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Abstract
Background: MicroRNAs have been identified as crucial regulators in both animals and plants.
Here we report on a comprehensive comparative study of all known miRNA families in animals.
We expand the MicroRNA Registry 6.0 by more than 1000 new homologs of miRNA precursors
whose expression has been verified in at least one species. Using this uniform data basis we analyze
their evolutionary history in terms of individual gene phylogenies and in terms of preservation of
genomic nearness across species. This allows us to reliably identify microRNA clusters that are
derived from a common transcript.

Results: We identify three episodes of microRNA innovation that correspond to major
developmental innovations: A class of about 20 miRNAs is common to protostomes and
deuterostomes and might be related to the advent of bilaterians. A second large wave of
innovations maps to the branch leading to the vertebrates. The third significant outburst of miRNA
innovation coincides with placental (eutherian) mammals. In addition, we observe the expected
expansion of the microRNA inventory due to genome duplications in early vertebrates and in an
ancestral teleost. The non-local duplications in the vertebrate ancestor are predated by local
(tandem) duplications leading to the formation of about a dozen ancient microRNA clusters.

Conclusion: Our results suggest that microRNA innovation is an ongoing process. Major
expansions of the metazoan miRNA repertoire coincide with the advent of bilaterians, vertebrates,
and (placental) mammals.

Background
MicroRNAs (miRNAs) are small non-coding RNAs that
can be found in both multi-cellular animals and plants. In
both kingdoms they act as negative regulators of transla-

tion. They are transcribed as longer primary transcripts
from which approximately 70nt precursors (pre-miRNAs)
with a characteristic stem-loop structure are extracted;
after export to the cytoplasm, the mature miRNAs,
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approximately 22nt in length, are cut out from one side of
the precursor stem structure. For reviews on the discovery
and function of miRNAs we refer to the literature, see e.g.
[1,2].

Despite the rapid growth of our knowledge on microRNA
regulation, little is known about the evolution and phylo-
genetic distribution of the hundreds of animal microRNA
families. The exceptions are a few well-studied examples,

Table 1: Summary statistics of the dataset used in this study. MicroRNA genes detected by homology search relative to the contents of 
the MR 6.0.

Genome MR 6.0 known new all

hsa 227 215+12 23 238
ptr - 0 183 183
cfa 6 6 195 201
bta - 0 138 138
mmu 230 215+17 26 241
rno 191 180+6 39 219

mdo - 0 139 139
gga 122 122 17 139
xla/xtr (7) (7) 126 133

tru - 0 171 171
tni - 0 179 179
ola - 0 152 152
dre 33 60 205 265

spu - 0 40 40
cin - 0 6 6
csa - 0 3 3
odi - 0 5 5

dme 78 78 0 78
dps 73 72 0 72
dya - 0 74 74
dan - 0 64 64
dvi - 0 67 67
dmo - 0 69 69
aga 38 42 10 52
tca - 0 24 24
ame 25 26 12 38
bmo - 0 17 17

cel 116 117 2 119
cbr 79 82 3 85

sma - 0 4 4

Σ 1222 1993 3215

The set of "known" microRNAs differs in some cases from MR 6.0 because some database entries could not be mapped to the current genome 
assembly, or mapped to more than one genomic locus. The mir-134 cluster is excluded from this list (its known members are indicated separately 
for human, mouse and rat in the MR 6.0 column). The last column ("all") provides the statistics for the data set provided in the electronic 
supplement, the column "new" lists all those pre-miRNA sequences that were detected by homology search and are contained in MR 6.0. For 
Xenopus 7 microRNAs were reported for Xenopus laevis, a close relative of the sequenced Xenopus tropicalis.
Species abbreviations.
Mammals: hsa, Hs: Homo sapiens; ptr, Pt: Pan troglodytes; cfa, Cf: Canis familiaris; bta, Bt: Bos taurus; mmu, Mm: Mus musculus; rno, Rn: Rattus 
norvegicus; mdo, Md: Monodelphis domesticus; other tetrapods: gga, Gg: Gallus gallus; xla: Xenopus laevis; xtr, Xt: Xenopus tropicalis; teleost fishes: tru, 
Tr: Takifugu rubripes; tni, Tn: Tetraodon nigroviridis; dre, Dr: Danio rerio; basal deuterostomes: spu, Sp: Strongylocentrotus purpuratus; cin, Ci: Ciona 
intestinalis; csa, Cs: Ciona savignyii; odi, Od: Oikopleura dioica; insects: dme, Dm: Drosophila melanogaster, dps, Dp: Drosophila pseudoobscura, dya, Dy: 
Drosophila yakuba, dan, Da: Drosophila ananassae, dvi, Dv: Drosophila viridis, dmo, Do: Drosophila mohavensis, aga, Ag: Anopheles gambiae, tca, Tc: 
Tribolium castaneum, ame, Am: Apis mellifera, bmo, Bm: Bombyx mori, nematods: cel, Ce: Caenorhabditis elegans, cbr, Cb: Caenorhabditis briggsae, 
platyhelmint: sma, Sm: Schistosoma mansoni.
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including let-7 [3-5], the three non-homologous miRNA
families comprising the mir-17 cluster [6,7], two Hox-
cluster associated genes mir-10 and mir-196 [8,9], and the
exceptional imprinted mir-134 cluster of microRNAs
located at human locus 14q32 [10-12]. These few case
studies, which were selected because of special properties
of the miRNAs in question, of course cannot provide a
comprehensive, or even representative, picture of micro-
RNA evolution in animals.

Two very recent papers discuss in detail the phylogenetic
distribution of plant microRNAs using expression profil-
ing [13] and EST data [14], respectively. Both studies dem-
onstrate that "several individual miRNA regulatory
circuits have ancient origins and have remained intact
throughout the evolution and diversification of plants."
With only a limited number of miRNA families to investi-
gate (17 in [14] and 23 in [13]) the situation is much
more favorable than in animals, where the MicroRNA
Registry 6.0 (MR 6.0) [15,16] lists more than 1200 micro-
RNAs which fall into more than 300 families defined by
their "mir-number" [17]. A recent comprehensive study of
microRNA gene expression in zebrafish [18], for example,
lists 142 miRNA loci in the genome of Danio rerio that are
homologous to more than 100 different mammalian
microRNAs, belonging to almost 100 different families.

In this contribution we report on a comprehensive study
of the phylogenetic distribution and evolutionary histo-
ries of the currently known miRNAs (as defined by the
content of version 6.0 of the MicroRNA Registry) and their
homologs.

Results
Novel microRNA genes
While microRNAs have been studied in much detail in
mammals, insects, and nematodes, much less is known in
other lineages. Information on chicken, frog, and actinop-
terygian microRNAs are almost exclusively based on
sequence homology. In this study we have attempted to
obtain this information systematically and as exhaustively
as possible. To this end, we include only those predicted
microRNA candidates which can be identified as
homologs of a MR 6.0 entry. Note that our statistics
ignores all microRNAs that are not contained in MR 6.0,
most notably, many of those reported in recent studies of
primates [19,20] and zebrafish [18,21]. While a recent
survey for ncRNAs has provided evidence for a significant
number of microRNAs in Ciona intestinalis [22], most of
them are not included here because their homology with
known vertebrate microRNAs cannot be established
unambiguously.

Table 1 summarizes the microRNA precursor sequences
that form the basis for this study, a detailed list is provided

in additional file: 1; insect-specific microRNAs are sum-
marized in additional file: 2 (see supplemental material).

Our knowledge of microRNAs in basal deuterostomes is
sketchy at best, despite the fact that four genomes are
available at various stages of completion. In this survey we
detect a number of microRNAs in basal deuterostomes: 40
sequences in only 6 families (mir-1, mir-9, mir-31, mir-
124, mir-125, mir-184) were found in the genome of the
sea urchin Strongylocentrotus purpuratus. Most of the 40
sequences will probably turn out to be identical in more
advanced assemblies of the genome. A handful of families
were detected in urochordates. In [22], 41 putative micro-
RNAs are predicted in Ciona intestinalis, of which only 4
are recognizable orthologs of known vertebrate microR-
NAs. It is not clear whether the other candidates are line-
age-specific innovations, or whether they are too diverged
to recognize their homology with known microRNA fam-
ilies.

Similarly, we find only three convincing microRNA candi-
dates in the trematode Schistosoma mansoni: mir-1, mir-9,
and mir-124. In contrast, no plausible orthologs were
detected outside the metazoa e.g. in Schizosaccharomyzes
pombe or Encephalitozoon cuniculi.

Phylogenetic distribution of microRNA families
The tables in additional file: 1 as well as in the summary
of microRNA precursor sequences, both part of the exten-
sive electronic supplement http://www.bioinf.uni-leip
zig.de/Publications/SUPPLEMENTS/05-021/ summarize
the sequences that were found through the combined
blast and erpin searches described above. Since large-scale
experimental surveys that were not based on a priori
homology information have been performed only for 4
species (Homo sapiens, Mus musculus, Drosophila mela-
nogaster, Caenorhabditis elegans) we can only analyze the
innovation of microRNAs along the branches of the phyl-
ogenetic tree leading to those four species.

To this end, we map each miRNA to the branch that leads
to the last common ancestor of all homologs that we
could identify in our survey. Note that this does not imply
that all children of this ancestral node carry a known
homolog: miRNAs may have been lost in a particular lin-
eage or they may have diverged too far to be recognizable
by homology-based searches. We suspect that the small
number of identified miRNAs in basal deuterostome
(both Strongylocentrotus purpuratus and the urochordates)
and in Schistosoma mansoni is predominantly due to
sequence divergence rather than true gene loss.

To our surprise, we find that miRNA innovation is an
ongoing process, exemplified already by the small
number of rodent or primate-specific sequences con-
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tained in MR 6.0. Recent studies by Berezikov et al. [19]
and Bentwich et al. [20] demonstrate that evolutionary
young miRNAs are a common phenomenon. Many of
these are members of large miRNA clusters. Note that our
data set contains at least one representative of many of
these clusters, suggesting that expansion of existing clus-
ters is a major mode of miRNA evolution. On the other
hand, we can clearly identify two edges in the phyloge-
netic tree along which innovation is concentrated: the
edge leading to the ancestral gnathostome, and the edge
leading to the ancestral eutherian.

In addition to the introduction of a large number of novel
miRNA sequences, we find a large number of paralogous
miRNA sequences throughout the metazoa. Two classes of
duplication events are easily distinguishable:

• Local (tandem) duplications result in paralogous
sequences that are (typically) located on the same tran-
script. These gene copies retain their physical linkage over
long evolutionary timescales.

• Non-local duplications result in paralogous genes (or
gene clusters) on (usually) different chromosomes. In
some cases, copies on the same chromosome separated by
large distances are observed, but in these cases the physi-
cal linkage is not preserved across larger evolutionary
times.

Non-local duplications almost exclusively can be allo-
cated to only two points in the metazoan phylogeny: in
the stem of the teleost branch and in the edge separating
the gnathostome ancestor from the urochordates. This is
consistent with the large-scale, probably genome-wide,
duplications postulated by the 2R/3R model [23-25].

As expected, we find no case of a microRNA family with
more than 4 different genomic loci in tetrapods or more
than 8 genomic loci in teleosts, with the sole exception of
the let-7 family. In this case, which was studied in detail in
[5], at least one non-local duplication event predates ver-
tebrate-specific genome duplications.

Indeed, we find that about 50% of the isolated microR-
NAs or microRNA clusters that predate the last common
ancestor of tetrapods and teleosts appear in at least two
separate genomic loci. Similarly, about 50% of these
"old" microRNAs show clear evidence for an additional
duplication of at least one copy in the teleosts lineage.

MicroRNA clusters
A substantial fraction of microRNAs are located on poly-
cistronic transcripts [26-29]. Tab. 2 lists the vertebrate
microRNA clusters. MicroRNA clustering is also a com-
mon phenomenon in invertebrates: (see summary table

in additional file: 2, supplemental material). The evolu-
tionary history of four microRNA clusters has already
been described in detail in the literature:

Probably the best-understood microRNA, at least in terms
of its phylogenetic distribution is let-7, which was discov-
ered in C. elegans as a timing regulator in development
[30]. The let-7 microRNA is present in diverse animal
phyla including chordates, echinoderms, mollusks, anne-
lids, arthropods, nematodes, chaetognaths, nemerteans,
and platyhelminths, but it is absent in basal metazoa
including cnidarians, poriferans, ctenophora, and acoel
flatworms [3,4]. In vertebrates a plethora of let-7 paralogs
are known. Paralogs of the two miRNAs mir-100 and mir-
125 are transcribed together with some of the let-7 para-
logs in both vertebrates and insects. For a detailed recon-
struction of the let-7 gene phylogeny we refer to [5].

The mir-17 cluster consists of up to 6 members belonging
to three non-homologous microRNA families: mir-17,
mir-19, and mir-92. While mir-92 can easily be traced back
to the common ancestor of protostomes and deuteros-
tomes, the other two families appear to be younger [6].

The mir-134 cluster is a unique system of microRNAs
located at the imprinted human locus 14q32 [10-12,31]
and the orthologous mouse Dlkl-Gtl2 domain [32]. It is
restricted to eutherian mammals and consists of 6 known
groups of microRNAs, which, however, according to our
analysis share a common origin, see Fig. 7 below. The
most prolific subgroup consists of mir-154 and its para-
logs, which appear to be rapidly radiating. Local sub-clus-
ters of this unique system are studied in detail in [33].
These authors also report additional cluster members that
are not contained in the MR 6.0.

The mir-290 cluster consists of murine microRNAs mir-
290 to mir-295 and their human homologs mir-371 to mir-
373. It is conserved in eutherian mammals and is rapidly
evolving both in gene content and sequence [20,34].

Other miRNA clusters have not been analyzed in detail to
our knowledge. Our own finding are summarized below,
see also Fig. 3. Gene phylogenies of all microRNA families
are provided in the supplemental material.

The mir-1 cluster is ancient, consisting of mir-1 and mir-
133; (except in nematodes where mir-133 seems to be
absent). In vertebrates, there are three copies on different
chromosomes.

The mir-9 family is also ancient. In diptera, we have both
an isolated mir-9 paralog (most closely related to its verte-
brate homologs) and a cluster of four microRNAs consist-
ing of mir-9c, mir-306, mir-79, and mir-9b, see Fig. 3a. This
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cluster, which presumably arose by means of tandem
duplications, is specific to diptera. One of the four mem-
bers of this mir-9 cluster, mir-306, is so diverged that its
homology with mir-9/mir-79 is not unambiguous.

The mir-15 cluster arose from an old tandem duplication.
It occurs in 3 copies in tetrapoda, were one locus has only
a single copy of the microRNA.

In some cases, even the combination of sequence infor-
mation and physical linkage is insufficient to completely
resolve the history of a microRNA cluster. As an example,
consider the mir-23 cluster, consisting of mir-23, mir-24,
and mir-27, which appear to have unrelated sequences.
While tetrapoda have two clusters consisting of all three
miRNAs, teleost fishes have either four (pufferfishes) or
five (zebrafish) copies, usually on different chromosomes
or at least separated several million bases from each other.
Fig. 4 gives the two most plausible scenarios, both of

which are based on the assumption of the 2R/3R model
that leads us to expect up to four paralogs in the ancestral
vertebrate and a duplication of this ancestral state in the
teleosts.

The mir-141 cluster consists of the paralogous microRNAs
mir-141 and mir-200. The ancient tandem duplication that
created this cluster predates the origin of the chordates
(but there do not seem to be homologous arthropod or
nematode sequences). In vertebrates there are two copies
of the clusters.

The mir-302 cluster consists of four tandem copies of mir-
302 and a single copy of mir-367 in amniotes. Homologs
in more distant groups, including frog and teleosts, could
not be identified.

A small number of microRNA clusters arose only recently,
i.e., after the last common ancestor of eutherian mam-

Innovations of microRNAs, tandem duplications, and non-local duplications of microRNA genes are unevenly distributed in metazoan phylogenyFigure 1
Innovations of microRNAs, tandem duplications, and non-local duplications of microRNA genes are unevenly distributed in 
metazoan phylogeny. Indeed, non-local duplications occur almost exclusively in the ancestral vertebrate and teleosts, resp., in 
accordance with the 2R/3R model. Species for which large experimental screens for microRNAs have been performed are indi-
cated by a larger font. The phylogenetic tree is based on a recent multi-gene analysis of the major bilaterian groups [69], and 
the phylogeny of holometabolous insects [70].
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mals. For example, mir-298 arose next to mir-296 in the
rodent lineage. mir-105, which is located on the X-chro-
mosome, exists in three copies in Canis and in two copies
in Homo, while other mammals have only a single copy.

Conversely, a few ancient microRNA families have be
remodeled considerably in mammals. The mir-130 clus-
ter, Fig. 3c, may serve as an example. This family arose by
tandem duplications very early in vertebrates. An addi-
tional copy appears early in the mammalian lineage fol-
lowed by different lineage specific deletions.

MicroRNAs and repetitive DNA
Small interfering RNAs (siRNAs) are related to retro-ele-
ments in plants and fungi: In plants they are known to
silence retro-elements (e.g. [35]) and promoter regions by

DNA and histone methylation (e.g. [36]). In S. pombe
siRNA complementary to centromeric dh repeats [37] and
other retrotransposon LTRs [38] are involved in hetero-
chromatin silencing. Recently, numerous mammalian
miRNAs with extensive homology to known repetitive ele-
ments were described [39], including rat mir-333 [9].
These and three further miRNA sequences (mir-308, mir-
421, and mir-430) as well as mir-220, which is discussed in
the following section, are excluded from the phylogenetic
analysis. They are marked with the symbol ♠ in the sum-
mary table in the appendices found in the supplemental
material.

The D. melanogaster and D. pseudoobscura mir-308
sequences reside in the last intron of the gene encoding
the 23S ribosomal protein. Candidate sequences in insects

(a) Phylogenetic network of mir-1 sequencesFigure 2
(a) Phylogenetic network of mir-1 sequences. Despite the short sequences, the major clades are well separated in this phyloge-
netic network: there are two vertebrate groups, mir-1-1 and mir-I-2, both of which show a tetrapod and a teleost branch; 
arthropoda and nematoda are also clearly separated; only the basal deuterostomes do not fit very well due to their diverged 
sequences. (b) Phylogenetic network of mir-30 sequences, which occur in three clusters each consisting of two miRNAs genes 
(see inset). A tandem duplication of the ancestral mir-30 sequence gave rise to a single cluster which was duplicated subse-
quently. Not all details of the duplication history can be resolved due to the short sequence length. It is clear, however, that 
the duplication events pre-dated the last common ancestor of tetrapoda and teleosts. It is plausible to associate these cluster 
duplications with the genome duplications at the origin of the vertebrate lineage. Networks were reconstructed using the 
neighbor net method.
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were classified as simple repeats or low complexity
regions by Repeatmasker [40]. Putative homologs in ver-
tebrates were identified as LINES, SINES, MER2_type and
simple repeats. None of those are associated with Rps23S.
The mature sequences were not conserved between those

candidates, the only feature they had in common were
long stretches of A and T rich regions.

The eutherian specific mir-421 is located on the X-chro-
mosome. The majority of candidates were identified as
L2/LINEs elements, the remaining ones as SINE/Alu (Alu,

Examples of microRNA gene duplication historiesFigure 3
Examples of microRNA gene duplication histories. (a) Gene tree and most plausible reconstructed history of the mir9 cluster. 
The fourth member of the cluster, mir-306, evolves rapidly in flies. Its homology with mir-9/mir-79 is likely but this hairpin might 
also have evolved de novo. (b) The two most plausible reconstructions for the history of the mir-23 cluster. Scenario (1) pos-
tulates four paralogs in the ancestral vertebrate, where, presumably after the first duplication, one lineage either lost or gained 
mir-27 in the middle position of the cluster. Subsequently, in this scenario one copy of the three-membered cluster was lost in 
actinopterygians, while the two-membered clusters were lost in tetrapoda. Scenario (2) postulates three paralogs in the ances-
tral vertebrate and the independent loss of the mir-27 in two distinct clusters in the teleosts. (c) Duplication history of the 
mir-130 cluster reconstructed from genomic position information and the gene tree.
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B1F), and SINE/MIR (MIRb). The locus reflects the fea-
tures of repeat-derived miRNAs as described in [39]. Two
L2 elements in tail-to-tail orientation form the stem of the
pre-miRNA, whereas the loop consists of the poly(T) tail
(here poly(A) since one of the L2s is found on the minus
strand) and the short intervening sequence. In contrast,
the sequences of eutherian specific microRNAs that are
not related to any known retrotransposon are in most
cases conserved almost perfectly among different euthe-
rian species.

The mir-430 family apparently is derived from a zebrafish
repetitive element of unknown type.

Tubulin genes and mir-220
The tubulin superfamily comprises 6 families [41]. Three
of them, the alpha, beta and gamma tubulins, are ubiqui-
tous for eukaryotes and used for several phylogenetic
studies within this kingdom, e.g. [42]. Multiple highly
conserved alpha and beta tubulin genes are found within
each species. In addition, several intronless tubulin pseu-
dogenes were found [43,44], flanked by different repeat
regions [45]. These remnants of functional genes were, for
instance, used as molecular clock for investigating homi-
nide evolution [46].

Mir-220 was discovered in D. rerio [47], where it is found
in the fourth exon of an mRNA (NM199975.1) that
appears to be related to tubulin-beta genes. It can be
mapped unambiguously to the minus strand of several D.
rerio ESTs.

The human mir-220 sequence was identified by homology
to the experimentally verified D. rerio sequence. It is
located in a genomic region highly conserved between
several vertebrates according to the conservation track of
the UCSC genome browser. On the DNA sequencing
clone RP5-1189B24 (AL030996) this region is annotated
as tubulin beta-5 (TUBB5) pseudo-gene. The mir-220
resides on the opposite strand of this predicted gene at a
position homologous to the 5' end of exon 4 in the func-

tional TUBB4. None of the sequences in the human ESTs
of GenBank contained hsa-mir-220.

None of the numerous blast hits for mir-220 was identi-
fied as a repetitive sequence but rather appear to belong to
tubulin genes and pseudogenes. Only the human
sequence folds into a proper stem-loop structure, whereas
the zebrafish microRNA results in a branched structure,
Fig. 5. The multiple sequence alignment does not display
typical features of miRNAs either. The mature sequence
contains one gap in the human sequence and in addition
one mismatch. Neither the loop region, nor the comple-
mentary arm, the 5' and 3' ends of the precursor are highly
diverse. Furthermore, mir-220 would be the first micro-
RNA to be processed from the anti-sense strand of a cod-
ing exon, a mode of transcription known so far only for
cis-acting anti-sense transcripts [48].

Taking these facts together, it is conceivable that mir-220
is an experimental artifact. At the very least, homologous
sequences in species other than zebrafish should not be
interpreted as microRNAs in absence of additional evi-
dence. We therefore disregard mir-220 in our further anal-
ysis.

Distant homologies
Using blast, we have been able to identify a substantial
number of microRNAs with different microRNA Registry
names as homologs. As a consequence, our survey distin-
guishes 292 microRNA families (plus two sequences
which could not be mapped to their respective genomes),
while our starting point, the MR 6.0, contains 341 differ-
ent family names for animal microRNAs.

In order to detect distant homologies between microRNA
families that cannot be unambiguously determined from
the precursor sequences, we also analyzed the mature
microRNAs. Comparing alignments with shuffled
sequences as described in the methods section, we obtain
95 pairs, 8 triples, and 3 quadruples of microRNA families
at a z-score cutoff value of 3.0. Among them is in particu-

Clustalw multiple sequence alignment of mir-421 homologs on the mammalian X chromosomeFigure 4
Clustalw multiple sequence alignment of mir-421 homologs on the mammalian X chromosome. Additional features (top down): 
mfe: minimum free energy structure calculated using RNAfold -d2 -noLP, part. func: partition function fold, L2/LINE: direction 
and position of L2 elements relative to mir-421, mat miRNA: position of mature miRNA, conservat.: conserved positions in 
sequence alignment.

conservat.       **** ******************************************** *****************************        
 Pt-421-1 TCCGGTGCACATTGTAGGCCTCATTAAATGTTTGTTGAATGAAAAAATGAATCATCCACAGACATTAATTGGGCGCCTGCTCTGTGATCTCCAT    94
 Mm-421-1 TCCGGTGCACATTGTAGGCCTCATTAAATGTTTGTTGAATGAAAAAATGAATCATCAACAGACATTAATTGGGCGCCTGCTCTGTGATCTCCAT    94
 Hs-421-1 TCCGGTGCACATTGTAGGCCTCATTAAATGTTTGTTGAATGAAAAAATGAATCATCAACAGACATTAATTGGGCGCCTGCTCTGTGATCTCCAT    94
 Cf-421-1 TCCCGTGCACATTGTAGGCCTCATTAAATGTTTGTTGAATGAAAAAATGAATCATCAACAGACATTAATTGGGCGCCTGCTCTGTGATCTCCAT    94
 Rn-421-1 -------CACACTGTAGGCCTCATTAAATGTTTGTTGAATGAAAAAATGAATCATCAACAGACATTAATTGGGCGCCTGCTCTGTG--------    79

ruler 1.......10........20........30........40........50........60........70........80........90....

mat miRNA                 ++++++++++++++++++++                                                          
  L2/LINE >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>      <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

      mfe .......((((..((((((((((...((((((((((((.(((....... . . )))))))))))))))...)))).))))))..))))........
part.func . . . { { . . ((((. . ((((((((((. . . ((((((((((({ , (((. . . . . . . . . ))))))))))))))). . . )))). )))))). . )))). . . . , , . . 
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lar the entire mir-134 cluster, which can also be identified
based on the precursor sequences Fig. 7.

While mature microRNAs are much better conserved than
the rest of the precursor sequences, they are at the same
time less informative because of their short length (≈
22nt). It is therefore not warranted to conclude that
mature miRNAs which exhibit statistically significant sim-
ilarities (as measured by the z-score of their alignment)
are true homologs. The observed similarities could also
have arisen through convergent evolution. For example,
the first 8 nucleotides of the mature sequences show
highly conserved patterns between certain families of
microRNAs that regulate target genes of the Notch signal-
ing pathway. These motifs have been characterized as GY-
box, Brd-box, and K-box [49]. In general, the correspond-

ing pre-miRNA sequences are too divergent to conclude
that they derive from a common ancestral sequence.

In four cases we find strong evidence for homology that
was not detectable directly by means of blast, see Fig. 6.
The first two of these cases identify putative orthologs in
distant clades:

Arthropod-specific mir-8 is related with vertebrate-specific
mir-429. Their mature sequences are 74% identical, the
combined stem regions still have about 60% sequence
identity. A re-examination of the full precursor sequences
leads us to conclude that arthropod mir-8 and vertebrate
mir-429 are indeed orthologs.

Similarly, the mature sequences suggest that the nema-
tode microRNA mir-72 is possibly homologous with mir-

Some microRNA families, such as the mir-10 and mir-100 (left), exhibit very similar mature miRNA sequences, while their pre-cursor sequences show little sequence similarityFigure 6
Some microRNA families, such as the mir-10 and mir-100 (left), exhibit very similar mature miRNA sequences, while their pre-
cursor sequences show little sequence similarity. Right: A table of alignment z-score for both mature and precursor sequences 
summarizes the four most likely candidates for distance homologies. While the mir-8/mir-429 pair is most likely a true homolog, 
the other three pairs are unconvincing, see text.

             **** *** * ****  ***  
hsa-miR-99a AACCC-GUAGAUCCGAUCUUGUG
hsa-miR-99b CACCC-GUAGAACCGACCUUGCG
dme-miR-100 AACCC-GUAAAUCCGAACUUGUG
hsa-miR-100 AACCC-GUAGAUCCGAACUUGUG
hsa-miR-10a UACCCUGUAGAUCCGAAUUUGUG
hsa-miR-10b UACCCUGUAGAACCGAAUUUGU-
dme-miR-10 -ACCCUGUAGAUCCGAAUUUGU-
Sp-10 AACCCUGUAGAUCCGAAUUUGUG
      ruler 1.......10........20...

Sequences z-scores
mature precursor

mir-8/mir-429 6.15 7.74
mir-31/mir-72 6.92 3.62
mir-10/mir-100 6.34 3.34
mir-15/mir-322 6.12 6.43

RNA secondary structures of human (a) and zebrafish (b) mir-220 sequencesFigure 5
RNA secondary structures of human (a) and zebrafish (b) mir-220 sequences. Calculations were performed using RNAfold -p -
d2 -noLP.
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31 in arthropods and vertebrates. However, the full pre-
cursor sequences cannot be aligned convincingly. The z-
score of z = 3.62 is only marginally significant. We hence
(conservatively) count mir-31 and mir-72 as different fam-
ilies.

In a few more cases, distant putative paralogs can be
detected using the z-score measure.

A particularly interesting case is the similarity between the
Hox-cluster associated mir-10 and the mir-100 family,
which is part of the let-7 cluster. They are annotated as
members of the single microRNA precursor family
RF00104 in the Rfam database. The mature sequences are
72% identical, the combined stem-regions share about
50% of the nucleotides, while the alignment of the com-
plete precursor sequences is at the border of significance.
In contrast, we cannot confirm that mir-51 and mir-57 are
putative homologs of mir-10/mir-100. While it is likely
that the mir-10 and mir-100, two old and developmentally
important microRNAs, are homologous, we still treat
them conservatively as distinct families in all statistics
reported in this contribution. In any case, the putative
duplication from which the mir-10 and mir-100 families
arose, would date back at least to the eubilaterian ances-
tor.

The alignment z-scores of the mir-15 and mir-322 precur-
sor sequences also hint a distant homology. The human
ortholog of mir-322, designated as hsa-mir-424 is located
0.4 M downstream of the extra copy of the mir-17 cluster
[6] located at the mammalian X-chromosome. It partially
overlaps in its 3' end with the known mRNA BC007360,
of which the third exon is annotated as Ensembl Gene
ENSG00000165705 with predicted homologs in chimp
(ENSPTRG00000022288) and cow
(ENSBTAG00000001876). The entire region appears to
be specific to mammals, as no homologs in the chicken
genome can be found in the UCSC genome browser,
although synthenic regions upstream and downstream of
the miRNA exist on chicken chromosome 4. These genes
as well as intergenic regions show roughly two to three-
fold compression in chicken, but the region containing
the miRNA is 18 times longer in human. The synthenic
region of human Xq on chicken chromosome 4p corre-
sponds to a microchromosome in all other birds but Gal-
liformes, indicating a spot of heavy rearrangements, which
might explain missing sequences [50]. The available infor-
mation is insufficient to determine unambiguously
whether mir-322/mir-424 is a true homolog of mir-15 that
arose during the processes that lead to the assembly of the
eutherian X-chromosome. Thus we conservatively count
mir-322/mir-424 and mir-15 as distinct microRNA fami-
lies.

Discussion
The systematic search for orthologs and paralogs of
known animal microRNAs provides a suitable basis for
studying their evolution. While microRNAs exist both in
multicellular animals and multicellular plants, there is no
evidence that particular microRNA sequences are homol-
ogous between the kingdoms. Here we systematically
study the evolution of the more than 200 known animal
microRNA families. Our analysis identified a substantial
number of known microRNAs as homologs despite the
fact that they have different names in the MicroRNA Reg-
istry. In a few additional cases, there is at least circumstan-
tial evidence for distant homologies. Nevertheless,
vertebrate genomes contain almost 200 distinct micro-
RNA families that do not share significant sequence
homology. As most of these families cannot be traced
back to an ancestral bilaterian, we have to conclude that
microRNAs can arise as de novo genes.

The evolution of the metazoan microRNA complement is
therefore characterized by four processes:

(1) De novo appearance of novel miRNAs. Some of these
sequences arise as additional members of existing clusters.
In [6], a model is proposed for this expansion process
based on the fact that hairpins are very abundant RNA sec-
ondary structures. Such innovations occur throughout
animal innovation. They are concentrated in the bilate-
rian ancestor, the vertebrate ancestor, and the eutherian
ancestor. The data are at present insufficient to determine
whether such periods of increased microRNA innovation
also happened in invertebrate lineages. However, a small
number of microRNAs are derived from repetitive ele-
ments.

(2) Tandem duplications are a frequent mechanism
accounting in particular for the expansion of microRNA
clusters. Such local duplications are also strongly overrep-
resented in the vertebrate ancestor, and at the origin of
placental mammals. In the latter case, most duplications
are associated with the mir-134 cluster.

(3) Non-local duplications of microRNAs are almost
exclusively associated with the genome-wide duplica-
tion(s) in the vertebrate [51] and the teleost ancestor [52],
respectively.

(4) A small class of non-local duplications is not associ-
ated with genome-wide duplication events. The only
invertebrate example is the duplication of mir-9 in arthro-
pods. In the ancestral eutherian we find 6 such events,
mostly associated with the formation of the X-chromo-
some. Indeed, the mammalian X chromosome has gener-
ated and recruited a disproportionately high number of
functional retroposed genes [53], which might also have
Page 10 of 15
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affected some microRNA genes, including the X-chromo-
somal copy of the mir-17 cluster.

Conclusion
The expansion of the microRNA repertoire is consistent
with the idea that the complex metazoan genomes require
an additional level of regulators [54,55]. As one would
expect from such a model, dramatic expansions of the
microRNA repertoire appear to be associated with major
bauplan innovations: in ancestral bilaterians, ancestral
vertebrates, and with the advent of (placental) mammals.

Methods
Sequence searches
The protocol essentially follows [6], see [7] for a detailed
description with examples. For RNA folding we used the
programs contained in the Vienna RNA Package [56,57].
Sequence searches were performed locally using NCBI
blast (version 2.2.6) [58] with default settings and an E-
value cutoff of E < 0.01, alignments were computed with
clustalw [59] and visualized using clustalx [60]. The non-
stringent E-value cutoff was chosen in order to minimize
false negatives, false positives at this stage do not pose a

problem because of the stringent filters in the subsequent
stages of the analysis.

All metazoan microRNA precursor sequences contained
in the MR 6.0 (May 2005) were blasted against the availa-
ble metazoan genomes (see list in the appendices, supple-
mental material) as well as a few protist genomes. The
resulting blast hits were extracted from the database such
that the retrieved sequences had approximately the same
length as the query sequences. Multiple alignments of
known microRNA sequences and putative homologs were
constructed using clustalw and visually inspected for
unrelated sequences or sequences not sharing a well con-
served mature miRNA. The aligned sequences were
trimmed to closely match the length of the known
homologs from the MicroRNA Registry and then rea-
ligned.

RNAalifold [61] was used to verify the hairpin structure of
the consensus fold. In some cases, sequences that deviated
from the phylogenetic expectation were folded separately
and tested for thermodynamic stability using the randfold
program [62]. In cases where candidate sequences had to
be removed, the alignments were recomputed.

(a) All microRNAs in the mir-134 cluster appear to have arisen from a common ancestral sequenceFigure 7
(a) All microRNAs in the mir-134 cluster appear to have arisen from a common ancestral sequence. The individual paralog 
groups have diverged rapidly in the ancestor of extant eutherian. Surprisingly, there is very little sequence variation between 
human and rodents in each of the paralog groups. The six families of alignable microRNAs are indicated in color. (b) WPGMA 
dendrogram derived from pairwise z-scores of the members of the mir-35 cluster. The analysis of the mature sequences dem-
onstrates that the members of the cluster probably have arisen by means of tandem duplications.
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MicroRNAs for which only nematode sequences were
known, were blasted against all vertebrate and all arthro-
pod genomes with a cutoff of only E ≤ 0.1. Cases in which
the blast hits consistently overlap with the mature micro-
RNA were considered further. Next we considered the
vicinity of the blast hit and checked whether it is con-
served in vertebrates or arthropods, respectively. This
leaves only mir-86 (vertebrates) and mir-72 (arthropods)
as possible candidates with unknown orthologs. In both
cases the candidate sequences do not form a conserved
hairpin structure so that we conclude that they are proba-
bly not homologous microRNAs.

The blast searches were complemented by searches for dis-
tant homologs similar to the procedure described in [63].

The consensus secondary structure of the final alignments
of the known microRNAs and their homologs as deter-
mined above was computed using RNAalifold and con-
verted into a search pattern for the erpin program [64]. For
each microRNA, we determined the subtree spanned by
known sequences and blast hits. Using erpin, we then
screened within this subtree those genomes in which we
did not find a blast hit, as well as all genomes from sister
groups under plausible phylogenetic assumptions. In par-
ticular, both insects and nematodes were investigated for
microRNAs that could be found in all vertebrates. Con-
versely, for apparently insect- or nematode-specific
sequences we checked the other invertebrate clade as well
as a sample of vertebrate genomes.

erpin searches were repeated with different score thresh-
olds in order to balance sensitivity versus specificity, such
that for each query model no more than a few dozen can-
didates per genome were returned. These candidates were
filtered in the following way: (1) RNAfold was used to
compute the secondary structure. Sequences were
removed from the candidate list if removal of at most 4
base pairs did not result in an unbranched stem-loop
structure. (2) Sequences passing the first test were
removed if their p-value for structural stabilization com-
puted by randfold-2 [62] exceeded 0.03. (3) The remain-
ing sequences were aligned with the original search
profiles. Only candidates with a significant sequence sim-
ilarity according to visual inspection were retained. (4)
We finally used the erpin candidates in blast searches
against the remaining genomes. Candidates without a
plausible phylogenetic conservation were rejected.

Phylogenetic analysis
We pragmatically define a microRNA family as a collec-
tion of microRNA precursors for which we can construct a
plausible sequence alignment using a global alignment
tool such as clustalw, i.e., for which sequence homology
is unambiguous. Gene phylogenies were reconstructed

Table 2: Vertebrate microRNA clusters. The table lists the 
maximal number of microRNAs in a single copy of the cluster 
("Members"), the maximal number of non-homologous 
microRNAs in a single copy ("Families"), and the maximal 
number of paralogous cluster copies in any of the investigated 
genomes.

Cluster Members Families Paralogs

let-7 3 3 18
mir-1 2 2 4
mir-2 4 2 5
mir-3 9 6 3
mir-9 4 3 7
mir-12 2 2 1
mir-15 2 1 5
mir-17 6 3 9
mir-23 3 3 6
mir-29 3 2 8
mir-30 2 1 3
mir-34 2 2 3
mir-35 7 7 1
mir-42 3 3 2
mir-46 2 2 5
mir-51 4 4 1
mir-54 3 3 1
mir-61 2 2 1
mir-64 4 4 1
mir-73 2 2 1
mir-77 2 1 1
mir-96 3 3 2
mir-105 3 1 1
mir-127 2 1 * 2
mir-130 2 2 5
mir-132 2 1 2
mir-134 >50 6 * 1
mir-141 2 1 * 2
mir-143 2 2 1
mir-181 2 1 8
mir-191 2 2 * 1
mir-192 2 2 2
mir-202 2 1 1
mir-204 2 1 3
mir-216 2 1 2
mir-221 2 1 4
mir-232 2 1 1
mir-249 2 1 1
mir-275 2 2 1
mir-276 2 1 1
mir-290 6 1 6
mir-296 2 1 2
mir-302 5 2 5
mir-310 4 4 1
mir-344 3 1 1
mir-357 2 2 2
mir-374 3 2 1
mir-450 3 1 1

* part of the human mir-134 cluster experimentally investigated in 
[33]. In the same study it is reported that mir-144 and mir-224 are also 
parts of clusters with additional microRNAs that do not have 
orthologs in the MR 6.0.
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using the neighbor-net method [65] as implemented in
SplitsTree4 [66]. The approximate trees were checked for
consistency with accepted phylogenetic hypotheses.

For all microRNA precursors for which paralogs are
known or have been detected in our survey, we attempted
to reconstruct the duplication history from the gene tree.
In the case of physically linked microRNA clusters we
additionally verified that the gene phylogenies of the indi-
vidual cluster members were consistent with the linkage
information. We checked in particular for evidence of
additional, relatively recent duplication events of microR-
NAs in teleosts relative to the tetrapods.

Detection of distant homologies

In order to identify distant sequence similarities between
precursor miRNAs from different paralog groups we com-
puted a similarity score based on the significance of the
alignment score: The identity score s(I, J) for the pairwise
alignment of two precursor miRNAs I and J was computed
using the implementation of the fast approximate Wilbur-
Lipman algorithm [67] from the clustalw program. Then

the mean identity score m and the variance ν of randomly
permuted sequences were estimated by sampling. The z-

score z(I, J) = (s(I, J) - m)/  was used as a convenient

measure of similarity between the sequences I and J.

We used the very well-conserved mature microRNAs to
identify possible homologies that had not been reported
previously. In the first step, clustalw alignments were used
to determine groups of mature microRNAs with pairwise
identities in excess of 70%. From the resulting 291 groups,
which approximately correspond to the microRNA fami-
lies, we determined consensus sequences. For these we
computed all pairwise alignment z-scores using 100 shuf-
fled sequences. Subclusters with pairwise z-scores better
than z = 3.0 were extracted. In order to check the stability
of the procedure, z-score matrices for these subclusters
were re-calculated from 1000 shuffled sequences. This
method produces robust similarity scores in regimes
where reliable global alignments cannot be obtained [6].
Standard WPGMA clustering [68] was then used to esti-
mate a dendrogram from the z-scores.
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