability to apply our predictor to
new datasets. Overfitting is a particularly relevant concern when
dealing with species data since models may end up being fit to
underlying phylogenetic structure rather than real associations
between variables. In addition to traditional cross-validation (SI
Appendix, Fig. S1A), we implemented a blocked cross-validation
approach, which effectively controls for phylogenetic structure
when estimating model error (35). Under this framework, we
take each phylum in our dataset as a fold to hold out for inde-
pendent error estimation rather than holding out random subsets
of our data as in traditional cross-validation. We found that
even when predicting growth rates for each phylum in this way

A B

Fig. 1. Predictions from gRodon accurately reflect prokaryotic growth rates, with the caveat that (A) gRodon underestimates doubling times when growth
is very slow due to (B) a floor on CUB reached in slow-growth regimes. Vertical dashed red lines at 5 h indicate where the CUB vs. doubling-time relationship
appears to flatten. The black dashed line in A is the x = y reference line.
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(extrapolating from our model fit to all other phyla but excluding
the test phylum), we outperformed growthpred’s predictions for
the large majority of phyla (SI Appendix, Fig. S1B). Importantly,
for this comparison, growthpred’s predictions were based on its
fit to the entire dataset (including the test phylum), meaning that
gRodon was able to outperform growthpred even when given an
unfair disadvantage.

We examined a number of confounding variables that could
affect model performance. Observed codon statistics are the
result of several interacting evolutionary forces. Selection for
rapid growth drives the signal we exploit here, but the effec-
tive population size (Ne) and the rate of recombination will
determine how efficiently selection acts on a given population
(36). We found that Ne is correlated with maximal growth rate
[as might be expected (37)], as well as our model residuals (SI
Appendix, Fig. S3), although the effect is rather weak. For pop-
ulations with extremely atypical effective population sizes (e.g.,
intracellular symbionts), we caution that Ne is likely to confound
genomic growth rate estimates. Recombination locally increases
the efficiency of selection and can lead to weak but significant
patterns in guanine–cytosine (GC) content along the genome
(38, 39). We found no apparent differences in CUB between
genes with or without a signal of recombination, both look-
ing at all genes in a genome (SI Appendix, Fig. S4) and just
the ribosomal proteins (SI Appendix, Fig. S5). Finally, especially
in oligotrophic marine environments, many microbes experi-
ence selection for genome streamlining (high-percentage cod-
ing sequence) alongside selection for low genomic GC content
(40, 41). While our measures of codon usage should correct
for genome nucleotide composition, we wanted to be sure our
model’s performance was not affected by these other targets of
selection. While percent coding sequence does appear to have
some nonlinear association with growth rate, our model residu-
als were not affected by either percent coding sequence or GC
content (SI Appendix, Fig. S6). This is consistent with previous
work showing that CUB-based approaches can predict growth
rates in low-nutrient marine microcosms (15).

We also assessed the impact of our training set on gRodon’s
predictions. The original set of minimal doubling times from
Vieira-Silva and Rocha (9) was a carefully hand-curated dataset
compiled specifically for this application but includes only a sub-
set of available recorded doubling-time estimates for cultured
microbes. Unfortunately, there is no single database describing
all known microbial growth rates, but recent work has attempted
to compile all available microbial phenotypic data (42), including
data on growth rates. We retrained gRodon on the growth rates
associated with microbes with completely assembled genomes in
the Madin et al. (42) database (464 species with 8,287 genomes).
The retrained model yields very similar results to the original
gRodon model (SI Appendix, Figs. S7 and S8), despite the two
training datasets disagreeing on the maximal growth rates of
several species (SI Appendix, Fig. S7). We include this alterna-
tive model in the gRodon package alongside the model trained
only on the Vieira-Silva and Rocha (9) dataset and include
predictions from both models for each entry in the EGGO
database.
Prediction from metagenomes. We implemented a species abun-
dance correction for metagenomes that allows for more accurate
prediction of bulk community-wide average maximal growth
rates from metagenomes (SI Appendix, Text S1 and Figs. S9–S12).

The problem of slow growers. For very long doubling times,
while gRodon outperforms growthpred it still tends to underes-
timate the actual doubling time (Fig. 1A and SI Appendix, Fig.
S1A). In populations of very slow-growing microbes, selection to
optimize transcription of ribosomal proteins is likely quite low,
and after the selective coefficient is low enough, drift will domi-
nate the evolutionary process. This expectation is consistent with

the pattern seen in Fig. 1B where CUB of the ribosomal pro-
teins reaches a floor at very high doubling times. Importantly,
this floor will likely be a problem for many genomic predictors of
maximal growth rate where evolutionary optimization is limited
by stochastic fluctuations due to drift when selective coefficients
are small (43). What can be done in such a scenario? While
gRodon cannot accurately differentiate between a doubling time
of 10 or 100 h, it can reliably tell us if a doubling time is greater
than 5 h long (the threshold at which CUB flattens in Fig. 1B;
SI Appendix, Fig. S13). Obviously the degree of CUB will vary
to some degree across species and populations for reasons unre-
lated to growth rate (e.g., as local population size, population
structure, selective regimes, recombination rates, etc. vary), but
our predictor appears to be largely robust to most confounders
(SI Appendix, Figs. S3–S6), and without additional information,
5 h serves well as a pragmatic default. In fact, this threshold sug-
gests a natural definition of an oligotroph as an organism for
which selection for rapid maximal growth is low enough so that
no signal of growth optimization (e.g., CUB) is observed (dis-
cussed in Proposed Evolutionary Definitions of Oligotrophy and
Copiotrophy).

The EGGO Database. We constructed a database (EGGO) (Table
1) (44–49) of predicted growth rates from 217,074 publicly
available genomes, MAGs, and SAGs. Of these, the majority cor-
responded to RefSeq genome assemblies [184,907 (23, 24)]. The
distribution of growth rates across RefSeq was roughly bimodal,
with the split between peaks corresponding to the 5-h doubling-
time cutoff we proposed above for classifying oligotrophs (Fig.
2A). Additionally, phyla tended to broadly group together in
terms of growth rate, and the 5-h divide separated fast- and slow-
growing phyla (Fig. 2 B and C). Using a Gaussian mixture model,
we obtained two large clusters of microbes, with mean doubling
times of 2.7 and 7.9 h, respectively, roughly corresponding to
our proposed copiotroph/oligotroph divide (Fig. 2A). We also
obtained a third very small and slow-growing cluster, account-
ing for 0.4% of observations with a mean minimal doubling time
of 99 h (too small to plot in Fig. 2A).

We note that this large database of predicted growth rates has
many potential applications, including the propagation of growth
predictions to microbial taxa on the basis of their 16S rRNA
sequence alone (SI Appendix, Text S2 and Figs. S15–S17).
Environmentally derived genomes reveal strong culture biases
and ecological insights. MAGs and SAGs make up a sizable
portion of our overall database (26,490) and provide important
information about the distribution of growth rates of uncultured
organisms. A basic expectation is that cultured microbes from an
environment will on average have higher maximal growth rates
than the true average across that environment since culturing
slow-growing species will in general be more difficult (12, 50).
This pattern can be clearly seen in both marine (Fig. 3 A and
B and SI Appendix, Fig. S18) and host-associated (SI Appendix,

Table 1. Summary of EGGO database

Source Type No. of genomes Environment

RefSeq Assemblies (23) Isolate 184,907 —
Parks et al. (26) MAG 7,287 —
GORG-tropics (32) SAG 7,214 Marine surface
Tully et al. (27) MAG 2,266 Marine
Delmont et al. (44) MAG 809 Marine
MarRef (45) Isolate 725 Marine
Pasolli et al. (46) MAG 4,431 Human microbiome
Nayfach et al. (47) MAG 4,483 Human gut
Poyet et al. (48) Isolate 3,459 Human gut
Zou et al. (49) Isolate 1,493 Human gut

GORG-tropics, Global Ocean Reference Genomes Tropics.
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Fig. 2. Prokaryotes with sequenced genomes span a broad range of predicted growth rates. (A) Predicted growth rates for assemblies in NCBI’s RefSeq
database. Growth rates were averaged over genera to produce this distribution since the sampling of taxa in RefSeq is highly uneven (SI Appendix, Fig.
S14 has full distribution) (a small number of genera had inferred doubling times over 100 h, 6 of 2,984). Clusters correspond to the components of a
Gaussian mixture model, with area under each curve scaled to the relative likelihood of an observation being drawn from that cluster. (B and C) Growth
rate distributions for individual (B) fast- and (C) slow-growing phyla (only showing phyla with≥ 30 genera represented in RefSeq). Vertical dashed red lines
in A–C are at 5 h for reference.

Fig. S19) environments, with isolate collections showing much
shorter predicted doubling times than MAGs and SAGs from
the same environments. Even in sets of isolates meant to capture
the complete taxonomic diversity in an environment (48, 49), we
see that they fail to capture the most slowly growing members
of the community (SI Appendix, Fig. S19). Illustrating this gap
is important, as it shows how existing culture collections are not
only incomplete but also biased. These patterns are most appar-
ent when looking within an environment and largely disappear
when comparing against MAGs from diverse environments (SI
Appendix, Fig. S20) (26).

For marine environments in particular, where oligotrophic
organisms are prevalent, the existing set of fully sequenced iso-
lates [MarRef (45)] does a poor job of representing the natural
distribution of growth rates among taxa (Fig. 3 A and B). We
found that these biases are not attributable to simple taxonomic
biases in the genomic database. Using phylogenetic logistic
regression, we found that whether or not we classify an organ-
ism as a copiotroph (d < 5) (Proposed Evolutionary Definitions of
Oligotrophy and Copiotrophy) has a positive impact on whether
that strain is represented by a fully sequenced isolate (Fig. 3C)
(β=1.0, P =7.3× 10−5). This relationship is robust to removal
of individual species and entire phyla from the dataset (Fig. 3 D
and E), as well as to sample size (Fig. 3F) and phylogenetic
uncertainty (SI Appendix, Fig. S18). Thus, slow-growing marine
organisms are less likely to be represented among completely
sequenced genomes than fast-growing organisms, regardless of
phylogenetic group. We found the same general pattern in the
human gut, although our analysis had less power due to the
small number of slow-growing organisms in the gut (β=1.8,
P =0.012) (SI Appendix, Fig. S19).

The strong bias shown in Fig. 3 A and B and SI Appendix,
Fig. S19 A and B serves to illustrate how important methods for
genome-based phenotype prediction are for understanding nat-
ural microbial systems. With this in mind, we note that there are
many potential use cases for gRodon and the EGGO database,

especially when studying subsets of microbes for which additional
metadata are available. For example, the very largest cells in
marine samples seem to also be those with the highest maximal
growth rates (Fisher’s exact test, P =2.2× 10−15) (SI Appendix,
Fig. S21). This is consistent with the “nutrient growth law” coined
by Schaechter et al. (51), which describes a simple exponen-
tial relationship between bacterial cell volumes and their growth
rates. In contrast, a similar analysis of growth rate vs. cell size
using data from a trait database and cultured isolates (42) was
unable to find any association between cell size and growth rate
(SI Appendix, Fig. S22). Because maximal growth rate is a basic
parameter of microbial lifestyle (10), gRodon and EGGO allow
us to build better large-scale comparative studies linking specific
traits and habitats to particular microbial life histories.

Proposed Evolutionary Definitions of Oligotrophy and Copiotrophy.
Codon usage may be optimized to promote either translational
accuracy, efficiency, or more likely, some combination of the
two (21, 52–57). In particular, the strong relationship between
maximal growth rate and CUB is thought to be a product of opti-
mization for translational efficiency (9, 52, 56, 58). Our results
indicate a clear divide among prokaryotes, where an organism
either does or does not experience selection on codon usage to
optimize translational efficiency (Fig. 1B). We use this division
as the basis for an evolutionary definition of oligotrophy and
copiotrophy—defining an oligotroph as an organism for which
selection for rapid maximal growth is weak enough so that trans-
lation efficiency is not optimized by selection on codon usage
(and a copiotroph as an organism that does experience optimiza-
tion of translation efficiency). This grouping was supported by
clustering growth predictions from all organisms in RefSeq (Fig.
2), where we saw two groups naturally emerge with the boundary
between them at a doubling time of approximately 5 h, consistent
with the CUB optimization cutoff in Fig. 1B.

To illustrate our point that oligotrophy and copiotrophy cor-
respond to two distinct selective regimes, we devised a test

4 of 10 | PNAS
https://doi.org/10.1073/pnas.2016810118

Weissman et al.
Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon

usage patterns

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016810118/-/DCSupplemental
https://doi.org/10.1073/pnas.2016810118


M
IC

RO
BI

O
LO

G
Y

A B

C D

E

F

Fig. 3. Predicted maximal growth rates in marine environments. Observe that (A and B) genomes from fully sequenced isolates (MarRef) have shorter
predicted doubling times on average than MAGs (from the Global Ocean Reference Genomes Tropics [GORG-tropics] database) and SAGs and fail to capture
the slow-growing fraction of the community. Additionally, SAGs showed a lower overall growth rate than MAGs, with very few doubling times predicted to
be under 5 h, likely due in part to how SAGs were sampled (only at the ocean surface rather than at multiple depths). MAGs generated by distinct research
groups showed surprisingly consistent maximal growth rate distributions. (C) Fully sequenced isolates from MarRef are more likely to be copiotrophs (d< 5),
independent of phylogeny. The tree shown includes one tip sampled per genera, and the corresponding heatmap summarizes whether the mean doubling
time was less than 5 h for that genus and whether any representatives of that genus are represented in MarRef (full dataset used for analysis, genus-level
summary for visualization only). Phylogenetic logistic regression between isolate status and copiotrophy is robust to (D) the removal of individual species
from the analysis, (E) the removal of entire clades from the analysis (the removal of Proteobacteria, the most abundant phylum in the dataset, leads to a
weaker but still positive relationship), and (F) the removal of large fractions of the data (up to 50%).

for selection to compare the strength of purifying selection on
synonymous polymorphisms in highly expressed genes across
species. Our test is similar to the dN /dS statistic, which com-
pares rates of nonsynonymous and synonymous substitution
and uses the rate of synonymous substitution (dS ) as a null
expectation for neutral evolution [although, e.g., ref. 59 has a
more developed discussion of the dN /dS statistic]. For highly
expressed genes, where we expect strong purifying selection on
codon usage to maintain high translational efficiency, we also
expect the rate of synonymous substitution (dSHE ) to be reduced
relative to the overall rate of synonymous substitution across
the genome. Thus, we define a genome-wide statistic, dSHE/dS ,
which describes the degree of selection at synonymous sites in
highly expressed genes relative to the rest of the genome. We
predict that this statistic will be significantly lower among copi-
otrophic organisms as compared with oligotrophs. Using a large
database of closely related organisms [Alignable Tight Genomic
Clusters (ATGC) database (60)], we made nearly 60,000 pairwise
comparisons between organisms to calculate dSHE/dS . Using
our 5-h doubling-time cutoff, there was a clear difference in
selection between copiotrophs and oligotrophs (SI Appendix, Fig.
S23) (P < 2× 10−16, Mann–Whitney U test), where copiotrophs
had evidence for stronger purifying selection at synonymous sites
in highly expressed genes relative to the rest of the genome

(dSHE/dS =0.74), but oligotrophs showed little evidence for
optimization of highly expressed genes (dSHE/dS =0.98). As
an important caveat, our test could be confounded by differ-
ences in mutation rate across the genome, and if mutation rate
is negatively correlated with expression level, we might expect
similar results to those shown here even in the absence of selec-
tion (assuming that genes encoding highly expressed genes are,
in general, even more highly expressed in copiotrophs than olig-
otrophs). In fact, the opposite is likely true, as it has been shown
across diverse organisms that mutation rate increases locally with
expression level (61–66). Thus, if anything, differences in muta-
tion rate are probably masking an even stronger difference in
the dSHE/dS statistic between copiotrophs and oligotrophs than
what we see here.

Importantly, our classification redefines copiotrophy and
oligotrophy in evolutionary terms, as a specific selective regime
that a microbe can occupy. In population genetic terms, we
define oligotrophs as existing in a selective regime under which
selection on translational efficiency is low enough such that s �
1
Ne

. The boundaries of oligotrophy, in our view, are thus defined
both by the selective coefficient (s) and the effective population
size (Ne) of a species (as illustrated by the effects of Ne on our
model residuals above). Using proxies for s and Ne , we found
that our dSHE/dS statistic was negatively correlated with sNe
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as expected, particularly in copiotrophs (SI Appendix, Fig. S23).
More broadly, it appears that at typical Ne values for microbes
[∼ 108 (37)] (SI Appendix, Fig. S3), codon optimization levels
off for maximal doubling times greater than 5 h (Fig. 1B and
SI Appendix, Fig. S13). Even for Prochlorococcus marinus, which
may have very large effective population sizes [> 1013 (67) over a
well-mixed marine region, although some estimates of Prochloro-
coccus Ne are much lower at ∼ 108 (37)], growth rates were
severely underestimated, although still above our 5-h threshold
(predicted doubling time of 6.2 h vs. an actual doubling time of
17 h for strain CCMP1375). This would seem to indicate that for
slow-growing organisms like Prochlorococcus, there is essentially
no selective advantage to optimizing translational efficiency via
codon usage (s ≈ 0).
Functional differences between copiotrophs and oligotrophs.
We recognize that our evolutionary definition of copiotro-
phy/oligotrophy complicates an already murky set of definitions.
The terms “oligotroph” and “copiotroph,” as used in the lit-
erature, typically conflate two features of microbial lifestyle:
resource use and growth rate (41). Giovannoni et al. (41) dif-
ferentiate the classical definition of oligotrophs and copiotrophs
as organisms that grow at low and high nutrient concentrations,
respectively, from the more general ecological classes of r and K
strategists, which are specialized for either rapid, opportunistic
growth or slow and steady growth, respectively (68). Giovannoni
et al. (41) emphasize that these nutrient and growth rate defini-
tions need not overlap (not all organisms specialized for growth

at high nutrient concentrations must grow quickly), yet theory
predicts that, given a rate vs. yield trade-off in adenosine triphos-
phate (ATP) production, high-resource environments should
favor more energetically wasteful but faster growth due to
increased competition (69). Thus, we generally expect oppor-
tunistic and rapid but wasteful ATP production in nutrient-
replete environments vs. slow but relatively energy-efficient ATP
production in nutrient-limited environments. Therefore, a natu-
ral expectation is that slow- and fast-growing organisms should
have distinct resource acquisition strategies aligned to these
general niche types (7).

In fact, we found that organisms belonging to our two nat-
urally defined growth rate clusters (Fig. 2), which we refer
to here as copiotrophs and oligotrophs, had distinct genomic
content reflecting two alternative microbial lifestyles. Gene
families involved in transcription and carbohydrate transport
and metabolism were strongly overrepresented on copiotroph
genomes relative to oligotrophs, corresponding to an overall
strategy of rapid acquisition of nutrients and protein produc-
tion (Fig. 4A). Gene families involved in energy production and
conversion and replication, recombination, and repair were over-
represented on oligotroph genomes, corresponding to an overall
strategy of energy production and cell maintenance (Fig. 4A).
In all, 13 major classes of genes [as defined by the Clusters
of Orthologous Genes (COG) database (70)] were significantly
differentially enriched on copiotroph or oligotroph genomes.
Moreover, many individual gene families were far more

A B

C

Fig. 4. Copiotroph and oligotroph genomes are enriched for different functions. (A) The difference between the average proportion of genes in copiotroph
genomes (ECopiotrophs) and the average proportion of genes in oligotroph genomes (EOligotrophs) assigned to various classes of genes [COG classifications from
eggnogmapper (107)]. Positive numbers indicate a functional class is enriched as a percentage of total genes in copiotrophs relative to oligotrophs, and
negative values are the opposite. Only significantly differentially enriched classes are shown (with red bars emphasizing classes with larger differences).
(B) Volcano plot showing differential prevalence across copiotroph (PCopiotrophs) and oligotroph (POligotrophs) genomes of specific gene families belonging to
the most differentially enriched gene classes. (C) Table of differentially prevalent gene families from the most commonly differentially prevalent classes (SI
Appendix, Fig. S24 has a full table).
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prevalent among copiotroph or oligotroph genomes (Fig. 4 B and
C and SI Appendix, Fig. S24). Notably, gene families involved
in the transport and metabolism of carbohydrates and amino
acids were frequently more prevalent among copiotrophs. At
the same time, many gene families involved in energy produc-
tion and conversion were more prevalent among oligotrophs.
We also specifically searched for carbohydrate-active enzymes
in our two classes of genomes (71) and found that copiotrophs
were greatly enriched for these gene families, specifically those
involved in breaking down carbohydrates (glycoside hydrolases
and polysaccharide lyases) (SI Appendix, Fig. S25).

Many individual gene families classified as functioning in cel-
lular defense [COG group V (70)] were more prevalent among
oligotrophs (SI Appendix, Fig. S24), even as the total percent-
age of genes in the genome related to defense did not differ
a great deal between copiotrophs and oligotrophs (Fig. 4). A
closer look at the types of defense genes found in these two
groups of organisms revealed stark differences. The majority of
defense genes that were copiotroph specific appeared to provide
resistance to antimicrobials (e.g., bacteriocins, antibiotics) and
oxidants (e.g., hydroperoxides), whereas no such genes were olig-
otroph specific (55 vs. 0%, P < 3.7× 10−15, Fisher’s exact test).
Many of these genes were transport proteins (e.g., efflux pumps).
Many oligotroph-specific genes, on the other hand, were DNA-
binding proteins likely involved in antiviral defense, whereas no
such genes were copiotroph specific [containing higher eukary-
otes and prokaryotes nucleotide-binding (HEPN) domains, pili
twitching motility protein N-terminal (PIN) domains, and helix-
turn-helix (HTH) domains (72–75); 24 vs. 0%, P < 2.4× 10−4,
Fisher’s exact test]. Similarly, many oligotroph-specific genes
were involved in DNA-degrading antiviral defense [e.g., restric-
tion modification systems, CRISPR-Cas systems (76)], whereas
few copiotroph-specific genes were (48 vs. 15%, P < 2.6× 10−4,
Fisher’s exact test). Thus, it appears that many genes involved
in defending against antimicrobials are copiotroph specific,
whereas many forms of antiviral defense are oligotroph specific.
Altogether, this suggests that copiotrophs and oligotrophs sys-
tematically differ in more than just their growth and resource
acquisition strategies.

Conclusions
We produced a community resource in the form of a well-
documented R package (gRodon) and comprehensive database
(EGGO) for predicting and compiling maximal growth rates
across prokaryotes. Using these tools, we show how the set of
existing cultured isolates does not fully capture the diversity of
prokaryotic lifestyles (although notable culturing efforts have
filled in significant gaps) (e.g., ref. 3). We are unlikely to over-
come these biases easily, as the slow-growing microbes missing
from classically derived culture collections are precisely the ones
found to be most difficult (and necessarily very time consuming)
to grow in the laboratory (e.g., by dilution to extinction methods).
Yet, we have their genomes and may be able to extrapolate their
traits from microbes that are more easily cultivable. Growth rate
is one example where inference of traits from genomes has clear
utility, although we emphasize that genome-wide signals may be
confounded by other evolutionary and/or demographic processes
and that it is important to assess their robustness and limitations,
as we have done here.

It is important to recognize that the relationship of the in situ
growth rate and the maximal growth rate of an organism is not
clear given the cryptic influence of top-down and bottom-up con-
trols at the sampling time. There are any number of reasons why
an organism may not reproduce at its physiological maximal rate
(e.g., fluctuating habitat quality, dispersal to suboptimal habi-
tats, etc.). Nevertheless, it is encouraging that recent work using
natural communities has shown that CUB-based estimators do
a reasonably good job of predicting observed instantaneous

growth rates in marine systems (15), even as peak to trough
(77–80) methods of estimating growth have been reported to
work poorly for marine plankton, with the exception of the most
highly abundant copiotrophs (15). Thus, taken together with our
benchmarking against nutrient enrichment experiments, the data
suggest that CUB-based estimators of maximal growth rate tend
to also capture the instantaneous growth rate of a community,
likely by approximating the relative proportion of copiotrophs to
oligotrophs in a system.

Finally, our analysis of codon usage led us to propose evolu-
tionarily defined growth classes that also align with two distinct
functional classes of microbes, with copiotrophs specializing in
nutrient acquisition and breakdown and oligotrophs specializing
in energy production and cell maintenance (Fig. 4). Environmen-
tal resource concentration and growth rate fall along continuous
spectra, but microbes appear to fall into two distinct evolution-
ary regimes in terms of growth optimization (Figs. 1 and 2),
corresponding to opposite ends of these spectra. Thus, while in
principle oligotrophy and copiotrophy need not correspond to
distinct classes and could in fact describe a continuum of life his-
tory and resource acquisition strategies, in practice oligotrophs
and copiotrophs appear to be discrete groups of organisms.

Materials and Methods
All scripts used to generate figures and analysis, as well as predicted growth
rates for various genomic datasets and the full EGGO database, are available
at https://github.com/jlw-ecoevo/eggo. The gRodon package, including doc-
umentation and a vignette, can be downloaded at https://github.com/jlw-
ecoevo/gRodon. All figures were made using R packages ggplot2 and
ggpubr (81, 82).

Model Fitting. For each species with a growth rate listed in the origi-
nal Vieira-Silva and Rocha dataset [214 (9)], we downloaded all available
complete genome assemblies from the National Center for Biotechnology
Information (NCBI) RefSeq database [1,415 (23–25)]. For each species, we
calculated the mean of each of our three codon usage statistics across
all genomes corresponding to that species. Ribosomal protein annotations
were taken directly from the annotations generated by NCBI’s default
prokaryotic annotation pipeline, and these were the ribosomal proteins
passed to both growthpred and gRodon. Importantly, growthpred can also
search for ribosomal proteins using a provided database, although we
did not use this feature so as to make sure the two prediction methods
were compared on identical datasets. For initial model fitting, we excluded
thermophiles and psychrophiles from the dataset (31) as these organisms
systematically differ in their codon usage patterns (9). Similar to growth-
pred, we include a temperature option fit using these microbes in the
final gRodon package that accounts for optimal growth temperature in the
final model, although given the few extremophiles used to fit this model,
we caution users against drawing strong conclusions when it is applied to
extremophiles (by default, temperature is not used for prediction).

We then fit a linear model to Box–Cox-transformed doubling times
[optimal λ chosen using the MASS package (83)] using our three codon
usage measures as predictors. Similarly, we fit models for gRodon’s “par-
tial” (excluding pair bias) and “metagenome” (excluding pair bias and
consistency) modes.

For fitting on the Madin et al. (42) training set, we used the
same model fitting procedure. We took the minimal recorded doubling
time from each species in the “condensed traits NCBI.csv” supplementary
file (https://doi.org/10.6084/m9.figshare.c.4843290.v1) and where possible,
obtained all completely assembled genomes associated with that species
from RefSeq. This yielded our training set with 464 species matched to 8,287
genomes. Notably, 130 of these species were either thermophiles or psy-
chrophiles, perhaps making this training set preferable when dealing with
extremophiles.

The Gaussian mixture model in Fig. 2 was fit using the Mclust() func-
tion in the mclust package with default settings (84). Mclust chooses the
optimal mixture of Gaussians based on the Bayesian information criterion
(BIC) and finds this optimum (for mean and variance) using an expectation
maximization algorithm.

Metagenomic Data. The raw sequencing data for the metagenomic water
samples taken at the end of the Okie et al. (85) experiments were obtained
from NCBI under BioProject PRJEB22811. Raw sequencing data for the
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time series samples taken by Coello-Camba et al. (86) were obtained from
NCBI under BioProject PRJNA395437. Adapters and low-quality reads were
trimmed using fastp v0.21.0 (87) with default parameters, and only reads
longer than 30 base pairs (bp) were kept for further analysis. Okie et al. (85)
samples were assembled individually using metaSPAdes v3.10.1 (88). Coello-
Camba et al. (86) samples were assembled individually using megahit v1.2.9
(89) with default parameters. We called and annotated open reading frames
(ORFs) from assemblies using prokka (90) (with options “–metagenome
–compliant –fast”). Reads were mapped to ORFs using bwa 0.7.12 (91),
and the number of reads aligned to each ORF was counted using bamcov
v0.1.1 (available at https://github.com/fbreitwieser/bamcov). We ran gRodon
in weighted and unweighted metagenome modes on each sample, with
weights corresponding to mean coverage depth (corrected for gene length).
In weighted metagenome mode, the median CUB of the highly expressed
genes is taken as a weighed median (weightedMedian in matrixStats R pack-
age), with weights corresponding to mean depth of coverage for that gene.
One sample from Coello-Camba et al. (86) had a very atypical estimated
average minimal doubling time over twice as long as any other estimated
doubling time from this dataset (MG078 at 3.1 h, as compared with the
second longest doubling time in MG002 at 1.4 h) and strongly disagreeing
with a replicate sample from the same experiment and time point (MG073
at 0.35 h). Upon closer inspection, this sample had far fewer bases than
the rest (133 mega-bases vs. > 1 giga-bases), and only a little over 400
genes were detected in the assembly, far too few for accurate assessment of
community-wide growth rate, leading us to omit this sample from further
analyses.

EGGO Datasets. We downloaded all prokaryotic assemblies from RefSeq (23,
24), as well as several collections of isolate genomes (45, 48, 49), MAGs (27,
46, 47), and SAGs (32). Where possible, we used per-existing gene annota-
tions provided by NCBI. For the Pasolli et al. (46) and Nayfach et al. (47)
MAGs, gene predictions were not available, and we used prokka to predict
ORFs and annotate ribosomal proteins (90). Note that for both of these MAG
datasets, we used a subset of all MAGs designated as being representatives
of species clusters by the authors. We then ran gRodon on each genome,
using partial mode for MAGs and SAGs (which vary in their completeness).
Finally, we filtered results from genomes with few ribosomal proteins. Sim-
ilar to Vieira-Silva and Rocha (9), we found that growth rates were biased
when <10 highly expressed genes were used for prediction (SI Appendix,
Fig. S26), and we used this cutoff for our MAGs and SAGs. For our isolate
genomes, this generally was not an issue, with over 99% of genomes in
RefSeq having between 50 and 70 annotated ribosomal proteins. We fil-
tered all genomes outside this range to remove a very small set of obvious
problem cases (e.g., one Bacillus genome that had over 1,000 annotated
ribosomal proteins). The numbers in Table 1 correspond to postfiltering
genome counts.

Measuring Bias. We use the MILC measure of CUB (20) implemented in the
coRdon R package (92). This bias measure behaves slightly better than the
Effective Number of Codons Prime (ENC’) measure used by Vieira-Silva and
Rocha (9) and automatically accounts for the CUB of genomic background in
its calculation (93) [by taking the genome-wide distribution of codons as its
expected distribution (20, 92)]. As recommended in the coRdon documenta-
tion, genes with fewer than 80 codons were omitted from our calculations.
Importantly, we calculate the MILC statistic on a per-gene basis rather than
concatenating all of our genes. The contribution (Ma) of each amino acid (a)
to the MILC statistic for a gene is calculated as

Ma =
∑
c∈C

Oc log
Oc

Ec
, [1]

where C is the set of codons coding for a, Oc is the observed count of codon
c, and Ec is the expected count of codon c [the original paper has the full cal-
culation of the MILC statistic (20)]. Typically, Ec for a given gene is estimated
using the genome-wide frequency of that codon c. This is what we mean
when we say that for our CUB measurement, the bias of highly expressed
genes is calculated “relative to the genomic background.” For calculating
the average CUB, we used the median value in order to reduce the influence
of any outliers (i.e., misbehaving ribosomal proteins).

For our consistency calculation, MILC was also used but was calculated
using the highly expressed proteins as the expected background (using the
“subset” option in coRdon). In other words, we estimated the expected
count of a codon, Ec, using the frequency of that codon in highly expressed
genes only, rather than the genome-wide frequency. For the consistency
metric, we took the mean value across ribosomal proteins (rather than the

median as with CUB) since we are interested in the distance of all ribosomal
proteins from the expected codon usage patterns.

For codon pair bias, we implemented the calculation by Coleman et al.
(22) that controls for background amino acid and codon usage when esti-
mating the over-/underrepresentation of codon pairs (figure S1 in ref. 22
has a relevant equation).

Population Parameters. We obtained estimates of Ne from ref. 37, which
are based on dN/dS ratios (the intuition being that selection acts more
efficiently in large populations). Gene-specific recombination rates were
obtained by applying the PhiPack (94) program for detecting recombination
to the ATGC database of closely related genome clusters (60), as described
in Weissman et al. (39).

Classification and Phylogeny. For marine and gut organisms, we classified all
genomes, MAGs, and SAGs using GTDB-Tk [v1.3.0 with database release 95
(95, 96)]. For the analyses in Fig. 3C and SI Appendix, Fig. S19C, we used
the tree output by GTDB-Tk [built automatically using FastTree (97)]. To
assess sensitivity to phylogeny, we built a maximum likelihood tree with
10 bootstrap replicates from the GTDB-Tk alignment using RAxML [v8.2.11,
with -k -f a -m PROTGAMMAGTR options (98)]. We performed phyloge-
netic logistic regression using the R package phylolm (99). We then assessed
sensitivity to individual species, entire phyla, sample size, and phylogenic
uncertainty using the R package sensiPhy (100). Trees and aligned heatmaps
were visualized using R package ggtree (101, 102).

Extrapolating between Closely Related Taxa. For all genomes used to build
EGGO, we extracted all annotated 16S rRNA genes; then, we aligned these
sequences and removed poorly aligned columns using ssu-align and ssu-
mask [default settings (103)]. We then filtered sequences for which less
than 80% of positions were accounted for (i.e., were gaps). We ran fast-
tree on the resulting alignment [with -fastest, -nt, and -gtr options (97)]
to obtain a phylogeny with 192,195 tips representing 60,421 organisms.
For phylogenetic prediction of maximal growth rate, we then omitted any
tips with EGGO entries where d> 100 h (13 tips) to minimize the influence
of outliers.

To predict growth rate, we first randomly sampled one tip per organism
in our tree (to avoid predicting an organisms growth rate from itself). We
then iteratively found the five closest tips to each tip in the tree and took
the weighted geometric mean of the growth rates associated with these
tips. This gave us our predicted maximal growth rate on the basis of 16S
rRNA in SI Appendix, Fig. S15A. Weights were calculated as inverse patristic
distance, with a small constant added for when organisms had identical 16S
sequences (e.g., multiple genomes in EGGO for the same species):

w =
1

distance + 10−8
. [2]

For SI Appendix, Fig. S17, the predicted rate was simply taken as the rate
associated with the closest tip on the tree. We identified the closest tips
using the castor R package (104).

To produce SI Appendix, Fig. S15B, we sampled 10,000 tips from
our tree and calculated all pairwise distances between tips using the
cophenetic.phylo() function in the ape R package (105).

Signals of Selection. We obtained all ATGC clusters of genomes and their
core gene alignments (60). We calculated dN/dS and dS values for each
aligned gene in each cluster of organisms using PAML [v4.9j (106)]. We
restricted our final analysis to pairwise comparisons where 0.01< dS< 1 to
ensure that organisms had sufficient substitutions to analyze and that the
probability of multiple substitutions at the same site was low (i.e., no satu-
ration). To calculate dSHE/dS, we divided the mean dS of all ribosomal genes
by the mean core genome-wide dS for each pairwise comparison. Previous
work has noted that dS/dN can be used as a proxy measure for Ne since
the two values should generally be correlated (37). Additionally, we assume
that selection for translation optimization should be proportional to growth
rate, such that s∼ 1

d , in SI Appendix, Fig. S23 C and D.

Functional Analysis. For each genus in our RefSeq dataset, we randomly sam-
pled a single genome for functional annotation. We assigned a label of
“copiotroph” or “oligotroph” on the basis of whether each genome was
predicted to have a minimal doubling time of greater or less than 5 h. We
ran eggnogmapper [diamond setting, v2.0.0 (107, 108)] on each genome to
get COG and archaeal COG (arCOG) annotations and a broad annotation of
functional class for each ORF (70, 109). We used hmmer v3.3.1 to search the
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Carbohydrate-Active Enzyme (CAZy) database against each genome [e-value
cutoff 10−5; CAZy database V9 hidden Markov models (HMMs) packaged
with the Automated Carbohydrate-Active Enzyme Annotation database
(dbCAN2) (71, 110)]. To assess differences in the enrichment of certain
functional classes across copiotrophs and oligotrophs, we performed Mann–
Whitney tests with a Benjamini–Hochberg correction (α= 0.05). To assess
differences in prevalence of individual gene families across copiotrophs and
oligotrophs, we performed Fisher’s exact tests with a Benjamini–Hochberg
correction (α= 0.05).

For the analysis of defense genes (considering gene families classified
broadly under the “V” COG classification that were significantly differen-
tially prevalent among copiotrophs/oligotrophs), we searched for antimicro-
bial/oxidant resistance among gene family annotations using the key words
“resistance,” “transport,” “export,” “efflux,” “beta-lactamase,” “chloram-

phenicol,” and “hydroperoxide.” We searched for DNA-binding/degrading
domains using the key words “HEPN,” “PIN,” and “HTH.” Finally, we
searched for antiviral defense function using the key words “nuclease,”
“CRISPR,” and “methyl.”

Data Availability. All study data are included in the article and/or SI
Appendix.
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