
RESEARCH ARTICLE

Laser capture microdissection in combination

with mass spectrometry: Approach to

characterization of tissue-specific proteomes

of Eudiplozoon nipponicum (Monogenea,

Polyopisthocotylea)

Pavel RoudnickýID
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Abstract

Eudiplozoon nipponicum (Goto, 1891) is a hematophagous monogenean ectoparasite

which inhabits the gills of the common carp (Cyprinus carpio). Heavy infestation can lead to

anemia and in conjunction with secondary bacterial infections cause poor health and even-

tual death of the host. This study is based on an innovative approach to protein localization

which has never been used in parasitology before. Using laser capture microdissection, we

dissected particular areas of the parasite body without contaminating the samples by sur-

rounding tissue and in combination with analysis by mass spectrometry obtained tissue-spe-

cific proteomes of tegument, intestine, and parenchyma of our model organism, E.

nipponicum. We successfully verified the presence of certain functional proteins (e.g.

cathepsin L) in tissues where their presence was expected (intestine) and confirmed that

there were no traces of these proteins in other tissues (tegument and parenchyma). Addi-

tionally, we identified a total of 2,059 proteins, including 72 peptidases and 33 peptidase

inhibitors. As expected, the greatest variety was found in the intestine and the lowest variety

in the parenchyma. Our results are significant on two levels. Firstly, we demonstrated that

one can localize all proteins in one analysis and without using laboratory animals (antibodies

for immunolocalization of single proteins). Secondly, this study offers the first complex prote-

omic data on not only the E. nipponicum but within the whole class of Monogenea, which

was from this point of view until recently neglected.

Introduction

Laser-capture microdissection (LCM) was developed as a powerful and reliable tool to over-

come the heterogeneity of specimen [1]. It enables isolation of specific tissues, individual cells,

or even individual organelles from complex samples based on cell morphology [2,3]. The
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M, Kašný M (2020) Laser capture microdissection

in combination with mass spectrometry: Approach

to characterization of tissue-specific proteomes of

Eudiplozoon nipponicum (Monogenea,

Polyopisthocotylea). PLoS ONE 15(6): e0231681.

https://doi.org/10.1371/journal.pone.0231681

Editor: Matthew Bogyo, Stanford University,

UNITED STATES

Received: March 27, 2020

Accepted: May 25, 2020

Published: June 17, 2020

Copyright: © 2020 Roudnický et al. This is an open
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method was first described in the second half of the 20th century and since then further devel-

oped and modified [2,4–7]. Nowadays, LCM combines laser excision with high-resolution

microscopic control, which makes it possible to precisely capture for instance individual cells

or even only nucleus while keeping track of the location and morphology of the source tissue

[2,3,8].

LCM technology has been used in a wide variety of applications with focus on genomic,

transcriptomic, and even proteomic analyses, such as dissection of polar bodies from oocytes

for pre-fertilization genetic diagnosis [9], transcriptome-wide analysis of blood vessels from

human skin and wound-edge tissue [10], proteomic profiling of dentoalveolar tissues [11], and

many other areas [12–14]. But only one study so far used a combination of LCM and mass

spectrometry (MS) to localize unique proteins, potential biomarkers, when dealing with the

heterogeneity of breast tumor [15].

LCM has also been used in parasitology, especially in sample preparation. Recent studies

employed this method in genome sequencing of Plasmodium relictum, where it was used to

dissect the parasite from infected erythrocytes while excluding the host nucleus [16]. It has

also been recently applied in transcriptomic analysis of Plasmodium cynomolgi to dissect hyp-

nozoites from hepatocytes [17], in molecular analysis of Henneguya adiposa from the fins of

catfish [18], and in investigation of ferritin gene expression in vitelline cells and tissue-specific

gene profiling (gastrodermis, vitelline, and ovary tissue) of Schistosoma japonicum [19,20] and

Schistosoma mansoni [21,22]. In a study focused on changes in protein composition in inter-

mediate snail host, infected or uninfected by S. mansoni, the method was used to dissect hemo-

cytes and sporocysts [23]. So far, however, this technique has not been applied to protein

localization, although analysis of tissue-specific proteomes could be an elegant way of localiz-

ing the molecules of interest, which would aid a better understanding of their function. It

would be faster and less laborious to obtain results this way than by traditional approaches,

such as immunolocalization or in situ hybridization, which require preparation of recombi-

nant proteins, subsequent immunization processes, and development of RNA-probes.

With respect to investigation of the molecular content of tissue within its morphological

context, it was the technique of mass spectrometry imaging (MSI) that made it possible [24].

In parasitology, one study examined chemical markers of the surface of S. mansoni by MSI to

distinguish between the sexes and the strains [25], while another study dealt with the same

organism and investigated the composition of internal organs by histological sections [26].

Because of the technical limits of MSI, the focus was in both cases on the relatively small mole-

cules of triacylglycerols and phosphatidylcholines, not on proteins. This demonstrates why we

opted for a different approach: MSI is well-suited to the investigation of small molecules but

lacks the ability to identify proteins whose size exceeds app. 15 or 25 kDa [27,28], depending

on the specific instrumental setup.

The ability to capture higher molecular weights is essential in search for functional proteins,

because their weight usually ranges around several tens of kilodaltons. For example, the diges-

tive peptidases of E. nipponicum, such as like cathepsins L and B, have molecular weight of ~25

kDa, ~29 kDa, respectively [29], while one of the serine peptidase inhibitors from the same

organism has molecular weight of ~45 kDa [30].

In the present study, our aim is first of all to investigate the potential of using laser capture

microdissection (LCM) and liquid chromatography coupled to tandem mass spectrometry

(LC-MS/MS) for protein localization and secondly, to obtain tissue-specific proteomes of our

experimental organism Eudiplozoon nipponicum Goto, 1891 (Polyopisthocotylea). This mono-

genean is a common hematophagous ectoparasite which inhabits the gills of the common carp

(Cyprinus carpio). For this species, as for the whole group of parasitic Monogenea, proteomic

but also genomic and transcriptomic data are still scarce. In particular, no comprehensive
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proteomic or secretomic data have so far been published at all and transcriptomic data are

available only for Neobenedenia melleni (available in the NCBI BioSample database, http://

www.ncbi.nlm.nih.gov/biosample/, accession number SAMN00169373). With respect to

genomic data, the situation is somewhat better but only two complete genomes are available,

namely those of Gyrodactylus salaris [31] and Protopolystoma xenopodis (available in the NCBI

BioProject database, https://www.ncbi.nlm.nih.gov/bioproject/, accession number

PRJEB1201). For some monogenean species, mitochondrial genomes have, however, been

mapped: N. melleni [32], G. salaris [33], Gyrodactylus thymalli [34], Pseudochauhanea macro-
rchis [35], Benedenia hoshinai [36], Benedenia humboldti [37], Paratetraonchoides inermis
[38], Lamellodiscus spari and Lepidotrema longipenis [39], and Thaparocleidus asoti and T. var-
icus [40].

In recent years, this situation started to improve because E. nipponicum has been studied in

a broader context. Several functional protein molecules of E. nipponicum were described

[29,30,41–44] and the genome, transcriptome, and secretome of this organism are soon to be

published. With this study, we significantly enrich available information on monogenean

functional molecular biology by describing protein distribution in selected E. nipponicum tis-

sues. Special attention will be paid to peptidases and peptidase inhibitors, which are involved

in host–parasite interactions at a molecular level. Our study’s aim is to offer new insights into

this subject and to suggest some possible directions for future research.

Materials and methods

Parasite material: Collection and fixation

Adults of E. nipponicum were collected from freshly sacrificed specimens of Cyprinus carpio
provided by Rybářstvı́ Třeboň a.s., Rybářská 801, Třeboň 379 01, Czech Republic. Isolation

and taxonomic identification of the individual worms from the gills was performed as

described previously [30].

Extracted worms were thoroughly washed in 10 mM PBS pH 7.2 (PBS) to remove gill tissue

debris. Then they were placed in a Petri dish and glass cover placed on them to keep them in

stretched flat position. Solution of 4% paraformaldehyde in PBS was pipetted into the Petri

dish and the sample was left in room temperature for 4 hrs. After fixation, samples were rinsed

with PBS buffer and transferred into cryofixation molds, which were then immersed in OCT

compound (Tissue-Tek1) and left for 1 hr in room temperature. The molds were then placed

in dry ice and frozen blocks stored at -80˚C ([45], modified).

Ethics statement. All procedures performed in studies involving animals were carried out

in accordance with European Directive 2010/63/EU and Czech laws 246/1992 and 359/2012

which regulate research involving animals. All experiments were performed with the legal con-

sent of the Animal Care and Use Committee of Masaryk University and of the Research and

Development Section of the Ministry of Education, Youth, and Sports of the Czech Republic.

Cryosectioning

The OCT-embedded worms were sectioned in a cryotome (Leica CM1900 UV, -20˚C) in

12 μm thick slices, which were placed on microdissection slides (MembraneSlide 1.0 PEN,

Carl Zeiss). Prior the LCM, OCT surrounding the tissues had to be removed, which was

achieved by careful dipping of the slides in ddH2O. In the next step, the tissues were dehy-

drated by EtOH (96%, two washes for 30 s) and the slides either subjected to LCM immediately

or stored in 4˚C for a short time. During cryosectioning, we placed ten to twelve worm sec-

tions on a single membrane slide.
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Laser capture microdissection

Target tissues were extracted from the histological sections using microdissector PALM

MicroBeam (Carl Zeiss) controlled by software PALMRobo 4.6 Pro (Carl Zeiss). Dissected

samples were collected into special caps filled with adhesive material for dry collection (Adhe-

siveCap 500, Carl Zeiss). Cutting options (laser intensity and focus) were adjusted for each

type of tissue specifically due to the nature of the parasite body. For each tissue type, areas well

defined as to their kind and size were dissected (parenchyma up to 2,000 μm2 per cut, intestine

up to 350 μm2 per cut, tegument up to 500 μm2 per cut) with overall area of 1 mm2 per tissue

type. We prepared and analyzed two sets of tissue samples. Each sample was prepared by dis-

section of an area from a particular tissue from multiple worm individuals.

Sample preparation for LC-MS/MS

Microdissected tissue samples were lysed in SDT buffer (4% SDS, 0.1M DTT, 0.1M Tris/HCl,

pH 7.6) in a thermomixer (Eppendorf ThermoMixer1 C, 30 min, 95˚C, 750 rpm). After that,

samples were centrifuged (15 min, 20,000 x g) and the supernatant used for filter-aided sample

preparation as described elsewhere [46] using 0.5 μg/sample of trypsin (sequencing grade, Pro-

mega). Resulting peptides were used for LC-MS/MS analyses. Total peptide amount after sam-

ple preparation was estimated using LC-MS analysis on RSLCnano system online coupled

with HCTUltra ion trap (Bruker Daltonics) based on the area under the total ion current

curve, whereby MEC cell line tryptic digest was used as external calibrant. For final analyses,

we used app. 2 μg of tryptic digests.

LC-MS/MS analysis and data evaluation

LC-MS/MS analyses of all peptide mixtures were done using UltiMate™ 3000 RSLCnano sys-

tem connected to Orbitrap Fusion Lumos Tribrid spectrometer (Thermo Fisher Scientific).

Prior to LC separation, tryptic digests were online concentrated and desalted using a trapping

column (X-Bridge BEH 130 C18, dimensions 30 mm × 100 μm, 3.5 μm particles; Waters).

After washing the trapping column with 0.1% FA, the peptides were eluted in backflush mode

(flow 0.3 μl/min) from the trapping column onto an analytical column (Acclaim Pepmap100

C18, 3 μm particles, 75 μm × 500 mm; Thermo Fisher Scientific) during a 130 min gradient

(1–80% of mobile phase B; mobile phase A: 0.1% FA in water; mobile phase B: 0.1% FA in 80%

ACN).

MS data were acquired in a data-dependent mode, selecting up to 20 precursors based on

precursor abundance in the survey scan. Resolution of the survey scan was 120,000 (350–2000

m/z) with target value of 4 × 105 ions and maximum injection time of 100 ms. MS/MS spectra

were acquired with a target value of 5 × 104 ions (resolution 15,000 at 110 m/z) and maximum

injection time of 22 ms. The isolation window for fragmentation was set to 1.2 m/z.

For data evaluation, we used MaxQuant software (v1.6.2.10) [47] with inbuild Andromeda

search engine [48]. Searches against in-house made protein databases were undertaken: E. nip-
ponicum (37,076 sequences, manuscript in preparation), C. carpio (63,928 sequences, based on

https://www.ncbi.nlm.nih.gov/genome/?term=10839), and cRAP contaminants (based on

http://www.thegpm.org/crap). Modifications for all database searches were set as follows: oxi-

dation (M), deamidation (N, Q), and acetylation (Protein N-term) as variable modifications,

with carbamidomethylation (C) as a fixed modification. Enzyme specificity was tryptic with

two permissible miscleavages. Only peptides and proteins with false discovery rate threshold

under 0.01 and proteins with at least two peptide identification were considered. Relative pro-

tein abundance was assessed using protein intensities calculated by MaxQuant. For the pur-

pose of this article, protein groups reported by MaxQuant are referred to as proteins. A
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complete list of proteins within each protein group can be viewed in the supporting material

(S1 Table). Mass spectrometry proteomics data were deposited to the ProteomeXchange Con-

sortium via PRIDE [49] partner repository under dataset identifier PXD017275.

Intensities of reported proteins were further evaluated using software container environ-

ment (https://github.com/OmicsWorkflows/KNIME_docker_vnc; version 3.7.1a). Processing

workflow is available upon request: it covers decoy hits and removal of contaminant protein

groups (cRAP), protein group intensities log2 transformation and loessF normalization. Carp

proteins were filtered out as contaminants. Mapping to E. nipponicum transcriptome (acces-

sion GFYM00000000.1) was also undertaken, which enriched protein identifications by anno-

tations (GO terms, MEROPS, Pfam and InterPro accessions).

Comparative analyses

Datasets obtained from the three E. nipponicum tissues (intestine, parenchyma, and tegument)

were compared with each other to identify shared and unique proteins, with special focus on

inhibitors and peptidases. Annotations of proteins unique to each tissue were loaded from the

Kyoto Encyclopedia of Genes and Genomes (KEGG) while excluding “organismal system”

and “human disease” categories [50]. Based on the measured intensity of proteins found in

each tissue, the most abundant peptidases and inhibitors were identified using fold change

ratios calculated between the respective tissue samples.

Localization of functional proteins

To assess whether our approach could also be applied to protein localization, we compared

proteins identified in each tissue with previously characterized proteins whose functions were

described in recent publications: cathepsins L and B [29], stefin [43], kunitz [42] and serpin

[30].

Results

Laser capture microdissection of tissue samples

We targeted three types of tissue, namely intestine, tegument, and parenchyma (Fig 1). These

tissues samples were cut out from 10 μm thick longitudinal cryosections of several individuals

of E. nipponicum. Total area of each tissue sample was 1 mm2, which corresponds to volume of

app. 0.012 μm3.

LC-MS/MS analyses and data evaluation

Total peptide yield estimate after filter-aided sample preparation (FASP) showed there were

app. 40 μg in intestine, 8 μg in tegument and 6 μg in parenchyma in each dissected tissue type

of comparable size, suggesting higher overall protein content in the intestine. In total, i.e. in all

three tissues jointly, we identified 2,059 proteins. Of these proteins, 1,978 were found in the

intestine, 1,425 in the tegument, and 1,302 in the parenchyma. An overview is listed in

Table 1, while Fig 2 shows how many proteins are unique to or shared among the tissues.

There were also 273 carp proteins identified, which were filtered out and are not included in

the results.

Unique proteins from each tissue were assigned to KEGG pathways (Fig 3). Most annota-

tions turned out to be in the intestine dataset (250 out of 489 entries; 51.1%), followed by the

tegument (20 out of 61; 32.8%) and the parenchyma (4 out of 14; 28.6%).

With respect to peptidases, we were able to identify 72 in all three tissues jointly. Numbers

of peptidases identified in each tissue are shown in the Fig 4. Most peptidases were found in
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the intestine, where one also finds most of the unique ones. Furthermore, we identified 33 pep-

tidase inhibitors in all three tissues jointly. Numbers of inhibitors identified in each tissue are

shown in Fig 4. Similarly to peptidases, most inhibitors are present in the intestine.

Peptidases unique to a tissue were classified into several groups based on their catalytic mech-

anism. There are four catalytic groups present in our dataset and only peptidases from the intes-

tine belong to all of them, i.e. to serine, aspartic, cysteine, and metallo. Tegumental peptidases

belong to two catalytic groups (serine and metallo), while in the parenchyma, we found no

unique peptidases (Fig 5). Unique inhibitors were sorted in several families according to the

MEROPS classification (Fig 5). Inhibitors from the intestine were again the most varied ones,

Fig 1. Laser microdissection of chosen tissues of E. nipponicum. (A) An overview of E. nipponicum body. (B) Part of microdissected section. A branched

intestine filled with host blood is clearly visible (red arrow). Tegument is visible at the edge of the section (red arrowhead). Parenchyma is the area with no

visible organelles (red ovals). (C) A schematic drawing of worm anatomy and dissected areas. (D) Microdissection process: 1) selection of desired area; 2)

laser section; 3) catapulting specimen to collection tube. Yellow arrows point to the dissected area.

https://doi.org/10.1371/journal.pone.0231681.g001

Table 1. Resulting numbers of identified proteins in each tissue.

Tissue Proteins Peptidases Inhibitors

Parenchyma 1,302 52 22

Tegument 1,425 57 24

Intestine 1,978 68 30

Total identifications� 2,059 72 33

�Total identifications refer to all proteins identified in whole dataset including unique and shared proteins among all tissues.

https://doi.org/10.1371/journal.pone.0231681.t001
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covering four (I2, I25, I29, and I32) of the seven families present. In the parenchyma, only one

family was present (I4), while tegumental inhibitors belonged to two families (I21 and I87). A

list of identifications of unique peptidases and inhibitors can be viewed in S2 Table.

Differently expressed peptidases and inhibitors

Subsequently, we compared the abundance of inhibitors and peptidases in each tissue based

on protein intensities. We found three peptidases more abundant in the intestine and four in

the tegument. With respect to inhibitors, we found one more abundant in the intestine and

one in the parenchyma. For detailed information, see Table 2.

Localization of functional proteins

Seven cathepsins (CL3, CL4, CL6b, c, d, e, and CB) were identified only in the intestine, two

(CL1, CL5) in all tissues, and two have not been identified at all although based on a related

publication [29], they should be present in the intestine as well. Both inhibitors, i.e. EnStef and

EnSerp1, were present in all tissues (see Table 3).

Discussion

In this study, we report the first tissue-specific proteomic analysis of parasitic monogenean

Eudiplozoon nipponicum. Using laser capture microdissection, we dissected particular areas of

Fig 2. UpSet plot showing numbers of identifications in each tissue. Only proteins identified by� 2 peptides in at least one replicate are considered to be

present. Intersections show proteins present in all tissues marked by connected black dots. Black dots without connections refer to proteins unique to that

tissue.

https://doi.org/10.1371/journal.pone.0231681.g002
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Fig 3. KEGG pathway annotation of the unique proteins from each tissue. Only proteins identified by� 2 peptides in both replicates of a given sample and

by� 1 peptide in other samples are considered unique to a sample.

https://doi.org/10.1371/journal.pone.0231681.g003

Fig 4. UpSet plots showing the number of peptidases (A) and inhibitors (B) in each tissue. Only proteins identified by� 2 peptides in at least one

replicate are considered. Proteins common to several tissues are marked by connected black dots. Black dots without connections refer to proteins unique

to that tissue.

https://doi.org/10.1371/journal.pone.0231681.g004
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three different tissue types of the parasite body and subjected the dissected samples to mass

spectrometry-based proteomic analysis. This allowed us to characterize tissue-specific prote-

omes and to assess the suitability of this approach for proteins tissue-localization. We chose to

focus on intestine, tegument, and parenchyma because those tissues can be easily differentiated

without any additional histological staining. Moreover, functional proteins from the intestine

are of great importance due to their involvement in the host–parasite interplay and a better

understanding of these processes could help control not only infections by E. nipponicum but

possibly by other monogeneans as well. Despite the practical important of this subject, only a

handful of studies so far focused on particular functional proteins [29,30,42–44] and more

comprehensive proteomic data were so far missing.

In this study, we identified 2,059 proteins. Most identifications were made in the intestine

sample (1,978), less in the tegument (1,425), and the lowest number of identifications was

made in the parenchyma (1,302) (Table 1, Fig 2). Of these proteins, 72 (3.50%) were peptidases

and 33 (1.60%) inhibitors (Table 1), which is in good agreement with ratios found in other par-

asites, such as the fluke S. mansoni proteome on UniProt (UP000008854, [51]), which contains

6,858 entries and the MEROPS lists 284 (4.14%) peptidases and 129 (1.88%) inhibitors, or the

Fig 5. Classification of unique peptidases and inhibitors. (A) Unique peptidases are assigned to groups according to their catalytic type. (B) Similarly,

unique inhibitors are sorted into families based on the MEROPS database classification. Only proteins identified by� 2 peptides in both replicates of a

sample and by� 1 peptide in other samples are considered unique to a tissue.

https://doi.org/10.1371/journal.pone.0231681.g005

Table 2. List of the most abundant peptidases and inhibitors.

Protein description Merops ID Transcriptome accession Fold-change�

More abundant in the parenchyma Par. / Int. Par. / Teg.

Family I63 UI I63.UPW E_nip_trans_67113_m.419481 7.81 20.30

More abundant in the tegument Teg. / Int. Teg. / Par.

Subfamily S1A UP S01.UPA E_nip_trans_11554_m.79831 - 18.66

Family M8 UP M08.UPW E_nip_trans_09681_m.59668 32.28 10.41

Family M41 UP M41.UPW E_nip_trans_12974_m.94993 2.86 18.30

Subfamily S8B UP S08.UPB E_nip_trans_69935_m.457916 47.98 -

More abundant in the intestine Int. / Teg. Int. / Par.

Carboxypeptidase S10.002 E_nip_trans_02420_m.6867 22.41 43.50

Family I29 UI I29.UPW E_nip_trans_04670_m.20209 3.81 14.67

Family M17 UP M17.UPW E_nip_trans_14140_m.106625 11.72 5.95

Family S28 UP S28.UPW E_nip_trans_39061_m.265071 13.51 9.50

UI, unassigned peptidase inhibitor; UP, unassigned peptidase.

�Proteins were filtered according to a fold change� 10. Highlighted values are those which pass this criterion.

https://doi.org/10.1371/journal.pone.0231681.t002
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tick Ixodes ricinus proteome (UP000001555, Caler et al. 2008 not published), which contains

20,473 entries and the MEROPS lists 318 (1,55%) peptidases and 277 (1.35%) inhibitors (MER-

OPS database accessed January 18, 2020). Apart from this, we also identified 273 carp proteins.

Vast majority of these were found in the intestine sample set and were related to the food con-

tent, as attested by the fact that they included blood proteins (hemoglobin subunits, heme-

binding protein, complement factors, antihemorrhagic factor etc.). These proteins were fil-

tered out as expected contaminants.

In terms of tissue specificity of peptidases and inhibitors (Fig 4), the richest environment is

the intestine, which is the most metabolically active of the organism: both digestion and nutri-

ent uptake take place in the gut lumen and hematin cells of the gastrodermis [29,52]. The tegu-

ment ended up the second, which could be due to the fact that this tissue protects the rest of

the body from the environment. It is the site of various important processes, such as glycocalyx

maintenance [53,54], sensory perception [55], and secretion [56]. The lowest variety of prote-

ases and inhibitors was found in the parenchyma, where no major organs were dissected. This

tissue served primarily as a control for the other two. KEGG pathway annotations provided

further support to these conclusions (Fig 3), although the input (unique proteins) for analysis

was different for each tissue. Nonetheless, with respect to for instance metabolism, we can con-

clude that the tegument is much more frequently represented in the particular sections (such

as carbohydrate and amino acid metabolism), which may be related to its abovementioned

function in surface maintenance. On the other hand, lack of uniqueness in the parenchyma

supports our initial expectations, because this tissue provides skeletal and structural support

and functions as nutrient transport and storage [57].

Catalytic groups which cover unique identified peptidases are shown in Fig 5. In total, we

found representatives of four groups. Most represented were serine, cysteine, and metallopep-

tidases. This correlates with the number of unique inhibitors, which were assigned to seven

families, including representatives of metallo (I87), cysteine (I29, I25, I4), and serine (I4 and

Table 3. Localization of functional proteins.

Functional protein Transcriptome accession Location

CL1 E_nip_trans_58808_m.372114 P, I, T

CL2 E_nip_trans_70234_m.461805 –

CL3 E_nip_trans_38122_m.258714 I

CL4 E_nip_trans_06099_m.25531 I

CL5 E_nip_trans_65378_m.396731 P, T

CL6a E_nip_trans_15113_m.115989 –

CL6b E_nip_trans_04751_m.20488 I

CL6c E_nip_trans_04670_m.20209 I

CL6d E_nip_trans_55822_m.362291 I

CL6e E_nip_trans_60687_m.380367 I

CB E_nip_trans_02724_m.9562 I

EnStef E_nip_trans_39617_m.270033 P, I, T

EnSerp1 E_nip_trans_58759_m.402754 P, I, T

EnKT1 E_nip_trans_05461_m.23039; E_nip_trans_00977_m.2066 I

P, parenchyma; I, intestine; T, tegument;–, not identified.

Only identification by� 2 peptides in both replicates was taken into account. Highlighted cells mean consensus of data acquired by LCM + LC-MS/MS with the

proposed location in a relevant publication [29].

https://doi.org/10.1371/journal.pone.0231681.t003
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I2) peptidase inhibitors (Fig 5). In all these statistics, the intestine was again dominant with

respect to variety. This is once again related to its function, namely feeding, since most pepti-

dases and inhibitors play a role in digestion, inhibition of blood coagulation, and prevention

of inflammation [29,42,52].

This expected variety in the intestine is reflected also in the most abundant peptidases/

inhibitors (Table 2). For instance, one of the peptidases we found in the intestine was serine

carboxypeptidase, whereby serine carboxypeptidases from family S10 are known to have a

lysosomal function [58] but it is also assumed they play a role in blood degradation. The latter

function seems to be supported by findings on S. japonicum, where it has an expression profile

similar to the digestive cathepsin [59], while carboxypeptidase, its ortholog from tick Ixodes
ricinus, has been described as a digestive enzyme [60]. There is also one abundant cysteine

peptidase inhibitor from family I29. Its ortholog, a propeptide of Fasciola hepatica cathepsin L,

proved to be a potent and selective inhibitor which plays a role in cathepsin L maturing and

activity regulation [61], which makes its role similar to the E. nipponicum cysteine inhibitor.

In the tegument, the most abundant serine peptidase we found belonged to the S8 family of

diverse peptidases, most of which play a housekeeping role in protein turnover or processing

of precursors of bioactive proteins [62].

In the parenchyma, one functional protein was significantly abundant: an inhibitor from

the I63 family. This family contains an inhibitor of metallopeptidase pappalysin-1, which pro-

motes cell growth [63]. We can therefore speculate that the identified inhibitor may play a role

in the regulation of a peptidase with similar function.

Moreover, since we have access to the preliminary version of secretome of E. nipponicum
(manuscript in preparation), we compared our data with it and saw that most secretome pro-

teins are in fact a subset of data obtained in the present study. This is unsurprising because

proteins in the secretome are produced by the parasite’s glands and intestine and at the time of

production, they are situated in the parasite body, which is why they were detected by mass

spectrometry in our analysis.

Finally, one of the main goals of this study was to investigate the potential of application of

this methodology (LCM + LC-MS/MS) for protein localization. In this approach, one can

select just those organs, tissues, or cells one is interested in and they can be extracted cleanly,

that is, without contamination by unwanted surrounding tissue. And while this approach also

requires further fine-tuning, it is markedly less laborious and time-consuming than the gener-

ally used techniques of immunolocalization and in situ hybridization [64]. Positive is also the

fact that the procedure dispenses with the need to use laboratory animals. In the end, once the

analysis is finished, one can go over the list of identified proteins and see where a protein of

interest was identified. This can be done repeatedly and for different proteins without the

need of additional experiments. The results of this study show that this method confirmed the

localization of previously characterized cathepsins and kunitz of E. nipponicum [29,42]

(Table 3). On the other hand, there is still room for improvement because two of the eleven

examined cathepsins were not identified and another two were identified in tissues where

they were not expected.

To conclude, our results represent the first tissue-specific proteomic analysis of the mono-

genean Eudiplozoon nipponicum. A combination of techniques, such as laser capture microdis-

section with subsequent liquid chromatography coupled to tandem mass spectrometry, sheds

light on the distribution of functional proteins, including peptidases and inhibitors, within the

parenchyma, tegument, and intestine of this parasite. At the same time, the data we obtained

represent the first comprehensive proteomic data available for Monogenea, a group of para-

sites which has so far been, at least in our opinion, neglected.
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acterization of a novel serpin from Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). Para-

site. 2018; 25: 61. https://doi.org/10.1051/parasite/2018062 PMID: 30516130

31. Hahn C, Fromm B, Bachmann L. Comparative Genomics of Flatworms (Platyhelminthes) Reveals

Shared Genomic Features of Ecto- and Endoparastic Neodermata. Genome Biol Evol. 2014; 6: 1105–

1117. https://doi.org/10.1093/gbe/evu078 PMID: 24732282

32. Zhang J, Wu X, Li Y, Zhao M, Xie M, Li A. The complete mitochondrial genome of Neobenedenia mel-

leni (Platyhelminthes: Monogenea): mitochondrial gene content, arrangement and composition com-

pared with two Benedenia species. Mol Biol Rep. 2014; 41: 6583–6589. https://doi.org/10.1007/

s11033-014-3542-6 PMID: 25024046

33. Huyse T, Plaisance L, Webster BL, Mo TA, Bakke TA. The mitochondrial genome of Gyrodactylus sal-

aris (Platyhelminthes : Monogenea), a pathogen of Atlantic salmon (Salmo salar). 2007; 739–747.

https://doi.org/10.1017/S0031182006002010 PMID: 17156582

34. Plaisance L, Huyse T, Littlewood DTJ, Bakke TA, Bachmann L. The complete mitochondrial DNA

sequence of the monogenean Gyrodactylus thymalli (Platyhelminthes: Monogenea), a parasite of gray-

ling (Thymallus thymallus). Mol Biochem Parasitol. 2007; 154: 190–194. https://doi.org/10.1016/j.

molbiopara.2007.04.012 PMID: 17559954

35. Zhang J, Wu X, Xie M, Li A. The complete mitochondrial genome of Pseudochauhanea macrorchis

(Monogenea: Chauhaneidae) revealed a highly repetitive region and a gene rearrangement hot spot in

Polyopisthocotylea. Mol Biol Rep. 2012; 39: 8115–8125. https://doi.org/10.1007/s11033-012-1659-z

PMID: 22544610

36. Kang S, Kim J, Lee J, Kim S, Min G-S, Park J. The complete mitochondrial genome of an ectoparasitic

monopisthocotylean fluke Benedenia hoshinai (Monogenea: Platyhelminthes). Mitochondrial DNA.

2012; 23: 176–178. https://doi.org/10.3109/19401736.2012.668900 PMID: 22545965
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44. Ilgová J, Kavanová L, Matiašková K, Salát J, Kašný M. Effect of cysteine peptidase inhibitor of Eudiplo-

zoon nipponicum (Monogenea) on cytokine expression of macrophages in vitro. Mol Biochem Parasitol.

2020; 235: 111248. https://doi.org/10.1016/j.molbiopara.2019.111248 PMID: 31874193
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