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Abstract: In recent years, there has been debate about the optimal conceptualisation of psychopathol-
ogy. Structural models of psychopathology have been developed to counter issues, including comor-
bidity and poor diagnostic stability prevalent within the traditional nosological approach. Regardless
of the conceptualisation of psychological dysfunction, deficits in neurocognitive abilities have been
claimed to be an aetiological feature of psychopathology. Explorations of the association between
neurocognition and psychopathology have typically taken a linear approach, overlooking the poten-
tial interactive dynamics of neurocognitive abilities. Previously, we proposed a multidimensional
hypothesis, where within-person interactions between neurocognitive domains are fundamental to
understanding the role of neurocognition within psychopathology. In this study, we used previously
collected psychopathology data for 400 participants on psychopathological symptoms, substance
use, and performance on eight neurocognitive tasks and compared the predictive accuracy of linear
models to artificial neural network models. The artificial neural network models were significantly
more accurate than the traditional linear models at predicting actual (a) lower-level and (b) high-level
dimensional psychopathology. These results provide support for the multidimensional hypothesis:
that the study of non-linear interactions and compensatory neurocognitive profiles are integral to
understanding the functional associations between neurocognition and of psychopathology.

Keywords: neurocognition; psychopathology; mental health; dimensional; CFA; artificial neural
network; modelling; p-factor; internalising; externalising

1. Introduction

It has been contended that deficits in neurocognitive abilities are an aetiological feature
of psychopathology [1,2]. Not only do those with psychopathology typically have neu-
rocognitive deficits, but these deficits in neurocognitive performance are seen to precede
the development of psychopathology [2]. However, few, if any, deficits to underlying
neurocognitive abilities appear to be deterministic in the study of psychopathology. Thus,
the search for one-to-one correspondence between deficits and disorders has yielded little
knowledge that can be constantly applied. Instead, evidence suggests that the associations
between neurocognitive abilities and psychopathology are extensively heterogenous [3–9].
For example, previous research has found that for people with bipolar disorder approxi-
mately 22% displayed deficits in three to four neurocognitive components, 40% showed
deficits in one or two components, and 38% did not display any deficits [9]. Of note is the
fact that no consistent deficit could be isolated, in any single neurocognitive component.
Multi-disorder research corroborates these findings as there is no evidence for specific,
single neurocognitive deficits that reliably discriminate disorders [4].
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One possible explanation for the extensive heterogeneity of the associations between
neurocognitive abilities and psychopathology may stem from the use of traditional noso-
logical approaches to diagnosis. Traditional approaches to diagnosis, using tools such
as the DSM, have resulted in extensive comorbidity, and poor diagnostic stability [10,11].
The high levels of comorbidity and poor diagnostic stability, along with emerging aetio-
logical evidence [12–15], suggests that psychopathology may not be best represented as
discrete diagnostic categories [16,17], and if this is the case, finding associations between
any particular neurocognitive component and a specific diagnostic category is unlikely. In
recent years, the issues with the traditional nosological approach to diagnosis has led to
the development of a range of dimensional, statistical models of psychopathology [18–20].
These models of psychopathology do not categorise disorder, but rather represent symp-
toms dimensionally on a collection of higher-order statistically derived components of
psychopathology. The models of psychopathology that have gained most interest are the
correlated factors model, the bifactor model, and the single-factor model. The correlated
factors model contains a range of lower-level symptom indicators, such as depression,
anxiety, and hostility, and two or more higher-level correlated dimensional factors, such as
internalising and externalising [21]. The bifactor model is similar in structure, however it
includes a single factor, named the p-factor, at the highest level of the structure that also
receives its loadings from the lower-level symptom indicators [18]. The single-factor model
contains the same lower-level symptom indicators, but only the higher-level p-factor [18].
Previously, we suggested that by using these dimensional statistical models it may be
possible to find clear specific associations between different neurocognitive abilities and
the factors of psychopathology that discriminate the factors [22]. However, more recently,
only a common deficit in speed of processing was found to be related to higher scores
of internalising, externalising and p, providing evidence that there may not be discrete
neurocognitive associations among the factors [23].

The challenges faced with isolating neurocognitive deficits associated with specific
disorders, and the issues concerning the heterogeneity of behavioural symptoms in disor-
ders, point to the need for approaches that can examine the effects of dynamical interplay
in the underlying processes. Towards this end, we recently used computational models
of the Wisconsin Card Sorting Task (WCST) to explore an alternative conceptualisation
of the relation between neurocognitive abilities and psychopathology, termed the multi-
dimensional hypothesis [8,24]. Ultimately, we claimed that to understand the functional
associations between neurocognition and psychopathology consideration of the non-linear
interactions between neurocognitive components is of critical importance. This conceptual-
isation was inspired by the notion of Multiple Realisation from the study of philosophy of
mind; referring to the idea that any given state may be equally determined, or realised, by
a number of different causes [25]. Rather than attempting to test which single process or
ability related most to a given disorder, we tested the combined effects of various profiles
of neurocognitive abilities on models’ performance on the WCST. The results of this work
revealed that a range of manipulations to the processes pertaining to neurocognitive abil-
ities of updating, shifting, and inhibition were equivalent in simulating performance on
the WCST in people with schizophrenia, their healthy-first degree relatives, and controls.
These findings, we argue, highlight the advantages of using multidimensional approaches
in the study of psychopathology [24].

Artificial neural networks (ANN) have been successful used across levels, from psy-
chological to genetic to help understand psychopathological and behavioural phenom-
ena [26–33] and potentially provides an even richer methodology for studying the relations
between neurocognitive abilities and psychopathology. For example, in a standard 3-layer
feed-forward network, for which a problem may be specified and for which the desired
outcome is known, input units are provided with a representation of the problem and
the output of each unit is fed forward to all units it is connected to within a hidden layer
(comprised of a number of processing units). The hidden units in turn feed forward to the
output layer that represents the solution. Throughout the model, each connection partially
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determines (via its strength of connection, or weight) the final value, and the degree of
error in the model’s solution is then used to alter weights within the model with the goal of
achieving a more accurate outcome on the next cycle. Traditionally, research in the domain
of neurocognition and psychopathology has relied on linear explanations, often using
popular correlational techniques. For example, multiple linear regression allows one to
determine the unique and common contributions for any number of independent variables
on an outcome. Whilst multiple linear regression is particularly accessible and easy to
perform, using any of a variety of modern statistical analyses packages, it allows only for
additive combinations of a linear form [34]. The issue with this is that for many psycholog-
ical phenomena, it appears that rather than contributing linearly to such outcomes, that
instead factors interact in more dynamic ways in producing effects.

Towards the other end of the complexity spectrum, in terms of analytical techniques,
are machine learning techniques, or artificial neural networks (ANN). The potential advan-
tage of such approaches is that they allow highly complex, non-linear patterns of relations
to be found between any number of variables and an outcome. However, studies examining
the difference between standard analytical techniques, such as MLR, and machine learning
approaches are lacking. Knowing what the potential benefits are, of one approach over
another, offers clear advantages for elucidating the true role factors play in influencing
specific outcomes, and the degree to which multidimensionality holds. The central ob-
jective of this study is to compare multiple linear regression models (MLR) to artificial
neural network models (ANN), in order to determine the degree to which each are able to
predict specific psychopathological outcomes. In each instance, to facilitate comparison,
the models we develop represents the more accessible of techniques that exist with the
respective approaches.

2. Aims and Hypotheses

The aim of this research is to compare the accuracy of linear models versus non-linear
artificial neural network models with regard to how well they each predict (a) lower-level
and (b) higher-level psychopathology.

Hypothesis 1. The average correlations between the actual lower-level psychopathology scores and
the models’ predicted psychopathology scores will be significantly stronger for the ANN model when
compared to the linear model.

Hypothesis 2. The correlations between actual and model predicted (a) internalising, (b) external-
ising, and (c) general psychopathology (the p-factor) scores will be significantly stronger for the
ANN models when compared to the linear models.

3. Materials and Methods
3.1. Participants

In a large-scale study [23], 425 people from a representative community sample from
the USA were recruited through Prolific [35]. Participants completed a demographics and
clinical characteristics survey [36], a substance use measure [37], and eight neurocognitive
tasks. After data cleaning 400 participants were retained. The mean age of the sample was
44.47 (SD = 16.35), 51.5% were female, and 28.5% reported having a previous or current
mental health diagnosis. The detailed demographic and clinical characteristics of the
sample can be found in Haywood, Baughman, Mullan and Heslop [23].

3.2. Procedure

After providing consent, participants completed the demographic and clinical characteris-
tics questions, and then completed measures on substance use, mental health symptomology,
and then each of the eight neurocognitive tasks see [23] for further information. This research
was approved by the Curtin Human Research Ethics Committee (HRE2021-0105).
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3.3. Measures

In this study, we used a subset of variables collected in the larger study [23]. We used
structural models of psychopathology developed in the larger study derived from data
collected using the Alcohol, Smoking and Substance Involvement Screening Test (ASSIST)
V3.1 [37], and the Brief Symptom Inventory (BSI-53) 53 item [36]. The ASSIST is the gold-
standard measure for substance involvement across tobacco products, alcoholic beverages,
cannabis, cocaine, amphetamine-type stimulants, inhalants, sedatives or sleeping pills,
hallucinogens, opioids, and other substances [37]. The BSI is a 53-item psychiatric symp-
tom measure that assesses degree of distress associated with a wide-range of psychiatric
symptoms over the previous seven days [36].

Data from eight computerised neurocognitive tasks were also collected. To measure
working memory we used the Digit Span task, and a visual array task based on Cowen [38].
To measure shifting we used the Shape-Number task, based on the Letter-Number task [39],
and the Inferring Relevance Task [40]. To measure inhibition, we used a computerised
version of the Stroop task [41] and the Go/NoGo task [42]. Lastly, to measure speed of
processing we used the Simple Reaction Time task, and the Inspection Time (IT) task [43].
The Rate-Corrected Score (RCS) method was used for tasks that required both speed and
accuracy to measure performance. Haywood, Baughman, Mullan and Heslop [23] provides
further detail on the tasks used and the metrics assessed.

3.4. Analysis

In this study, we used structural models of psychopathology that had previously
been developed [23]. These structural models were developed and tested though confir-
matory factor analysis in line with structural and hierarchical conceptual interpretations
of psychopathology [18]. These models used a six-factor BSI model [44], with the six
domains being Depression, Agoraphobia, Hostility, Mental Fog, Interpersonal Anxiety, and
Somatisation, and three domains of substance use derived from the ASSIST V3.1, namely
alcohol use, cannabis use, and other substance use. These nine domains were included
as ‘lower-level’ indicators in our structural models. Regarding the structural models, we
used the correlated factors model, with internalising and externalising specific factors, and
the single factors model, developed previously [23]. However, the bifactor model was
not used as it had a Heywood case (a variable with a negative variance estimate). The
models included the BSI domains, derived from the Schwannauer and Chetwynd [44]
factor structure, and the ASSIST components as the observed variables see [23] for further
detail. All models were developed and tested in RStudio using the MLR estimator with
robust test statistics, and the final models were chosen from the alternatives based on a
combination of model fit, factor loadings, and conceptual interpretation see [23]. The final
correlated-factors model and the single factor model are depicted in Figure 1.

Factor scores for internalising, externalising, and the p-factor were extracted for each
participant. These scores were the ‘higher-level’ psychopathology variables that the linear
and ANNs models were to predict to test hypothesis 2. Further, we used the scores for each
of the six BSI variables, and the three ASSIST variables, as the ‘lower-level’ psychopathology
scores that the two types of models were to predict in order to test hypothesis 1.

3.4.1. Linear Models

Multivariate multiple regression analyses were used as the linear method to predict
psychopathology from neurocognitive abilities. The models included the eight neurocogni-
tive tasks, as well as age and gender as predictors. The outcome variables for the lower-level
model were the six BSI domains; Depression, Agoraphobia, Hostility, Mental Fog, Interper-
sonal Anxiety, and Somatisation, and the three ASSIST variables; Alcohol, Cannabis, and
other drug use. The higher-level psychopathology model included the same predictors,
but the outcome variables were internalising, externalising, and p-factor scores.
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Baughman, Mullan and Heslop [23], final structural models of psychopathology used in this re-
search. Pictured is the Correlated Factors Model (A) and Bifactor Model (B). DEP = Depression.
AGOR = Agoraphobia, FOG = Mental Fog, INTER ANXI = Interpersonal Anxiety. SOM = Somatisa-
tion, HOSTI = Hostility. ALC = Alcohol. CANN = Cannabis. OS = Other Substances.

3.4.2. Artificial Neural Network Models

We developed two ANN models, one for lower-level psychopathology, and one
for higher-level psychopathology. Both models were 3-layer feedforward connectionist
networks consisting of an input layer of 10 units (representing age, gender, and performance
on each of the eight cognitive tasks) a hidden layer of 10 units, and an output layer of either
9 units (lower-level psychopathology model) or 3 units (higher-level psychopathology
model). In the lower-level model, the output layer comprised of 9 units, representing
depression, agoraphobia, mental fog, interpersonal anxiety, somatisation, hostility, alcohol,
cannabis, and other substances, while in the higher-level model the output layer consisted
of 3 units, representing internalising, externalising and the p-factor. We used sigmoidal
activation functions for units and the model was trained randomly, with replacement, on
100 of the 400 cases using back-propagation for 1000 epochs, with a learning rate of 0.03,
and with the initial weights for all units randomised between ±0.5. The model was tested
against the full set of 400 cases. To safeguard against possible under, or over-fitting our
data, we examined the effect of varying the learning rate (0.01 to 0.5), and the number
of hidden units (5, 10, 15, 20). These manipulations to the model’s parameters did not
alter the outcome or pattern of results, although greater differentiation was noted for some
extremes. For example, by the end of training, a higher learning rate (0.5) had little effect in
reducing error in the model with 5 units in the hidden layer. In contrast, in those models
with greater than 5 units in the hidden layer (i.e., 10, 15, 20) by the end of training, error
was considerably smaller.

We did not explore the effects of using different activation function nor did we ex-
amine the effect of increasing the number of hidden layers in the model. These variations
potentially may be of interest to us for future work. However, overall, and given the
purpose of this study, to compare linear models to ANN models, the model described here
offers a useful starting framework. The models were developed in MatLab.

Figure 2 depicts the lower-level psychopathology ANN model, while Figure 3 depicts
the higher-level psychopathology ANN model.
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Figure 2. Lower-level Psychopathology Artificial Neural Network Model. Note. Depiction of the
lower-level psychopathology artificial neural network model used in this research. The first layer of
the model contains 10 input units consisting of age, gender, and the eight neurocognitive tasks. The
second layer is the hidden layer consisting of 10 units. The final layer is the output layer consisting of
nine output units, namely depression, agoraphobia, mental fog, interpersonal anxiety, somatisation,
hostility, alcohol, cannabis, and other substances.
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Figure 3. Higher-level Psychopathology Artificial Neural Network Model. Note. Depiction of the
higher-level psychopathology artificial neural network model used in this research. The first layer of
the model contains 10 input units consisting of age, gender, and the eight neurocognitive tasks. The
second layer is the hidden layer consisting of 10 units. The final layer is the output layer consisting of
three output units, namely internalising, externalising, and the p-factor.
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3.4.3. Model Comparison

The predictive accuracy of the linear models and the ANN models was assessed by
statistically comparing the correlations between the respective models’ predicted outcome
variable scores, and the actual outcome variable scores. The correlations between the
models’ predicted and actual scores for Depression, Agoraphobia, Hostility, Mental Fog,
Interpersonal Anxiety, Somatisation, Alcohol, Cannabis, and Other Drugs were averaged to
provide an overall indication of the predictive accuracy of the lower-level psychopathology
models. The overall correlation for the linear and the ANN was compared using the
Daniel Soper calculator [45], that applies a Fisher transformation [46] to compare two
correlations. Similarly, the correlations between the predicted and actual (a) internalising,
(b) externalising, and (c) p-factor scores were statistically compared for the linear and
the ANN model. Superior predictive accuracy of the ANN over the linear models at
both the lower-level (BSI and ASSIST variables) and higher-level of psychopathology
(internalising, externalising and p-factor), would evidence the existence of non-linear
interactive relationships between the predictors (neurocognition, age, and gender) and the
outcomes (psychopathology) [47].

4. Results
4.1. Linear Models
4.1.1. Lower-Level Psychopathology

Regarding lower-level psychopathology, the linear model with the predictor variables
of the eight neurocognitive variables and age and gender were able to account for a
significant amount of variance in each of the nine symptom domains. The model accounted
for 18.9% of depression (F (10, 389) = 9.08, p < 0.001, R2 = 0.189), 10.9% of agoraphobia
(F (10, 389) = 4.77, p < 0.001, R2 = 0.109), 17.1% of hostility (F (10, 389) = 8.03, p < 0.001,
R2 = 0.171), 22.7% of Mental Fog (F (10, 389) = 11.40, p < 0.001, R2 = 0.227), 20.1% of
interpersonal anxiety (F (10, 389) = 9.80, p < 0.001, R2 = 0.201), 22.0% of somatisation
(F (10, 389) = 10.98, p < 0.001, R2 = 0.220), 7.2% of alcohol use (F (10, 389) = 3.00, p = 0.001,
R2 = 0.072), 5.5% of cannabis use (F (10, 389) = 2.28, p = 0.013, R2 = 0.055), and 5.9% of other
substance use (F (10, 389) = 2.43, p = 0.008, R2 = 0.238). Table 1 provides the utility of the
individual predictors in the model.

Table 1. Lower-Level Psychopathology Linear Model Outcomes.

Dependent Variable Parameter B B Sig.

Depression

Age −0.024 −0.396 <0.001 **
Gender 0.275 0.137 0.007 **

Digit Span −0.051 −0.091 0.067
Visual WM 0.002 0.014 0.790

Inferring Relevance 117.25 0.030 0.598
Shape-Number 155.76 0.046 0.410

Stroop −337.60 −0.049 0.334
Go/NoGo −512.58 −0.030 0.550
Simple RT −2866.43 −0.059 0.250

IT 0.003 0.068 0.177

Agoraphobia

Age −0.015 −0.241 <0.001 **
Gender 0.221 0.111 0.007 **

Digit Span −0.002 −0.004 0.913
Visual WM −0.002 −0.018 0.673

Inferring Relevance −65.82 −0.017 0.714
Shape-Number −84.80 −0.025 0.578

Stroop 100.15 0.014 0.722
Go/NoGo −709.85 −0.042 0.305
Simple RT −3372.44 −0.070 0.094

IT 0.002 0.038 0.342
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Table 1. Cont.

Dependent Variable Parameter B B Sig.

Hostility

Age −0.015 −0.238 <0.001 **
Gender 0.036 0.018 0.566

Digit Span 0.018 0.032 0.306
Visual WM 0.000 −0.004 0.905

Inferring Relevance 61.31 0.016 0.659
Shape-Number −39.83 −0.012 0.736

Stroop 96.77 0.014 0.657
Go/NoGo −293.64 −0.017 0.584
Simple RT −5504.99 −0.114 <0.001 **

IT 0.002 0.050 0.112

Mental Fog

Age −0.025 −0.410 <0.001 **
Gender 0.348 0.174 <0.001 **

Digit Span −0.029 −0.051 0.245
Visual WM −0.002 −0.017 0.718

Inferring Relevance 35.30 0.009 0.859
Shape-Number −37.12 −0.011 0.825

Stroop 22.51 0.003 0.942
Go/NoGo −1498.37 −0.089 0.050
Simple RT −1794.27 −0.037 0.419

IT 0.004 0.081 0.071

Interpersonal Anxiety

Age −0.022 −0.358 <0.001 **
Gender 0.214 0.107 0.007 **

Digit Span −0.007 −0.012 0.747
Visual WM −0.003 −0.027 0.522

Inferring Relevance 40.08 0.010 0.817
Shape-Number −143.92 −0.043 0.329

Stroop −271.37 −0.039 0.319
Go/NoGo 53.71 0.003 0.936
Simple RT −4043.57 −0.083 0.038 *

IT 0.004 0.081 0.038 *

Somatisation

Age −0.014 −0.228 <0.001 **
Gender 0.272 0.136 <0.001 **

Digit Span −0.005 −0.008 0.776
Visual WM 0.000 0.002 0.941

Inferring Relevance −89.74 −0.023 0.501
Shape-Number 107.08 0.032 0.345

Stroop −57.52 −0.008 0.783
Go/NoGo −766.38 −0.045 0.136
Simple RT −5405.81 −0.112 <0.001 **

IT 0.003 0.070 0.020 *

Alcohol

Age −0.029 −0.468 0.223
Gender −1.62 −0.811 0.022 **

Digit Span 0.240 0.430 0.214
Visual WM −0.041 −0.356 0.343

Inferring Relevance −297.26 −0.076 0.848
Shape-Number −393.96 −0.117 0.765

Stroop −682.54 −0.099 0.779
Go/NoGo 8663.47 0.513 0.149
Simple RT −69,091.17 −10.426 <0.001 **

IT 0.021 0.461 0.188
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Table 1. Cont.

Dependent Variable Parameter B B Sig.

Cannabis

Age −0.052 −0.857 0.005 **
Gender −0.646 −0.323 0.252

Digit Span −0.183 −0.328 0.234
Visual WM 0.012 0.106 0.722

Inferring Relevance 1064.69 0.273 0.389
Shape-Number −295.90 −0.088 0.778

Stroop 861.75 0.124 0.657
Go/NoGo 4069.70 0.241 0.394
Simple RT −34,946.23 −0.721 0.012 *

IT 0.002 0.046 0.868

Other Substances

Age 0.014 0.223 0.648
Gender −0.332 −0.166 0.712

Digit Span 0.533 0.954 0.031 *
Visual WM −0.112 −0.980 0.040 *

Inferring Relevance 1196.78 0.307 0.545
Shape-Number 1123.99 0.335 0.503

Stroop 5111.74 0.738 0.100
Go/NoGo 475.96 0.028 0.950
Simple RT −61,098.64 −1.261 0.006 **

IT 0.024 0.525 0.238
Note. * is significant at the 0.05 level. ** is significant at the 0.01 level. WM = Working Memory. RT = Reaction
Time. IT = Inception Time.

The neurocognitive performance tasks failed to account for any unique variance in
depression, agoraphobia, and mental fog. The speed of processing tasks provided unique
predictive utility for the remaining six lower-level psychopathology domains. The working
memory tasks were also able to account for unique variance in other substance use. No other
neurocognitive tasks offered unique predictive utility for any of the symptom domains.

4.1.2. Higher-Level Psychopathology

As reported in Haywood, Baughman, Mullan and Heslop [23], our multivariate mul-
tiple regression analyses revealed that our eight neurocognitive tasks in addition to age
and gender accounted for a significant amount of variance in each internalising, exter-
nalising and the p-factor. The model accounted for 23.8% of the variance in internalising
(F(10, 389) = 12.17, p < 0.001, R2 = 0.238), 15.6% of the variance in externalising
(F(10, 389) = 8.37, p < 0.001, R2 = 0.156), and 23.6% of the variance in the p-factor
(F(10, 389) = 12.05, p < 0.001, R2 = 0.236). Table 2 provides the results of the regression
analyses as reported in Haywood, Baughman, Mullan and Heslop [23].

Only the neurocognitive tasks measuring speed of processing accounted for significant
unique variance in higher-level psychopathology. Simple reaction time and Inspection
Time were significant predictors of internalising and the p-factor, while simple reaction
time was the sole significant predictor of externalising, bar age and gender. Tasks that
measured working memory, shifting, or inhibition did not provide any unique predictive
utility for the higher-level psychopathology factors. For further detail of these results see
Haywood, Baughman, Mullan and Heslop [23].
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Table 2. Higher-Level Psychopathology Linear Model Outcomes.

Predictors
Internalising Externalising p-Factor

B β p B β p B β p

Age −0.027 −0.433 <0.001 ** −0.026 −0.346 <0.001 ** −0.398 −0.434 <0.001 **
Gender 0.360 0.174 <0.001 ** 0.007 0.003 0.951 4.68 0.156 0.001 **

Digit
Span −0.024 −0.041 0.360 0.036 0.054 0.249 −0.251 −0.030 0.505

Vis WM −0.002 −0.013 0.783 −0.003 −0.022 0.669 −0.026 −0.015 0.758
Infer. Rel. 13.03 0.003 0.950 149.99 0.032 0.555 415.57 0.007 0.891

Shape-
Num −9.37 −0.003 0.958 −61.02 −0.015 0.778 −214.33 −0.004 0.934

Stroop −182.03 −0.025 0.578 264.25 0.031 0.664 −1916.14 −0.018 0.686
Go/NoGo −840.70 −0.048 0.297 −203.95 −0.010 0.835 −11,229.5 −0.044 0.336
Simple RT −4973.28 −0.099 0.034 * −12,291.5 −0.209 <0.001 ** −84,882.8 −0.117 0.012 *

IT 0.004 0.094 0.040 * 0.005 0.082 0.083 0.064 0.095 0.037 *

Note. * is significant at the 0.05 level. ** is significant at the 0.01 level. Vis WM = Visual Working Memory. Infer.
Rel. = Inferring Relevance. Shape-Num = Shape-Number. RT = Reaction Time. IT = Inspection Time.

4.2. Artificial Neural Network Models
Lower-Level Psychopathology

Over the 1000 epochs of the basic backwards propagation, the lower-level psychopathol-
ogy ANN model provided a final summed squared error of 34.76 and root mean squared
error (RMSE) of 0.29. The model performed well with the relatively small number of hidden
units and a single hidden unit layer and learned very efficiently. For example, the summed
squared error dropped from 190.27 following the first epoch to just 53.99 following the
sixth epoch, and then learned steadily to end at a summed squared error of 34.76 on the
1000th epoch. The summed squared error to epochs for the lower-level psychopathology
ANN are depicted in Figure 4.

4.3. Model Comparison
4.3.1. Lower-Level Psychopathology

The bivariate correlations between each lower-level psychopathology domain scores
and the linear model and ANN model predicted scores are presented in Table 3. To allow
easier comparisons to be made between linear and ANN approaches, Table 3 shows the
results for linear and ANN models next to one another. For instance, the table shows the
correlation between the observed depression scores and that predicted by the linear model
(LM-Dep) is r = 0.435, versus r = 0.648 in the neural network model (ANN-Dep).

4.3.2. Higher-Level Psychopathology

Over the 1000 epochs the higher-level psychopathology ANN model provided a final
summed squared error of 14.02 and a RMSE of 0.19. The higher-level psychopathology
ANN performed better than the lower-level psychopathology ANN model (had a lower
RMSE), however this may be attributed to the lower-level model having twice the number
of output units. Again, even although the model was basic with a relatively small number
of hidden units, and a single hidden unit layer, it learned efficiently. The summed squared
error dropped from 67.55 following the first epoch to just 21.71 following the fifth epoch and
learned progressively to end at a summed squared error of 14.02 on the 1000th epoch. The
summed squared error to epochs for the higher-level psychopathology ANN are depicted
in Figure 5.
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For each of the nine lower-level symptom domains the predicted values of the ANN
model had a stronger correlation with the actual values when compared to the linear model.
The correlations between the linear model’s predicted values and the actual symptom
values ranged between 0.243 and 0.476, while the correlations between the predicted values
of the ANN model and the actual symptom values ranged between 0.338 and 0.711. The
average correlation between the linear model’s predicted values and the actual values was
0.369, while the average correlation between the ANN’s predicted values and the actual
values was 0.587. The difference between the linear and ANN models’ average correlations
with the actual values amongst the lower-level psychopathology domains was significant
at a Bonferroni adjusted alpha level of 0.0125 (Z = −4.027. p < 0.001). Therefore, supporting
hypothesis one, the ANN model performed significantly better than the linear model at
predicting lower-level psychopathology.
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Table 3. Correlations Between Predicted and Actual Lower-Level Psychopathology Scores.

LM-
Dep

ANN-
Dep

LM-
Agor

ANN-
Agor

LM-
Host

ANN-
Host

LM-
Fog

ANN-
Fog

LM-
Int.

Anx

ANN-
Int.

Anx
LM-
Soma

ANN-
Soma

LM-
Alc

ANN-
Alc

LM-
Cann

ANN-
Cann

LM-
Other

ANN-
Other

Dep 0.435 0.648
Agor 0.331 0.577
Host 0.414 0.655
Fog 0.476 0.711
Int.

Anx 0.449 0.675
Soma 0.469 0.710
Alc 0.268 0.338

Cann 0.235 0.413
Other 0.243 0.552

Note. All correlations significant at p < 0.01 (one-tailed). LM = Linear Model. ANN = Artificial Neural Net-
work Model. Dep = Depression. Agor = Agoraphobia. Fog = Mental Fog. Int. Anx = Interpersonal Anxiety.
Soma = Somatisation. Alc = Alcohol use. Cann = Cannabis Use. Other = Other Substance use.

The bivariate correlations between each higher-level psychopathology factor scores
and the linear model and ANN predicted scores are presented in Table 4.

Table 4. Correlations Between Predicted and Actual Higher-Level Psychopathology Scores.

LM-Int ANN-Int LM-Ext ANN-Ext LM-p ANN-p

Internalising 0.488 0.661
Externalising 0.421 0.619

p-factor 0.486 0.666
Note. All correlations significant at p < 0.01 (one-tailed). LM = Linear Model. ANN = Artificial Neural Network
Model. Int = Internalising. Ext -= Externalising. p = p-factor

Once again, for each of the three higher-level symptom domains the ANN model’s
predicted values had a stronger correlation with the actual values when compared to
the linear model. The correlations between the linear model’s predicted values and the
actual symptom values ranged between 0.421 and 0.488, while the correlations between
the ANN models’ predicted values and the actual symptom values ranged between 0.619
and 0.666. The difference between the linear and ANN models’ correlations with the actual
values for internalising, externalising, and the p-factor was significant at a Bonferroni
adjusted alpha level of 0.0125. The ANN model was more accurate than the linear model
at predicting internalising (Z = −3.679. p < 0.001), externalising (Z = −3.867. p < 0.001),
and p-factor scores (Z = −3.842. p < 0.001). Therefore, supporting hypothesis two, the
ANN model performed significantly better than the linear model at predicting lower-level
psychopathology.

5. Discussion

The aim of this research is to compare the accuracy of linear models versus non-linear
artificial neural network models with regard to how well they each predict (a) lower-level
and (b) higher-level psychopathology. Overall, we found support for non-linear inter-
active relationships between the neurocognitive predictors and psychopathology. The
ANN models were significantly more accurate than the linear models at predicting both
lower-level and higher-level psychopathology. There is consensus that there is a high level
of heterogeneity of neurocognition within psychopathology [4,9], however understanding
of the variability has been limited primarily by the use of descriptive or linear approaches
and the use of DSM diagnostic categories. Previously, through computational modelling,
we found that multiple different executive functioning profiles were able to account for the
general neurocognitive performance of people with schizophrenia [8]. This finding pro-
vided initial support for the multidimensional hypothesis, however, was limited by using a
DSM defined disorder category that ignores that dimensionality and comorbidity of psy-
chopathology. Using a dimensional approach, we find that the non-linear multidimensional
conceptualisation is superior to traditional linear conceptualisations of the associations
and functionality between neurocognition and psychopathology. Given that it is claimed
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that neurocognition an aetiological feature of psychopathology [1,2], an accurate functional
conceptualisation is fundamental to improving our understanding of psychopathology.

Previously, the search for a primary deficit of neurocognition within psychopathology
has dominated the literature [24]. While an understanding of a general trend of dysfunction
across a specific population may be useful as a starting point to fuller understanding, our
findings suggest further assessment of the within individual functionality of neurocogni-
tion is required. To illustrate, we recently found that measures of speed of processing, but
not working memory, shifting, or inhibition, could significantly account for higher-level
psychopathology linearly [23]. However, as in the present research the ANN models were
superior in accuracy to the linear models, it suggests that working memory, shifting, and/or
inhibition likely still play an important role in understanding the associations between neu-
rocognition and psychopathology. Ultimately, as per the multidimensional hypothesis, the
interactions between neurocognitive processes seem integral to a detailed understanding
of the associations and functionality between neurocognition and psychopathology.

The use of dimensional, rather than categorical, conceptualisations of psychopathology
in the present research has multiple strengths, including mitigating or accounting for the
issues of comorbidity and diagnostic stability of the nosological approach [17]. However,
examining the multidimensionality of neurocognition with regard to statistically derived
higher-level factors of psychopathology does have conceptual considerations. While the
lower-level scores of dimensional psychopathology (e.g., depression, hostility, etc.) were
not factorised, scores of higher-level factors of psychopathology are intrinsically influenced
by the scores of the population from which they were derived. For example, Lahey, Moore,
Kaczkurkin and Zald [19] suggests that the p-factor is a “weighted average” (p. 61) of the
sample’s symptoms. Therefore, the p-factor (and internalising and externalising) scores
on the individual level are dependent on the factors loadings of the indicators included
in the sample model. Indeed, we have previously found that the underlying weightings
of different lower-level psychopathology domains vary considerably between different
samples [22]. Findings such as these have led to the understanding that higher-level psy-
chopathology factors may not have a universal substantive meaning [22,38]. Considering
the substantive interpretation difficulties of higher-level psychopathology, lower-level
dimensional psychopathology may be better suited to enhance our understanding the
dynamics of neurocognition and psychopathology on the individual level.

An individual approach to neurocognition within developmental conditions, such as
intellectual disability and autism spectrum disorder, is common in case conceptualisations
and treatment approaches [48,49]. However, even although neurocognitive deficits are
highly prevalent, albeit to generally a lesser severity, in psychopathology, this level of
assessment and understanding is not commonplace [50]. Our findings indicate that the
multidimensionality, rather than general deficits, of neurocognition may be important
to consider when understanding an individual’s psychopathology. Further, our results
imply that, beyond just strengths and weakness assessment common amongst develop-
mental conditions’ case conceptualisation, a consideration of the interactions between
different neurocognitive domains’ performance on the individual level may be important
to understanding a person’s psychological experience.

Limitations and Directions for Future Research

This research has four primary limitations. First, the data was collected online through
Prolific [35]. Therefore, we had little control over the conditions under which data were
obtained. However, there is evidence that the quality of task data collected through online
platforms, in particular Prolific, is comparable to in-lab data [51–54]. Second, age and
gender were required to be predictors in both the linear and ANN models due to their
associations between both neurocognition and psychopathology. While the role of age and
gender in the linear models is easy to interpret, due to the structure and function of the
ANN models the role age and gender played in these models is difficult to parse. Third, the
comparisons between the linear models and the ANN models were able to provide evidence
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that the multidimensional conceptualisation of neurocognitive abilities in psychopathology
is superior to the linear conceptualisation. However, our approach to the assessment of
the ANN models was unable to provide the necessary information to detail the nuance of
the multidimensional functionality. For example, we were not able to provide results for
what neurocognitive profiles existed in the data, the specific interaction functionality, and
what, if any, compensatory profiles existed. Nonetheless, the current research establishes
the importance of considering multidimensional explanations and provides future research
with a platform for which to build upon. Lastly, in this study the type of ANN models
we developed were among the more accessible of techniques in their respective domains.
More complex regression techniques, as well as more complex machine learning techniques
exist. Examining how well some of these more complex techniques compare to one another,
remains of interest to us for future work. Related to this last point, we also did not test a
range of other architectures, activation functions, or use a larger data set. Though clearly
each of these offer possible avenues for further study.

Future research should use tightly controlled lab-based data collection to explore
non-linear multidimensional conceptualisations. Future research should also attempt to
map the neurocognitive profiles that exist amongst the population, the functional dynamics
of the neurocognitive domains, and their associations to dimensional psychopathology.
More complex regression techniques and more complex machine learning techniques
should be also examined and compared by future research. This knowledge may be used
to inform aetiological theories of neurocognition and psychopathology and inform case
conceptualisations on the individual level. Future research that uses a combination of
computational modelling approaches [8], ANN approaches, and descriptive approaches
may extend our knowledge of the non-linear multidimensionality.

6. Conclusions

In this research, we examined if neurocognitive ANN models were superior to linear
models at predicting dimensional lower-level and higher-level psychopathology. We found
support for the non-linear multidimensionality of neurocognition in psychopathology as
the ANN models were significantly more accurate than the linear models at predicting
both lower-level and higher-level psychopathology. We suggest that a non-linear multi-
dimensional conceptualisation of neurocognition within psychopathology is integral for
aetiological examination and case conceptualisations. We also suggest that, due to the
difficulties in interpreting the substantive meaning of higher-level factors of psychopathol-
ogy, the utility of examining the multidimensional functionality of neurocognition and
psychopathology is greatest at the lower levels of psychopathology using dimensional
measures.
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