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This article extends previous research on the recovery of weak factor loadings in

confirmatory factor analysis (CFA) by exploring the effects of adding the mean structure.

This issue has not been examined in previous research. This study is based on the

framework of Yung and Bentler (1999) and aims to examine the conditions that affect the

recovery of weak factor loadings when the model includes the mean structure, compared

to analyzing the covariance structure alone. A simulation study was conducted in which

several constraints were defined for one-, two-, and three-factor models. Results show

that adding the mean structure improves the recovery of weak factor loadings and

reduces the asymptotic variances for the factor loadings, particularly for the models

with a smaller number of factors and a small sample size. Therefore, under certain

circumstances, modeling the means should be seriously considered for covariance

models containing weak factor loadings.

Keywords: confirmatory factor analysis, recovery ofweak factor loadings,mean structure,MonteCarlo simulation,

psychometric models

Confirmatory factor analysis (CFA) is one of the most widely used statistical procedures in the
social and behavioral sciences. In traditional CFA, researchers habitually analyze their models using
only the covariance structures, thereby ignoring the associated mean structure. However, analyzing
the associated mean structure can be relevant, as classical measurement models make assumptions
involving latent means as well as covariance structures, and many CFAmodels with mean structure
have been proposed (Sörbom, 1974; Millsap and Everson, 1991; Browne and Arminger, 1995; Little,
1997; Raykov, 2001). The advantages of analyzing the factor means compared to analyzing the
means of the observed variables are well-documented in the literature (Kano et al., 1993; Yuan and
Bentler, 1997, 2006; Yung and Bentler, 1999). Thus, the application of CFA models simultaneously
analyzing the mean and covariance structure is widespread among researchers and practitioners
(Ployhart and Oswald, 2004; Millsap and Meredith, 2007).

This article explores the advantages of simultaneously analyzing the mean and covariance
structures, compared to analyzing a covariance structure alone, in the context of CFA models
containing one or more weak factors. A weak factor is a factor that shows relatively little influence
on the set of measured variables or is defined by small loading sizes (Briggs and MacCallum,
2003). A possible reason for finding such factors is the low reliability of the observed variables as
a consequence of an inadequate wording of the items, which would result in a high measurement
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error and a small percentage of common variance. In such
cases, these variables should be avoided. However, there are also
situations in which estimating weak factors is important, and
the unreliability problem is unavoidable because the items are
well written. For instance, this may happen when measuring
cognitive abilities or personality attributes that occupy a low
position in the hierarchy of mental traits. One of the best
known of such theories is Cattell’s (1943) theory of intelligence,
with Spearman’s general factor (g) located at the top of the
hierarchy and several major, minor, and specific group factors
below g; and more recently, Ackerman’s (1996) theory of the
adult intellectual development process, personality, interests,
and knowledge. In such cases, applied researchers must be
aware of the consequences of working with factorial structures
containing both strong and weak factors. Although past research
has examined the conditions that affect the recovery of weak
factors in the contexts of exploratory and CFA, no research has
examined the advantages of simultaneously analyzing the mean
and covariance structures, compared to analyzing a covariance
structure alone for the recovery of weak factor loadings. This
issue is important given the widespread use of these models
in psychological research. Therefore, researchers performing a
CFA with factorial structures that contain weak factors should
be aware of the consequences of adding the mean structure to
the estimation of the covariance model. Is the recovery of weak
factors affected when adding themean structure to the estimation
of the CFA model? Do estimation methods equally recover the
weak factors? Which conditions affect the weak factors’ recovery
and to what degree?

The present research shows that recovery of weak factor
loadings is substantially improved when adding the associated
mean structure to the estimation of the covariance model. A
simulation study is presented in which recovery of weak factor
loadings is studied under conditions of estimation method,
sample size, constraints in the mean structure, and factor
correlation. The study is based on the framework proposed by
Yung and Bentler (1999), which proved that the reduction of
asymptotic variance can be substantial for the estimation of
factor loadings when the associated mean structure is added to
the covariance structure model. The primary purpose of this
simulation study was to examine the degree to which the recovery
of weak factor loadings improves when adding the associated
mean structure to the estimation of the CFA model in a range
of conditions, compared to analyzing the covariance structure
alone.

The article is organized as follows. First, theoretical aspects
are reviewed, including the Yung and Bentler (1999) framework.
Second, the design and results of a simulation study are
presented. Finally, a general discussion summarizing the results
and their practical implications for applied researchers is
provided.

BRIEF OVERVIEW OF RECOVERY OF
WEAK FACTOR LOADINGS

Previous research has examined the conditions that affect the
recovery of weak factors. Within the context of exploratory

factor analysis (EFA), Briggs and MacCallum (2003) examined
the performance of maximum likelihood (ML) and unweighted
least squares (ULS) estimation methods to recover a known
factor structure with relatively weak factors. They found that
in situations with a moderate amount of error, ML often failed
to recover the weak factor, whereas ULS succeeded. Within
the context of CFA, the simulation studies by Ximénez (2006,
2009) explored the recovery of weak factor loadings under
conditions of estimation method (ML vs. ULS), sample size
(100, 300, and 500), loading size in the weak factor (0.25, 0.35,
or 0.50), model specification (correct vs. incorrect by altering
the number of factors), factor correlation (null and moderate),
and model error (lack of fit between the population matrix
and the model). The results showed that the recovery of weak
factor loadings improved when factors were correlated and
models were correctly specified. For models that were incorrectly
specified, recovery was very poor when misspecification implied
underfactoring, especially for models with orthogonal factors. In
addition, the ULS method produced more convergent solutions
and successfully recovered the weak factors in some instances in
which ML failed.

Although previous research has examined a wide range of
conditions that affect the recovery of weak factors, more research
is needed to continue examining these effects under different
study conditions. The topic of adding the mean structure to the
CFA model has not been previously studied and deserves further
research as it represents a realistic condition for researchers
and practitioners. In this sense, the present study is aimed to
examine the conditions that affect the recovery of weak factor
loadings when the CFA model includes the mean structure and
to provide guidance to practical researchers in the design of their
studies.

BACKGROUND ON ADDING THE MEAN
STRUCTURE TO THE CFA MODEL

The study is based on the framework proposed by Yung and
Bentler (1999), which proved that adding the analysis of the
associated mean structure in the CFA model improves the ML
estimation of some covariance structure parameters because
asymptotic variances for factor loadings are reduced. Given the
relevance of their mathematical framework to this article, a brief
summary of its demonstration is provided here.

The CFA model (Jöreskog and Sörbom, 1981) can be given as:

x = 3ξ + δ, (1)

where x is a vector of p observed variables, ξ is a vector of q
factors, 3 is a p x q matrix of factor loadings, and δ is a vector
of p measurement error variables. For convenience, the CFA
model traditionally assumes zero means for the observed and
latent variables (i.e., E(ξ ) = 0, E(δ) = 0, and E(x) = 0) and that
E(ξδ)= 0. The covariance matrix for x, denoted by 6, is:

6 = 383′ + 2δ, (2)

where 8 is the q x q covariance matrix of ξ and 2δ the p x p
covariance matrix of δ.
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The extended CFA model with mean structures was given by
Sörbom (1974):

x = τ x + 3ξ + δ. (3)

The only difference between equations (1) and (3) is in the τ x

term, which is a p x 1 vector of constant intercept terms. As in
the CFAmodel, the CFAmodel with mean structures (hereinafter
referred to as CFA-MS model) assumes that E(δ) = 0 and
E(ξδ) = 0, and the covariance matrix for x is given by Equation
(2). However, it is not assumed that E(ξ ) is zero. The mean of ξ

is a parameter denoted by κ . Therefore, Equation (3) allows the
comparison of the factor means. Under this formulation of the
CFA model, by taking the expectation of Equation (3), the mean
vectors of the observed variables is given by:

E (x) = µx = τ x + 3κ . (4)

Assuming the CFA-MS model defined in Equation (3), and
that the mean and covariance structures of x under this model
are those defined in Equations (4) and (2), respectively, let

θ =
[

vec(3)′, v(8)′, diag(2δ)
′]′ be the vector of non-redundant

parameters in 3, 8, and 2δ , where vec(3), v(8), and diag(8δ)
are vectorization operations for the corresponding matrices. θ is
called the vector of covariance structure parameters. The vector
for the parameters that are specific to the associated mean
structure is: ν =

[

τ ′
x, κ

′]′. Here, for convenience, it is assumed
that all the parameters in θ and ν are free and identified.

The question is how and why adding ν in the factor model
may affect the estimation in θ . Assuming multivariate normality
of the observed variables and the covariance structure model in
Equation (2), the asymptotic covariance matrix of

√
n(θ̂ − θ) is

denoted as Vθθ = I
−1
c , where θ̂ is the ML estimator of θ , and Ic

is the Fisher information matrix for θ (for the exact formulas of
Ic, see Jöreskog, 1974).

If the mean structure defined in Equation (4) is added in the
analysis, then the information matrix for all parameters

[

θ ′, ν′
]′

can be written as:

Imc =
[

Iθθ Iθv

Ivθ Ivv

]

=
[

Ic+I
∗
θθ Iθv

Ivθ Ivv

]

, (5)

where I∗θθ is the added information about θ provided by themean
structure.

Yung and Bentler (1999) demonstrated that:

I
∗
θθ =





(κκ ′)⊗ 6−1 0 0
0 0 0
0 0 0



 , (6)

Iνθ =
[

κ ′ ⊗ 6−1 0 0

κ ′ ⊗ (3′6−1) 0 0

]

, (7)

Iνν =
[

6−1 6−13

3′6−1 3′6−13

]

. (8)

The arrangement of matrices (6) to (8) is associated with the
order of the parameters as defined in θ and ν. The 0’s inside

the matrices (6) and (7) are null and conformable matrices.
Examining Equation (6), it can be seen that there is added
information in 3 provided by the mean structure, but there is
not added information in ν and 2δ . The submatrix (κκ ′)⊗6−1,
called the added information about 3 provided by the mean
structure, contains information that may not be independent of
the information regarding the parameters in ν, which are also
added with themean structure. If the estimation of3 is improved
when adding the mean structure, the estimation of 8 and 2δ

may also be improved through their functional relations with 3

in the covariance structure in Equation (2). However, this only
will happen if there is a better estimation of 3.

Let V∗
θθ be the asymptotic covariance matrix of

√
n(θ̂ − θ)

under the CFA-MS model. Then, using the notation of Equation
(5) and the inverse of the matrix, it is shown that:

V
∗
θθ =

[

Ic + I
∗
θθ − Iθv(Ivv)

−1
Ivθ

]−1
. (9)

θ can be estimated in two different situations: (1) under the
covariance structure alone, and (2) adding the associated mean
structure. If the inclusion of the associated mean structure leads
to a smaller or an equal amount of asymptotic variance for θ̂ , then
it follows that:

Vθθ ≥ V
∗
θθ , (10)

where Vθθ and V
∗
θθ are the asymptotic variances for the

same parametric estimate under the covariance structure model
alone and under the mean and covariance structure model,
respectively. Proving (10) is equivalent to proving the following
inequality:

Ic ≤
[

Ic + I
∗
θθ − Iθv (Ivv)

−1
Ivθ

]

. (11)

After simplifying, equation (11) can be written as:

[

I
∗
θθ − Iθv (Ivv)

−1
Ivθ

]

≥ 0. (12)

The left side of Equation (12) may be defined as the net
information about θ provided by the mean structure. If the
inequality established in Equation (12) is true (i.e., the net
information about θ provided by the added mean structure is
positive semi-definite), then there is a reduction of asymptotic
variance for estimating any parametric functions of θ by adding
the associated mean structure to the CFA model. Yung and
Bentler (1999) stated that the necessary and sufficient condition
for a non-null net gain of information about θ by adding the
associated mean structure is that the mean structure is not
saturated (i.e., the number of free parameters in ν is less than p)
and κ is not a zero vector.

Yung and Bentler (1999) formulated this mathematical
framework in their article and also provided two numerical
examples to demonstrate that when the associated mean
structure is added, the amount of reduction in the asymptotic
variances is substantial. They examined the parameter recovery
in a one-factor model with five observed variables in a single-
group setup and in a two-group setup in the same model. They
showed that adding the associated mean structure produces a
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notable reduction in the asymptotic variances for estimating the
3 parameters, and that this reduction is especially beneficial for
factor loadings with smaller true values, the topic of interest of
this article. Some authors have cited the framework by Yung
and Bentler (1999), acknowledging the importance of adding
the mean structure to the covariance model in ML estimation
(e.g., Ogasawara, 2001, 2009; Liang and Bentler, 2004; Yuan
et al., 2008). However, no research has examined the conditions
of the design of the study that affect the estimation of the
parameters when adding the mean structure to the covariance
model. The present study addresses these issues in the context
of CFA models containing weak factor loadings and provides
specific recommendations concerning the benefits of adding the
mean structure in such models.

MONTE CARLO SIMULATION STUDY

The guidelines for Monte Carlo simulation designs in structural
equation models recommended by Skrondal (2000) and
Boomsma (2013) are used to present the design of the simulation
study.

Step 1: Research Hypothesis and
Theoretical Framework
This study explores the effects of the estimation method, sample
size, constraints in the model, and factor correlation on the
recovery of weak factor loadings, and on the relative reduction
of asymptotic variances for the factor loadings obtained by
adding the mean structure. The study is based on the framework
proposed by Yung and Bentler (1999) and examines the
hypothesis that the recovery of weak factor loadings improves
when the associated mean structure is added to the covariance
structure model, and that the reduction in the asymptotic
variance is substantial for the estimation of weak factor loadings.
Given that this issue has not been examined in previous research,
one of the aims of the study is to examine the degree to which
the recovery of weak factor loadings improves when adding the
associated mean structure to the estimation of the CFA model in
a range of conditions.

Step 2: Experimental Design
Population Models

Following Boomsma’s (2013) recommendations, the choice of the
population models is based on previous Monte Carlo research on
the recovery of weak factor loadings to increase the comparability
of the experimental results and contribute to their external
validity. The generating models are defined on the basis of the
models used in Ximénez (2006), which include 12 measured
normal variables and models with one, two, and three factors, of
which one of the factors is relatively weak. A one-factor model
has been included to examine the recovery of a single weak factor
when adding the mean structure, and to compare the results
to those of the examples provided by Yung and Bentler (1999),
which referred only to one-factor models. However, as models
with two or three factors would be encountered more often in
practice, a study of how the weak factor loadings are recovered in

the presence of stronger factors when adding the mean structure
to the CFA model is also included. The theoretical values of the
parameters for each factorial structure are summarized in the
upper section of Table 1.

Experimental Factors and Response Variables

The independent variables are estimation method (M), sample
size (N), constraints in the model (C), and factor correlation
(CO). Two estimation methods were considered: maximum
likelihood (ML) and unweighted least squares (ULS). Although
Yung and Bentler (1999) only considered ML estimation, this
study includes ULS estimation because previous research has
demonstrated that ML sometimes fails to recover the weak factor
loadings when ULS succeeds; the interest in this study lies in
exploring if this effect holds when adding the mean structure to
the CFA model. Following Boomsma (1982), the smallest sample
size chosen was N = 100. Sample sizes of 300 and 500 were used
to approximate medium and relatively large sample sizes. Two
levels of factor correlation were chosen (null: 0 and moderate:
0.50). Previous research has demonstrated that the recovery
of weak factor loadings improves when factors are correlated.
Thus, another topic of interest is to examine if this effect holds
when adding the mean structure to the CFA model. Finally,
several constraints were defined for the mean structure of each
corresponding model. The theoretical values of the parameters
for the mean structure are summarized in the lower section of
Table 1. The one-factor model reflects the case in which the
researcher is interested in checking the unidimensionality of a
test, a classical measurement assumption in many psychometric
models.

Following Millsap and Everson (1991), constraints on the
latent mean structure were imposed to reflect measurement
model assumptions. Three constraints were defined. C1 refers to
the saturated model, where λ11 is fixed to unity and its associated
intercept τ 1 is fixed to zero for identification purposes, and the
common factor mean and the remaining intercepts are estimated.
C2 represents the tau-equivalent model, where the factor mean
is estimated and the τ x is a null vector. This also reflects the
situation in which all the items in the test have the same units
of measurement (e.g., a five-point Likert scale) and the test is
unidimensional. Finally, C3 is somewhat similar to the essentially
congeneric model of Millsap and Everson (1991), where the factor
mean is non-zero and some elements of the τ x vector are null
and the other ones are estimated. Besides the study of recovery
of weak factor loadings in classical measurement models, and
following previous research on the recovery of weak factors, two-
and three-factor models were also considered. Similar constraints
to those in the one-factor model were defined. In the two-factor
model, C1 refers to the saturated model, C2 to the model in
which the τ x is a null vector and it is assumed that all items
have the same units of measurement, C3 is the model in which
the τ x elements are null in the strong factor, and C4 is the
model in which the null τ x elements are those of the weak factor,
assuming that the items in the weak factor have the same units
of measurement. Similarly, in the three-factor model, C1 is the
saturated model, C2 the model in which the τ x is a null vector,
C3 and C4 the models in which the null τ x elements are those
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TABLE 1 | θ and ν true parameters of generating models.

One-factor model Two-factor model Three-factor model

Factor 1 Factor 1 Factor 2 Factor 1 Factor 2 Factor 3

COVARIANCE STRUCTURE:

λ1 j 0.30 0.80 0 0.95 0 0

λ2 j 0.30 0.80 0 0.95 0 0

λ3 j 0.30 0.80 0 0.95 0 0

λ4 j 0.30 0.80 0 0.95 0 0

λ5 j 0.30 0.80 0 0.95 0 0

λ6 j 0.30 0.80 0 0 0.70 0

λ7 j 0.30 0.80 0 0 0.70 0

λ8 j 0.30 0 0.30 0 0.70 0

λ9 j 0.30 0 0.30 0 0.70 0

λ10 j 0.30 0 0.30 0 0 0.30

λ11 j 0.30 0 0.30 0 0 0.30

λ12 j 0.30 0 0.30 0 0 0.30

φ12 0 or 0.50 0 or 0.50

φ13 0 or 0.50

φ23 0 or 0.50

MEAN STRUCTURE:

T C1 C2 C3 T C1 C2 C3 C4 T C1 C2 C3 C4 C5

τ1 3 0 0 0 8 0 0 0 0 9.5 0 0 0 0 0

τ2 3 * 0 * 8 * 0 0 * 9.5 * 0 0 * *

τ3 3 * 0 0 8 * 0 0 * 9.5 * 0 0 * *

τ4 3 * 0 * 8 * 0 0 * 9.5 * 0 0 * *

τ5 3 * 0 0 8 * 0 0 * 9.5 * 0 0 * *

τ6 3 * 0 * 8 * 0 0 * 7 0 0 0 0 0

τ7 3 * 0 0 8 * 0 0 * 7 * 0 * 0 *

τ8 3 * 0 * 3 0 0 0 0 7 * 0 * 0 *

τ9 3 * 0 0 3 * 0 * 0 7 * 0 * 0 *

τ10 3 * 0 * 3 * 0 * 0 3 0 0 0 0 0

τ11 3 * 0 0 3 * 0 * 0 3 * 0 * * 0

τ12 3 * 0 * 3 * 0 * 0 3 * 0 * * 0

κ1 6 * * * 12 * * * * 12 * * * * *

κ2 6 * * * * 8 * * * * *

κ3 6 * * * * *

T refers to the true value of the generating models for τ x and κ ; and C1, C2, C3, C4, and C5 are the corresponding constraints for each model. * indicates that the parameter is free.

of the first and second strong factors, respectively, and C5 is the
model in which the null τ x elements are those of the weak factor,
assuming that the items in the weak factor have the same units of
measurement.

Finally, the dependent variables are the recovery of weak
factor loadings and the relative reduction of asymptotic variances
for the factor loadings obtained by adding the mean structure.

Step 3: Executing the Simulations
The population factor structures defined in the upper section
of Table 1 were used as the basis to simulate the sample
covariance matrices. One thousand sample covariance matrices
were simulated with the PRELIS 2 program of Jöreskog and
Sörbom (1996a) for each model.

Step 4: Estimation and Replication
A CFA was conducted on each simulated sample covariance
matrix using ML and ULS estimation. The parameter estimates
were computed with the LISREL 8.80 program of Jöreskog and
Sörbom (1996b). The sample factor solutions were evaluated to
determine how the recovery of weak factor loadings and the
asymptotic variances for the factor loadings are affected by the
independent variables of the study. Simulation and estimation
were repeated for 156,000 replications.

Step 5: Analyses of Output
Non-convergent solutions were deleted to study the effects of
the independent variables on the recovery of the weak factor
loadings. The operational definition employed was that of the
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LISREL program: failure to reach convergence after 250 iterations
(see Jöreskog, 1967, p. 460). Moreover, Heywood cases were
detected and deleted in each of the cells of the design.

The recovery of the weak factor loadings was assessed by
examination of the correspondence between the theoretical
loading and the estimated one. Ameasure of correspondence, the
root mean square deviation (RMSD; Levine, 1977) was calculated
for each factor in the theoretical model:

RMSDk =

√

√

√

√

p
∑

i= 1

(λik(t) − λik(e))2/p, (13)

where p is the number of variables that define the factor k,
λik(t) is the theoretic loading for the observed variable i of the
factor k, and λik(e) the corresponding loading obtained from
the simulation data. RMSD reaches a minimum of zero for a
perfect pattern-magnitude match and a maximum of two, when
all loadings are equal to unity but of opposite signs. Intermediate
values are difficult to interpret. In practice, it is considered that
RMSD values below 0.20 are indicative of a satisfactory recovery.

Both descriptive and inferential statistical procedures were
used for the evaluation of the research findings. Following
Skrondal (2000), a simple metamodel is used to analyze the
results, which includes only the main and the double interaction
effects of each independent variable on the dependent variable.

For the two- and three-factor models, the followingmodel was
tested:

RMSD = µ +M + N + C + CO+M∗N +M∗C +M∗CO+
+N∗C + N∗CO+ C∗CO, (14)

where: RMSD: root mean square deviation
M: method (ML vs. ULS)
N: sample size (100, 300, and 500)
C: constraints imposed in each model (4, 5 or 6,
depending on the model)
CO: correlation between factors (0 or 0.50)

For the one-factor model the metamodel includes all terms of
Equation (14) except those that refer to CO. A separate ANOVA
was conducted to test the effects included in the metamodel for
the one-, two-, and three-factor models. All effects are viewed
as independent. As the large sample size (156,000 replications)
can cause even negligible effects to be statistically significant,
the explained variance associated with each of the effects was
also calculated, measured by the η2 statistic. The interpretation
guidelines suggested by Cohen (1988) were adopted: values
of η2 from 0.05 to 0.09 indicate a small effect; from 0.10 to
0.20 a medium effect; and above 0.20 a large effect. Multiple
comparisons were also conducted for the effects that were shown
to be statistically and practically significant.

The relative reduction of asymptotic variances for the factor
loadings obtained by adding the mean structure of the model was
measured by the ARE index of Yung and Bentler (1999):

ARE = Var(
√
n3̂)CFA−MS

Var(
√
n3̂)CFA

, (15)

where Var is the corresponding asymptotic variance for
√
n3̂

in each model. Yung and Bentler (1999) suggested that if the
mean structures lead to a reduction of asymptotic variance for
a particular factor loading estimate, the corresponding ARE
measure should be less than 1, indicating that the estimation
using the covariance structure alone is not efficient, compared
to the model with mean and covariance structures. The same
metamodel as in Equation (14) was used to test the effects of the
independent variables on the ARE index by an ANOVA.

RESULTS

Non-Convergence and Heywood Cases
Of the 156,000 solutions, 14,324 (9.2%) were non-convergent,
and 10,437 (6.7%) presented Heywood cases. The proportion
of convergent and proper solutions was higher for the one-
factor model, which obtained 98% proper solutions, whereas the
two- and three-factor models obtained 94 and 88%, respectively.
The proportion of convergent and proper solutions was higher
when the factors are correlated, the sample size is increased, and
the model includes the mean structure. In addition, there were
more convergent and proper solutions with the ULS estimation
method. On the one hand, these results are congruent with
previous research, and on the other, they show that adding
the mean structure to the CFA model favors the occurrence of
convergent and proper solutions.

Recovery of Weak Factor Loadings
The left-hand side of Table 2 shows the summary statistics for
RMSD under the study conditions and Table 3 presents the
corresponding results of the ANOVA.

As shown in Table 3, in the one-factor model all main
effects and nearly all double interaction effects are statistically
significant. The largest effects found are due to the constraints
imposed in the model (η2 = 0.73) and sample size (η2=0.21) main
effects. The NxC interaction also produced a small effect (η2 =
0.04). Figure 1A illustrates the NxC interaction. As can be seen,
the average values of RMSD for the CFAmodel are indicative of a
poor recovery in all sample sizes, especially in the smallest (N =
100). However, recovery is satisfactory when the associated mean
structure is added to the covariance model. The recovery of weak
factor loadings is satisfactory in all the constraints defined for the
mean structure of the unidimensional model. The best results are
for the C2 constraint, which represents the tau-equivalent model
reflecting the situation in which all the items in the test have the
same units of measurement. These results are congruent with
those found by Ximénez (2006), where recovery of weak factor
loadings was poor for correctly specified one-factor CFA models
in all sample sizes. Thus, adding the associated mean structure to
the covariance model favors the recovery of weak factor loadings,
even with small sample sizes. Finally, the estimation method also
produced a statistically significant effect but its effect size was
quite small (η2 = 0.001). Congruent with previous research, the
results indicate that the recovery of weak factor loadings with
the ULS estimation method is slightly better than with the ML
method for the smallest sample size (N = 100). In addition, in
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TABLE 3 | ANOVA Results for the RMSD measure in the Monte Carlo study.

One-factor model Two-factor model Three-factor model

df F Prob. η2 df F Prob. η2 df F Prob. η2

M 1 11.304 <0.001 0.001 1 18.053 <0.001 0.000 1 2.319 0.128 0.000

N 2 3115.575 <0.001 0.210 2 7948.093 <0.001 0.221 2 338.005 <0.001 0.111

C 3 20726.20 <0.001 0.726 4 4831.532 <0.001 0.257 5 161.652 <0.001 0.113

CO – – – – 1 155.743 <0.001 0.003 1 139.136 <0.001 0.020

M * N 2 7.630 <0.001 0.001 2 23.342 <0.001 0.001 2 1.626 0.197 0.000

M * C 3 0.178 0.911 0.000 4 0.145 0.965 0.000 5 1.244 0.286 0.000

M * CO – – – – 1 3.341 0.068 0.000 1 0.000 0.982 0.000

N * C 6 168.549 <0.001 0.041 8 361.594 <0.001 0.149 10 11.452 <0.001 0.112

N * CO – – – – 2 63.187 <0.001 0.002 2 66.483 <0.001 0.002

C * CO – – – – 4 239.886 <0.001 0.117 5 72.894 <0.001 0.116

Error 23472 (0.003) 55874 (0.004) 62247 (0.105)

Total 23490 0.747 55904 0.510 62282 0.430

WhereM is method (ML vs. ULS), N is sample size (100, 300, or 500), C is type of constraint (see Table 1), and CO is correlation between factors (0 or 0.50). Values in parentheses

represent mean squared errors.

FIGURE 1 | Graphical representation of the strongest double interaction effects found on the recovery of weak factor loadings and the ARE measure.

(A) NxC interaction and RMSD (1F); (B) NxC interaction and RMSD (2F); (C) CxCO interaction and RMSD (2F); (D) NxC interaction and RMSD (3F); (E) CxCO

interaction and RMSD (3F); (F) NxC interaction and ARE (1F); (G) NxC interaction and ARE (2F); (H) NxCO interaction and ARE (2F); (I) MxN interaction and ARE (2F);

(J) NxC interaction and ARE (3F); (K) NxCO interaction and ARE (3F); (L) MxN interaction and ARE (3F).

no case did ML outperform ULS in the recovery of weak factor
loadings.

In the two-factor model, the largest effects found are also
due to the constraints imposed in the model (η2 = 0.26) and

sample size (η2 = 0.22) main effects. Furthermore, the NxC
and CxCO interactions also produced a medium effect (η2 =
0.15 and 0.12, respectively). Figures 1B,C illustrate the NxC and
CxCO interactions. As can be seen, adding the associated mean
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structure improves the recovery of weak factor loadings. The
average values of RMSD for the CFA model are indicative of a
good recovery in all cases except for models with orthogonal
factors and with sample sizes of N = 100 (see Table 2). Thus,
the presence of factor correlation improves the recovery of weak
factor loadings in the CFAmodel. However, this is not the case for
the models with the addition of the associated mean structure as
the recovery of weak factor loadings is very similar in the models
with orthogonal and correlated factors. Concerning the effect of
the constraints imposed in the mean structure, and similar to
the case with the one-factor model, the best results are for C2,
which reflects the situation in which all items in the test have
the same units of measurement. The recovery of weak factor
loadings for the items having the same units of measurement
only in the weak factor (C4) also shows a satisfactory recovery,
whereas recovery worsens in the saturated model (C1) and in the
model having items with the same units of measurement only
in the strong factor (C3) when the sample size is N = 100.
Overall, the results for the two-factor model show that adding
the associated mean structure favors the recovery of weak factor
loadings, which is satisfactory even with small sample sizes. In
addition, congruent with previous research, the recovery of weak
factor loadings in CFA models not including the mean structure
worsens if the factors are orthogonal and is especially poor for
the smallest sample size. However, the results show that if the
model includes the associated mean structure, it is not necessary
to define the factors as correlated for the adequate recovery of
the weak factor loadings. In this case, the effect of the estimation
method is quite small but favors the use of ULS estimation with
small sample sizes.

Finally, in the three-factor model, as in the two-factor model,
the largest effects are attributable to the constraints imposed in
the model and sample size main effects and to the NxC and
CxCO interaction effects (η2 = 0.11). Figures 1D,E illustrate the
NxC and CxCO interactions. As can be seen, adding the mean
structure to the CFA model favors the recovery of weak factor
loadings, particularly for C2 (all items in the test have the same
units of measurement) and C5 (the items in the weak factor
have the same units of measurement). Furthermore, for small
sample sizes (N = 100), the recovery is satisfactory only when the
CFAmodel includes the mean structure. Finally, the results show
that when the model includes three factors, one being a weak
factor, it is important to define the factors as correlated. If factors
are defined as orthogonal, adding the associated mean structure
improves the recovery of weak factor loadings, especially if all
items have the same units of measurement (constraint C2) and
if the sample size includes 300 observations or more.

ARE
The summary statistics for ARE for all main effects and the
ANOVA results appear in Tables 2, 4. In the one-factor model,
as shown in Table 2, all the ARE mean values are less than
1, indicating that adding the associated mean structure to the
model reduces the asymptotic variances for the weak factor
loadings in all the study conditions. Figure 1F illustrates the
NxC interaction, indicating that the reduction in the asymptotic
variance occurs in all the constraints defined for the mean

structure regardless of the sample size. In addition, the reduction
is substantial for the C2 constraint, which reflects the tau-
equivalent model. Figures 2A–C show the mean values of ARE
for each item in the model. Although all graphs show that there
is a reduction of asymptotic variances for the factor loadings in
all the study conditions, the best results are for the tau-equivalent
model (C2), in which the reduction is substantial. These results
are congruent with the study by Yung and Bentler (1999) for
one-factor models in a single group, which showed that adding
the associated mean structure is especially beneficial for the
estimation of factor loadings with smaller true values.

In the two-factor model, one being strong and the other one
weak, all ARE values are less than 1, except those of the saturated
model (C1) with ML estimation. The largest effects found are
due to the constraints imposed in the model (η2 = 0.99), factor
correlation (η2 = 0.67), and estimation method (η2 = 0.41)
main effects and to the NxC, NxCO, and MxN interactions,
which are graphically represented in Figures 1G–I. As can be
seen, the constraints that produce the largest reduction in the
asymptotic variances for the weak factor loadings are C2 and
C4, whereas the ARE values for C1 and C3 are close to 1 (for
more details see Figures 2D–F). In this case, the reduction in the
asymptotic variance is larger for models with factors defined as
orthogonal and small sample sizes (N = 100). Additionally, the
ULS method produces better results, particularly for the sample
size N = 100. Thus, adding the mean structure to the two-
factormodel is more beneficial when using small sample sizes and
models with orthogonal factors.

Finally, the results in the three-factor model are very similar
to those of the two-factor model (see Figures 1J–L, 2G–I). The
largest effects found are due to the constraints imposed in
the model (η2 = 0.94) and factor correlation (η2 = 0.73)
main effects, and to the MxN interaction (η2 = 0.21). The
reduction in the asymptotic variance is substantial for the C2
and C5 constraints, which imply assuming the same units of
measurement in all items or at least in the items of the weak
factor. The reduction in the asymptotic variance for the weak
factor loadings is larger for the models with the factors defined
as orthogonal and for ULS estimation with small sample sizes
(N = 100).

SUMMARY AND DISCUSSION

This article has presented the results of a simulation study aimed
at examining the conditions that affect the recovery of weak
factor loadings when the CFAmodel includes the mean structure,
compared to analyzing the covariance structure alone. This study
contributes to previous research in three ways. First, the impact
of modeling the means on the recovery of weak factor loadings
had not previously been studied, and this study has specifically
addressed this issue. This represents a realistic condition for
researchers and practitioners because classical measurement
models make assumptions involving latent means and covariance
structures, and many CFA models incorporating the mean
structure are used in practice. Second, previous research has
found that adding the mean structure to the covariance model
reduces the asymptotic variances for factor loadings (Yung and
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TABLE 4 | ANOVA Results for the ARE measure in the Monte Carlo study.

One-factor model Two-factor model Three-factor model

df F Prob. η2 df F Prob. η2 df F Prob. η2

M 1 0.820 0.368 0.012 1 34.259 <0.001 0.407 1 0.556 0.463 0.021

N 2 5.242 <0.001 0.137 2 3.676 0.032 0.128 2 1.928 0.166 0.129

C 2 200.972 <0.001 0.753 3 6113.219 <0.001 0.992 4 430.383 <0.001 0.943

CO – – – – 1 103.295 <0.001 0.674 1 68.886 <0.001 0.726

M * N 2 0.141 0.869 0.004 2 14.839 <0.001 0.372 2 3.442 <0.001 0.209

M * C 2 0.218 0.805 0.003 3 2.694 0.048 0.051 4 0.703 0.592 0.026

M * CO – – – – 1 0.208 0.650 0.004 1 0.039 0.845 0.001

N * C 4 1.273 0.028 0.037 6 5.139 <0.001 0.667 8 1.342 0.023 0.094

N * CO – – – – 2 23.624 <0.001 0.486 2 1.279 0.029 0.090

C * CO – – – – 3 5.130 0.002 0.093 4 1.587 0.183 0.058

Error 66 (0.015) 200 (0.006) 130 (0.056)

Total 79 0.946 224 0.996 159 0.977

WhereM is method (ML vs. ULS), N is sample size (100, 300, or 500), C is type of constraint (see Table 1), and CO is correlation between factors (0 or 0.50). Values in parentheses

represent mean squared errors.

FIGURE 2 | Graphical representation of ARE values in the weak factor loadings of the different model. (A) ARE values in 1F model (N = 100); (B) ARE

values in 1F model (N = 300); (C) ARE values in 1F model (N = 500); (D) ARE values in 2F model (N = 100); (E) ARE values in 2F model (N = 300); (F) ARE values in

2F model (N = 500); (G) ARE values in 3F model (N = 100); (H) ARE values in 3F model (N = 300); (I) ARE values in 3F model (N = 500).

Bentler, 1999) but has not provided evidence concerning the
different conditions that favor this reduction, and this study
considers several conditions to explore the cases in which it

could be better to model the means. And third, the study
provides practical implications for the use of CFA with factorial
structures that include weak factor loadings and incorporating
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the mean structure, which can be useful for applied researchers
and practitioners.

Overall, the results of the study indicate that adding the
mean structure to the covariance model affects the recovery of
weak factor loadings and that certain conditions are important
for the design of the study. First, the recovery of weak factor
loadings improves when adding the associated mean structure
to the CFA model, particularly if the constraints imposed on
the mean structure imply that all the items have the same units
of measurement. Second, the definition of the sample size is
important when the model includes weak factor loadings (the
models with the covariance structure alone require a minimum
of 300 or 500 observations for adequate recovery); in contrast,
recovery of weak factor loadings is satisfactory when the mean
structure is added to the covariance model regardless of the
sample size. Third, the recovery of weak factor loadings in CFA
models not including the mean structure worsens if the factors
are orthogonal, and is especially poor for small sample sizes.
However, if the model includes the associated mean structure,
it is not necessary to define factors as correlated for adequate
recovery. Fourth, ULS performs slightly better than ML and
recovers the weak factor loadings in some instances in which
ML fails. Fifth, non-convergent solutions and Heywood cases
increase when the factors are orthogonal, the sample size is
small, and the model does not include the mean structure;
in addition, there were more convergent solutions with the
ULS method. Finally, the results indicate that the reduction
in the asymptotic variance for the factor loadings occurs for
all the constraints imposed in the mean structure, and that
it is substantial when the constraints imply that all the items
have the same units of measurement. In addition, the reduction
is larger for models with factors defined as orthogonal and
small sample sizes, particularly when using ULS estimation.
These results are consistent with those found in the studies by
Ximénez (2006) and Yung and Bentler (1999) but provide further
understanding of other conditions of the design of the study
that affect the estimation of the parameters when adding the
mean structure to the covariance model, which had not been
studied before.

At one level, the results of this study provide insights about
the recovery of weak factor loadings in CFA when the model
includes the mean structure. At another level, some results have
implications for the practical use of CFA with factorial structures
that include weak factor loadings and incorporating the mean
structure, a situation which is present to some degree in practice.
These issues have to do with aspects of the design of a study:

(1) This study has demonstrated how important it is to
incorporate themean structure in themodel for the adequate
recovery of weak factor loadings, particularly if all the
items in the test have the same units of measurement.
Of course, theoretical aspects must be considered when
deciding whether variable means should be modeled or
not. However, researchers and practitioners should be
aware that for models including weak factor loadings,
modeling the associated mean structure in conjunction with
the covariance structure should be seriously considered.
Therefore, it is desirable for researchers and practitioners to

design their questionnaires containing items with the same
units of measurement and to analyze the dimensionality
of the test with CFA models that include the associated
mean structure. This piece of advice is important because
in practice it is frequent to find questionnaires using items
with different units of measurement, and researchers and
practitioners habitually analyze their models using only the
covariance structures.

(2) The present study has also demonstrated that the constraints
imposed on the classical measurement tau-equivalent model
derived from classical test theory (Jöreskog, 1971) improve
the recovery of weak factor loadings. Moreover, similar
results are expected for the parallel model, as it also follows
the Yung and Bentler (1999) framework. Applied researchers
may have substantive reasons to estimatemodels that include
weak factors, as in the hierarchical model from Ackerman
(1996). The results of this article show that the estimation of
such factors will be improved if data conform to the parallel
or tau-equivalent models. Thus, researchers can proceed
by testing the goodness of fit for parallel or tau-equivalent
models following the procedures by Millsap and Everson
(1991); if one of these models provides satisfactory fit, it
will render more precise estimates of the weak factor than
the traditional factorial model with unconstrained mean
structure.

(3) Although, previous research suggests that sample size must
be larger than typically recommended when the model
includes weak factor loadings, this study has revealed that
if the analysis of the mean structure is included, it is not
necessary to work with large sample sizes. The factor analysis
literature contains a variety of recommendations regarding
the sample size to be used for conducting a factor analysis.
For the most part, these recommendations are presented
as a suggested minimum sample size depending on the
number of factors in the model, the number of variables per
factor, and the level of communality. Mundfrom et al. (2005)
offered a table with specific recommendations of minimum
necessary sample sizes for models from one to six factors
and different levels of communalities. For example, a two-
factor model with low levels of communality (from 0.20 to
0.40) needs a minimum of 150 observations if there are five
variables per factor, of 270 observations if there are four
variables per factor, and of 900 observations if there are three.
Thus, a small number of variables per factor requires a larger
minimum sample size than does a large number of variables.
The results of the present study suggest that, for CFAmodels
with mean structure, 100 observations is a sufficient sample
size for the adequate factor recovery, even with a ratio of
three variables per factor and small factor loadings. However,
given that the scope of the results is limited to the particular
conditions considered in the simulation study, further study
should be devoted to determine whether the general rules
of thumb regarding sample size can be followed when the
analysis includes the mean structure. In addition, given
that the minimum sample size considered here was 100
observations, further study is needed to determine whether
these results hold with smaller sample sizes (e.g., those
considered in the study by De Winter et al., 2009).
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(4) Whereas previous research on the recovery of weak
factor loadings has suggested that factors should be
defined as correlated for adequate recovery, this is not
necessary when the model includes the associated mean
structure in conjunction with the covariance structure.
Therefore, researchers and practitioners can define their
factorial models with orthogonal factors and analyze the
dimensionality problem by means of CFAmodels with mean
structure.

(5) Finally, this study has also demonstrated that when the data
come from a population structure in which all factors are not
equally strong, ML fails to recover the weak factor in some
instances in which ULS succeeds. Therefore, researchers
should favor the use of ULS estimation, or should at least
compare the ML and ULS solutions. Previous research had
already suggested the superiority of ULS over ML on the
recovery of weak factor loadings. However, this represents
an important piece of advice for applied researchers who, in
many cases, erroneously believe that under normality, ML is
the only available method for estimating a CFA model.

Overall, the present study has shown that working with factorial
structures including small factor loadings is not necessarily a
problem. Such models exist in practice and are commonly found
in psychological research, and they can be reproduced with
similar properties as the models with larger factor loadings.

Limitations and Directions for Future Study
As is the case with any Monte Carlo simulation study, the results
found in this research will hold only in conditions similar to

those considered here. Thus, future research should continue
examining these effects under different study conditions. For
instance, first, further study could be directed to examining
whether the magnitudes of the effects found here hold under
conditions of model error. This condition was not examined
here because it exceeded the scope of the study and because
previous research has found that recovery of weak factor loadings
is unaffected by model error (Ximénez, 2009). However, this is a
topic of interest becausemodels are always wrong to some degree.
Second, given that the particular manner in which the constraints
on the mean structure were formulated probably had an impact
on the results, other studies should continue examining the
effects found here by defining the constraints on the mean
structure in other ways. Finally, another potential line of research
could be to examine the recovery of weak factor loadings in the
context of other CFA models. For instance, in multiple-group
designs, which involve a more complex situation than CFA, and
in bifactor measurement models, which potentially provide a
solid foundation for conceptualizing psychological constructs,
constructing measures, and evaluating a measure’s psychometric
properties (Reise, 2012), and where it is frequent to work with
small factor loadings.
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