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Kaposi’s sarcoma-associated herpesvirus (KSHV) is thought to be an oncogenic member
of the γ-herpesvirus subfamily. The virus usually establishes latency upon infection as a
default infection pattern. The viral genome replicates according to the host cell cycle by
recruiting the host cellular replication machinery. Among the latently expressing viral fac-
tors, LANA plays pivotal roles in viral genome replication, partitioning, and maintenance.
LANA binds with two LANA-binding sites (LBS1/2) within a terminal repeat (TR) sequence
and is indispensable for viral genome replication in latency.The nuclear matrix region seems
to be important as a replication site, since LANA as well as cellular replication factors accu-
mulate there and recruit the viral replication origin in latency (ori-P) by its binding activity to
LBS. KSHV ori-P consists of LBS followed by a 32-bp GC-rich segment (32GC). Although it
has been reported that LANA recruits cellular pre-replication complexes (pre-RC) such as
origin recognition complexes (ORCs) to the ori-P through its interaction with ORCs, this
mechanism does not account completely for the requirement of the 32GC. On the other
hand, there are few reports about the partitioning and maintenance of the viral genome.
LANA interacts with many kinds of chromosomal proteins, including Brd2/RING3, core his-
tones, such as H2A/H2B and histone H1, and so on. The detailed molecular mechanisms
by which LANA enables KSHV genome partitioning and maintenance still remain obscure.
By integrating the findings reported thus far on KSHV genome replication, partitioning, and
maintenance in latency, we will summarize what we know now, discuss what questions
remain to be answered, and determine what needs to be done next to understand the
mechanisms underlying viral replication, partitioning, and maintenance strategy.
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INTRODUCTION
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a
gamma-2 herpesvirus discovered from KS specimens in 1994
(Chang et al., 1994). KSHV is closely associated with KS and several
non-Hodgkin lymphomas, including primary effusion lymphoma
(PEL) and multicentric Castleman’s disease (MCD; Cesarman
et al., 1995, 1996; Soulier et al., 1995). While KS is the most com-
mon cancer in acquired immune deficiency syndrome patients
(Potthoff et al., 2010), KSHV is detected in about 95% of all types
of KS lesions by PCR analysis (Dupin et al., 1995; Huang et al.,
1995; Moore and Chang, 1995). PEL is a rare B cell lymphoma
originated from preterminal B cells, and PEL in AIDS patients is
often associated with KSHV as well as EBV. Several KSHV-infected
PEL cell lines have been established, and EBV is frequently lost in
the course of establishment (Arvanitakis et al., 1996; Gaidano et al.,
1996; Renne et al., 1996; Said et al., 1996; Carbone et al., 1997, 1998;
Katano et al., 1999). MCD is a plasmacytic lymphadenopathy with
polyclonal hyper-immunoglobulinemia and high levels of serum
IL-6 (Frizzera et al., 1983; Yoshizaki et al., 1989).

Like all herpesviruses, KSHV has two life cycles: latent and
lytic replication phases (for review, see Boshoff and Chang, 2001).
Whereas KSHV is usually in latency when it infects KS and PEL
cells, in MCD some cells express lytic genes (Katano et al., 2000;

Parravicini et al., 2000). On the other hand, it has been reported
that KSHV infection itself and/or viral lytic proteins promote cell
proliferation and angiogenesis as well as lymphatic reprogram-
ming (Ciufo et al., 2001; Gao et al., 2003; Carroll et al., 2004; Hong
et al., 2004; Naranatt et al., 2004; Pan et al., 2004; Wang et al., 2004;
Sharma-Walia et al., 2006; Qian et al., 2007, 2008; Sadagopan et al.,
2007; Ye et al., 2007).

In latency, the KSHV genome is present as an episome, which
is capable of autonomously replicating during S phase of the host
cell cycle without integration into host chromosomes, and only
limited genes are expressed during latency. Therefore, there is no
generation of progeny virions. It is very important to elucidate
and learn the virus’s survival strategy in order to control infection
and to formulate treatment for KSHV-related diseases.

In this review, we would like to focus on studies on the mecha-
nisms underlying viral DNA replication, genome segregation and
maintenance, and gene expression regulation in latency, and to
discuss these topics in the light of studies on cellular mechanisms.

GENE EXPRESSION CONTROL IN KSHV LATENCY
The KSHV genome is a double-stranded linear DNA in the virion.
It is circularized upon infection and is maintained as an episome in
the infected nucleus. The complete genome is about 160–170 kbp,
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including a 40 ∼ 50 times repeated sequence called a terminal
repeat (TR), which is 801 bp as a unit, at each end of the genome
(Figure 1). The viral genome encodes approximately 90 ORFs in
the unique region (for reviews, see Moore and Chang, 2001; Dour-
mishev et al., 2003). In latency, the viral genome is maintained in
a cell cycle-dependent manner, and extremely limited viral genes,
such as latent gene clusters, are expressed. Although the estab-
lishment of latent infection could be this virus’s default infection
mode, it is not good for the virus to continue latent infection for a
long time, since it will vanish from the earth without progeny virus
production. Thus, latency is a state in which the virus waits for an
opportunity for the explosive production of progeny virions. Nev-
ertheless, it is very interesting how KSHV establishes latency and
is maintained in infected host cells without losing the genomes.

As mentioned above, the limited region within the KSHV
genome is transcriptionally active in latency, and this region con-
tains only several genes, including the latency-associated nuclear
antigen (Wang and Frappier, 2009), viral cyclin (v-CYC), viral
FLICE-inhibitory protein (v-FLIP), kaposin, 17 microRNAs (miR-
NAs), and viral interferon regulatory factor 3 (v-IRF-3; Chang
et al., 1996; Thome et al., 1997; Muralidhar et al., 1998; Lubyova
and Pitha, 2000; Gomez-Roman et al., 2001; Rivas et al., 2001;
Staudt and Dittmer, 2003; Cai et al., 2005; Pearce et al., 2005;
Pfeffer et al., 2005; Samols et al., 2005). Such genes, except for v-
IRF-3, are in that limited region, and LANA, v-CYC, and v-FLIP
are in one of the unit’s genes. This region forms an active locus for
expression including miRNAs and kaposin. It is unclear why this
region is active for the expression of genes and is insulated from
inactive lytic genes, such as ORF69 and K14 just downstream and
upstream, respectively.

Recently, it was reported that CTCF, which is the only insulator
protein found in vertebrates, coupled with SMC3,endows this gene
insulation. More interestingly, the binding sites are in the genes,
i.e., downstream from the LANA transcription start sites, not at
the boundary regions (Stedman et al., 2008; Kang and Lieber-
man, 2009). Transcriptional analysis using the KSHV-BAC system
demonstrated that mutations of CTCF binding sites abolished
latency-regulated transcription such as K14 and ORF74 during
latency (Kang and Lieberman, 2009). CTCF usually binds at the
boundary regions between active and inactive loci in mammalian
genomes, forming locus control regions (LCRs; Tanimoto et al.,
2003). A typical example is an LCR seen in the beta-globin locus.
CTCF binds to several DNase I hypersensitivity sites (HS), called
HS4 and HS5, and forms boundaries to insulate this locus from

the outside locus (Tanimoto et al., 2003; Hou et al., 2008). Thus,
latent gene expression in KSHV-infected cells might be regulated
differently from the mechanism observed in the beta-globin locus.

Inversely, it is interesting how the viral lytic genes are tightly
inactivated in latency. Epigenetic regulation seems to be essen-
tial for inactivation as well as activation of latent genes. LANA
recruits heterochromatin components to the TR by the interac-
tion between LANA and SUV39H1, which is a key factor that
methylates histone H3, which in turn recruits heterochromatin
protein 1 (HP1; Sakakibara et al., 2004). Because this mechanism
contributes to the propagation and maintenance of heterochro-
matin, it appears that heterochromatin could spread over the
KSHV genome during latency. The propagation of heterochro-
matin into the active latent gene zone might be blocked by the
boundary effect and by the enhancer-blocking activity of an insu-
lator, CTCF which has multiple functions such as gene activation
or inactivation, X-chromosome inactivation, and gene imprinting
(for review, see Zlatanova and Caiafa, 2009).

Thus, it is thought that not the overall lytic genes region, except
for the latent gene clusters, forms heterochromatin during latency,
because recent genome-wide analysis using ChIP-on-chip showed
that not only latent gene clusters but also several regions of lytic
genes are enriched in activating histone marks (acetylated H3
and H3K4me3). However, H3K27me3, which is a bivalent histone
marker, is widely distributed through the KSHV genome (Toth
et al., 2010), meaning that the genome is poised for reactivation.
Furthermore, the treatment of specific histone demethylases of
H3K27me3 such as JMJD3 and UTX could induce the lytic reac-
tivation. Immunoprecipitation of methylated DNA assay showed
that the KSHV genome was methylated during latency (Gunther
and Grundhoff, 2010). Gunther and Grundhoff (2010) suggested
that the CpG methylation process could take a long time to pre-
vail over the genome, and thus could not control early latency.
There are several reports that DNA methylation of viral genomes
is related to the regulation of the gene expression of gammaher-
pesviruses such as EBV and herpesvirus saimiri (HVS; Minarovits,
2006). Heterochromatin formation on the viral genomes, however,
seems to be inconvenient for the rapid induction of lytic repli-
cation. Further investigations are needed to clarify how viruses
are ready for lytic induction if heterochromatin and/or DNA
methylation was formed on the genome.

Viral factors play key roles in maintaining gene expression
profiles in latency. Otherwise, modulation by viral and cellular
factors maintains viral latency. In addition to the recruitment of

FIGURE 1 |Terminal repeat (TR) sequences. The KSHV genome has 40–50 units of TR sequences. TR contains LANA-binding site (LBS) and GC-rich
sequences termed 32GC. It is thought that one of the LBS-32GC sequence is selected as DNA replication origin (ori-P).
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heterochromatin factors on to the genome, LANA itself tends to
repress viral lytic gene expression. LANA physically associates with
recombination signal sequence-binding protein Jκ (RBP-Jκ) and
represses the replication and transcription activator (RTA) pro-
moter through the RBP-Jκ binding site existing within its promoter
(Lan et al., 2005a).

Viral FLICE-inhibitory protein, also known as K13, interacts
with several NF-κB-related signaling proteins and activates the
NF-κB pathways, thus enhancing cell survival (Chaudhary et al.,
1999; Field et al., 2003; Matta et al., 2003, 2007; Matta and Chaud-
hary,2004). It should be noted that the effect of NF-κB signaling on
reactivation depends on cellular context (Grossmann and Ganem,
2008) and seems to be regulated by an intricate balance within
the cellular environment. Previous studies, however, demonstrated
that v-FLIP repressed the RTA promoter by activating NF-κB
binding to the cognate sequence, but in that case it deregulates
vIL-6 and hIL-6 expression (Zhao et al., 2007). The reactiva-
tion is initiated by RTA, which is a lytic switch protein and a
homolog of EBV BRLF1 (Liang et al., 2002). The RTA promoter
region is highly responsive to 12-O-tetradecanoylphorbol 13-
acetate (TPA) or phorbol 12-myristate 13-acetate (PMA), sodium
butylate (NaB), and trichostatin A (TSA), and is associated with
several histone deacetylase proteins such as HDAC, which leads to
chromatin remodeling of a nucleosome and then regulates KSHV
reactivation from latency (Lu et al., 2003). RTA activates various
viral genes through direct binding with RTA-responsive elements
existing within the K8 and ORF57 promoters (Byun et al., 2002)
and also through indirect mechanisms on RTA itself and vIRF-1
(Nishimura et al., 2001; Sakakibara et al., 2001; Ueda et al., 2002).
Although RTA is a strong transactivator and inducer of lytic repli-
cation, it also enhances LANA expression and then is involved in
the establishment of latency in the early infection phase (Lan et al.,
2005b). This feedback mechanism explains the low efficiency of
lytic replication and the generation of complete viral particles in
KSHV-infected cell lines.

MicroRNAs (miRNAs) are single-stranded and 20- to 23-
nucleotide RNA molecules that are involved in gene expression
(Bartel, 2004; Bartel and Chen, 2004). Recent studies have high-
lighted the critical role of viral microRNAs (miRNAs) in the
maintenance of KSHV latency (for review, see Ganem and Ziegel-
bauer, 2008; Boss et al., 2009; Lei et al., 2010a). The KSHV genome
contains 17 miRNAs that are clustered and located in the intra-
genic region between kaposin and v-FLIP (Cai et al., 2005; Pearce
et al., 2005; Samols et al., 2005; Cai and Cullen, 2006). Surpris-
ingly, a new proteomic approach suggests that a single miRNA can
directly lead to the suppression of the synthesis of hundreds of
proteins at both mRNA and translation levels, although the level
of suppression is mild (Baek et al., 2008; Selbach et al., 2008).

Kaposi’s sarcoma-associated herpesvirus miRNAs are reported
to regulate, directly or indirectly, various factors including lytic
genes (Murphy et al., 2008; Bellare and Ganem, 2009) and cellular
factors such as NF-κB and IκBα, the latter of which is directly reg-
ulated by KSHV miR-K1 (Lei et al., 2010b) and Bcl-2 associated
factor (BCLAF1) as a target of miR-K5 (Ziegelbauer et al., 2009).
miR-K12-7 (Lin et al., 2011) and miR-K9 (Bellare and Ganem,
2009) directly target RTA and contribute to the maintenance
of latency. miR-K12-11 shows remarkable homology to cellular

miR-155;it inhibits a BACH-1 3′UTR-containing reporter and
downregulates the expression of BACH-1, which is a broadly
expressed transcriptional repressor that regulates genes involved
in the hypoxia response (Gottwein et al., 2007; Skalsky et al.,
2007). Thrombospondin 1 (THBS1), an inhibitor of angiogenesis,
is targeted by multiple KSHV miRNAs, such as miR-K12-1, miR-
K12-3-3p, miR-K12-6-3p, and miR-K12-11(Samols et al., 2007).
miR-K1 represses the expression of p21 via the 3′UTR and attenu-
ates p21-mediated cell cycle arrest during KSHV latency (Gottwein
and Cullen, 2010).

CELLULAR DNA LICENSING AND VIRAL DNA REPLICATION IN
LATENCY
Because eukaryotic DNA replication is strictly regulated by a
licensing mechanism, the genome is replicated only once per cell
cycle. DNA replication starts at multiple sites on a chromosome;
these sites are called the replication origin, whose number is pre-
dicted to be 30,000 ∼ 50,000 (Huberman and Riggs, 1966). The
genome size of eukaryotes is about 107 to 1011 bp (fungi to mam-
mals), and the entire DNA must be replicated within a limited
time (Wyrick et al., 2001). To achieve this, many proteins partic-
ipate in DNA replication licensing, including origin recognition
complex (ORC), Cdc6, Cdt1, and mini-chromosomal mainte-
nance (MCM) helicase, and so on. First, ORC recognizes and binds
to the origins and then recruits a Cdc6 followed by the associa-
tion of another replication protein, called Cdt1. Finally, the MCM
helicase is loaded onto the complex to establish a complete pre-
replication complex (pre-RC) (reviews in Nishitani and Lygerou,
2002; DePamphilis, 2003, 2005).

KSHV ORIGIN OF REPLICATION IN LATENCY
The features of DNA replication origins have been reported.
Although there are no consensus sequences for the replication
origin, recent studies showed that CpG islands, promoter regions,
DNA topology, and nucleosome positioning are involved in origin
selection (Mechali, 2010). Saccharomyces cerevisiae (S. cerevisiae)
has autonomous replication sequence (ARS) elements that are
specific 12 bp consensus sequences and has origin activity (Stinch-
comb et al., 1979; Bell and Stillman, 1992). S. pombe ARS also has
been identified, but it does not share a consensus sequences as
in S. cerevisiae (Segurado et al., 2003; Dai et al., 2005; Heichinger
et al., 2006). Substitution experiments showed that the ARS region
could be replaced with a 40-bp poly (dA/dT) fragment (Okuno
et al., 1999).

In higher eukaryotes, no consensus sequences are identified,
though known origin sequences have been reported (for review,
see Aladjem, 2004). It is not yet known why there is no consensus
sequence among ORC binding sites of higher eukaryotes, or how
they are selected. Replication origins should be determined by dif-
ferent mechanisms, and recent genome-wide analyses show that
the origin sequences are closely related with transcriptional regu-
latory elements and CpG islands but not sequence motifs (Cadoret
et al., 2008; Sequeira-Mendes et al., 2009).

The KSHV genome appears to replicate once per cell cycle
during latency, as cellular DNA replication. The number of the
genome copies is supposed to be 50–100 per KSHV-infected PEL
cell and the copy number is kept at the same number, at least

www.frontiersin.org January 2012 | Volume 3 | Article 7 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Virology/archive


Ohsaki and Ueda KSHV genome replication in latency

appears to be kept at the same copy number (Cesarman et al.,
1995; Ballestas et al., 1999; Ueda et al., 2006). This observation
suggests that the KSHV genome uses cellular replication machin-
ery so that viral DNA replication synchronizes with the cell cycle.
The KSHV origin of replication in latency, called ori-P, consists
of two LANA-binding sites (LBS), in which LBS1 has a higher
affinity with LANA (Garber et al., 2002), and the following 32 bp
GC-rich segment (termed 32GC in this manuscript) and the ori-P
is in the TR region of the KSHV episome (Hu and Renne, 2005;
Figure 1). LANA directly binds to LBS and supports viral DNA
replication (Garber et al., 2002; Hu et al., 2002; Fejer et al., 2003;
Grundhoff and Ganem, 2003). The components of pre-RC, such
as ORC, Cdc6, and MCM were recruited to the TR sequences in
a LANA-dependent manner (Lim et al., 2002; Ohsaki et al., 2004;
Stedman et al., 2004; Verma et al., 2006).

In the case of EBV ori-P, the dyad symmetry (DS) and fam-
ily of repeats (FR) are essential for the ori-P activity (Reisman
et al., 1985), though FR rather works for viral genome mainte-
nance. The DS element contains two EBNA1 binding sites and is
the functional replicator in the presence of EBNA1 (Wysokenski
and Yates, 1989; Harrison et al., 1994). The FR element contains
20 copies of a 30-bp repeat sequence and has an essential role in
the long-term maintenance of ori-P-containing plasmid (Krysan
et al., 1989; Marechal et al., 1999). It is suggested that cellular
replication factors bind to the sequences adjacent to EBNA1 bind-
ing sites through the interaction with EBNA1 (Yates et al., 2000;
Koons et al., 2001). A chromatin immunoprecipitation assay sug-
gested that the ORC complex and EBNA1 bound to chromatin
and ori-P in G0-arrested cells (Ritzi et al., 2003). Nucleosome
assembly proteins, such as NAP1 and TAF-I, interact with EBNA1
and are recruited to the ori-P regions. These proteins contribute
to the activation of transcription, although TAF-I negatively reg-
ulates DNA replication (Wang and Frappier, 2009). The EBNA1
LR1 and LR2 domains are critical for the interaction with ORC
and for disrupting this association by binding with G-rich RNA
(Norseen et al., 2009). Thus, the latent replication of KSHV and
EBV totally depends on cellular DNA replication machinery with
the only exception of the requirement of LANA and EBNA1,
respectively.

HOW LANA WORKS
LANA is a nuclear protein with 1162 amino acids. It shows a func-
tional homology to EBNA1 of EBV and, in part, to E1/E2 of human
papillomavirus and to SV40 large T antigen. Especially, the C-
terminus of LANA and that of EBNA1 conserve secondary and
tertiary structures (Han et al., 2010). The N-terminus of LANA
contains a chromosome binding site (CBS) and a nuclear local-
ization signal (NLS), and the C-terminus contains a DNA binding
domain and a dimerization domain, called DBD. In the DBD, there
appears to be another NLS, but this NLS is rather cryptic and weak,
since an N-terminal deleted mutant, which contains 108–1162 aa,
is localized in the cytoplasm (Ohsaki et al., 2009). The central
region is composed of a proline-rich region, an aspartate (D)-
and glutamate (E)-rich repetitious region, and a glutamine-rich
domain (Garber et al., 2001; Piolot et al., 2001; Figure 2). DBD
(923–1162 aa) is necessary and partially sufficient to support ori-
P replication compared to the full-length LANA (Hu et al., 2002;

Ohsaki et al., 2009), and when considering their expression levels
in in vitro study.

Many studies show that LANA binds to LBS and recruits ORC
to the origin as described above. What is the mechanism by which
ORC is recruited to ori-P? One possible mechanism is that LANA
directly interacts with ORC so that ORC is loaded to the origin
(Lim et al., 2002; Stedman et al., 2004; Verma et al., 2006). If
LANA could directly interact with ORC and recruit to the origin,
we are confronted with this question: why is 32GC required for
ori-P activity despite LANA’s ability to bind to the ori-P? It could
be that the 32GC is required to load ORC and the other pre-RC
components to the region next to LBS, although the underlying
molecular mechanism is not yet known. Further study is needed
to resolve this question.

LANA is highly expressed in KSHV-related malignancies, and
plays an essential in episomal maintenance. It interacts with mul-
tiple cellular proteins, including tumor suppressors such as p53
(Friborg et al., 1999) and Rb (Radkov et al., 2000), as well as
transcription factors such as ATF4/CREB2 (Lim et al., 2000) and
STAT3 (Muromoto et al., 2006), chromatin-associated proteins
such as HP1 (Lim et al., 2003), histone H2A/B (Barbera et al.,
2006b), MeCP2 (Krithivas et al., 2002; Matsumura et al., 2010),
and Brd4 (Ottinger et al., 2006), in addition to signal trans-
ducers such as GSK-3b (Fujimuro and Hayward, 2003) and so
on (Figure 2). Almost all of these proteins interact with the C-
terminal domain of LANA, implying the functional importance of
this domain. However, careful analysis of protein–protein interac-
tion is required, because only DBD sometimes shows non-specific
binding with other proteins and may exhibit different properties
from the full-length LANA (our personal observation).

REGULATION OF KSHV ori-P ACTIVATION
The origin number varies from species to species. In mammals,
it, 30,000–50,000 origins are thought to exist at each cell cycle
(Huberman and Riggs, 1966). However, not all of these origins
start DNA synthesis at the same time. Some origins are activated
early in the S phase, whereas others are activated in the late S
phase; that is, the DNA replication timing is controlled (Dimitrova
and Gilbert, 1999; Cimbora et al., 2000). How is the timing of
DNA replication determined? Some groups have provided possi-
ble answers to this question. It was reported that heterochromatin
could change the timing of DNA replication by transgene inser-
tion into a mammalian genome (Lin et al., 2003). Sir proteins,
which are silencer proteins, can delay replication and correlate
with transcriptional silencing (Zappulla et al., 2002). Thus, var-
ious studies suggest that heterochromatin modulates replication
timing (Goren et al., 2008; Klochkov et al., 2009; Schwaiger et al.,
2010) and EBV replication in latency occurs in mid-late S phase
(Zhou et al., 2009). In the case of KSHV, the replication timing
of the viral genome is not yet known. Considering that ori-P is
present in the proximity of heterochromatin because of LANA-
dependent accumulation of heterochromatin, DNA replication of
the KSHV genome may start at the middle or late S phase.

The frequency of origin usage also differs from origin to origin;
some origins are used in every cell cycle, whereas others are used
rarely. Various studies including in Drosophila, Xenopus, and mam-
mals demonstrate how specific origins are selected, but several
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FIGURE 2 | Organization of LANA and its interacting proteins. The top
Figure shows the organization of the LANA protein. LANA has two nuclear
localization signals (NLS): one at the N-terminal region and the other at the
C-terminal region. The former is a primary NLS and the latter is cryptic. A
chromosome binding site (CBS) was reported to be present at the N-terminal
end as a histone H1 binding region. The mid-part of LANA consists of a very
peculiar amino acid composition called a proline-rich region (P-rich), an

extremely aspartate (D)- and glutamate (E)-rich region (DE) and a glutamine
(Q)-aspartate (D)-glutamate (E)-rich region (QQQDE/QQQQDE).
LEE(D)QEQ(V)E looks like a leucine zipper but has not been recognized as a
functional determinant. The C-terminal region has roles in both
homo-dimerization and DNA binding to LBS. The main interacting proteins
with LANA are listed below. The C-terminal region seems to be a region that
interacts with many proteins.

questions about the decision mechanism of origins remain unan-
swered. Considering the genome size of this virus, one origin is
enough to complete replication within the S phase; and because
of the existence of “origin interference” by the ATR and ATM
pathways (Shechter et al., 2004), a single origin must be chosen.

The micrococcal nuclease digestion pattern at TR in G1-
arrested cells leads to change, suggesting that the chromatin struc-
ture became more accessible to enzymatic digestion (Stedman
et al., 2004). Therefore, the chromatin structure may be changed
by the recruitment of the replication machinery during the late G1
phase.

A recent study shows that the cellular deubiquitylating enzyme
USP7 stimulates EBNA1 binding to its recognition sites so that
histone modification at the EBV ori-P is changed by EBNA1
mediating the recruitment of USP7 (Sarkari et al., 2009).

THE ROLES OF NUCLEAR ARCHITECTURES
NUCLEAR MATRIX AS A SCAFFOLD FOR DNA REPLICATION AND
TRANSCRIPTION
The nucleus consists of a well-organized structure and is highly
complex. The structures of nuclear matrix proteins such as

lamins, nuclear mitotic apparatus (NuMA), hnRNP, and so on,
are important for the organization of chromatin, DNA replica-
tion, and transcription (Dechat et al., 2008). The nuclear matrix,
isolated by Berezney and Coffey (1974), is believed to support the
spatial distribution of several nuclear factors, such as DNA repli-
cation machinery and transcription factors. The nuclear matrix
fraction contains DNase I-resistant and high salt-resistant pro-
teins. Because the nuclear matrix can be visualized only after
chromatin extraction, there has been a debate that such a nuclear
matrix is an essential component of in vivo nuclear architec-
tures. In previous studies, replication origins have come to the
nuclear matrix (van der Velden et al., 1984; Amati and Gasser,
1990; Adom et al., 1992; Brylawski et al., 1993; Fallaux et al., 1996).
Eukaryotic DNA is organized into DNA loops generated by the
attachment of chromatin to the nuclear matrix via specific regions,
referred to as scaffold/matrix attachment regions (Pardoll et al.,
1980; Vogelstein et al., 1980; Laemmli et al., 1992; Roberge and
Gasser, 1992). DNA loop formation is essential for DNA repli-
cation, transcription, and chromosomal packaging (Gasser and
Laemmli, 1987; Berezney et al., 1995; Bode et al., 1995; Nicker-
son et al., 1995; Razin et al., 1995; Jackson, 1997; Volpi et al.,
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2000; Mahy et al., 2002; Sumer et al., 2003; Marenduzzo et al.,
2007).

In EBV, both the latent ori-P and the lytic ori-Lyt are bound
to the nuclear matrix (Jankelevich et al., 1992; Mattia et al.,
1999). EBV nuclear antigen leader protein (EBNA-LP) is a nuclear
matrix-associated protein, and its nuclear matrix-targeting signal
is a 10-aa segment, which also functions as a NLS (Yokoyama
et al., 2001). However, this is not the case for LANA, because
it was reported that C-terminal truncation up to 1128 aa could
not be localized in a high salt-resistant fraction (nuclear matrix
fraction), but the C-terminal region (1129–1143 aa) is high salt
extractable (Viejo-Borbolla et al., 2003). We previously showed
that the N-terminal region up to 107 aa is localized in nucleo-
cytoplasmic and chromatin fractions (Ohsaki et al., 2009). The
localization to the nuclear matrix fraction of LANA might
depend on the conformation of LANA or post-translational
modifications.

On the other hand, a cell fractionation assay has shown that
cellular pre-RC components, such as ORC2, Cdc6, and Cdt1,
preferentially localize in the nuclear matrix fraction in a cell cycle-
dependent manner, and LANA itself also can localize in the nuclear
matrix fraction. Accordingly,TR accumulates in the nuclear matrix
fraction during the late G1 phase, suggesting that LANA recruits
the ori-P to the nuclear matrix, so that cellular replication machin-
ery is abundant and available for viral DNA replication during
latency (Ohsaki et al., 2009; Figure 3).

GENOME SEGREGATION MECHANISMS OF KSHV IN
LATENCY
The same copy number of KSHV genomes appears to be main-
tained in daughter cells after every cell division (Ballestas et al.,
1999; Ueda et al., 2006), indicating that a strict genome mainte-
nance mechanism is working. In the KSHV-infected PEL cell lines,
LANA associates with a condensed mitotic chromatin (Ballestas

et al., 1999; Cotter and Robertson, 1999; Tetsuka et al., 2004). It
was reported that MeCP2, a methyl CpG-binding protein, inter-
acts with the N-terminal of LANA and that DEK protein interacts
with the C-terminal of LANA. These two independent interac-
tions are involved in the tethering of LANA to chromosomes
(Krithivas et al., 2002). Various studies have reported the inter-
action between LANA and multiple cellular proteins associated
with chromatin.

Brd4, which is a member of the BET family that carries two bro-
modomains and associates with mitotic chromosomes, interacts
with LANA on mitotic chromosomes (You et al., 2006). It has also
been reported that core histones such as H2A and H2B are essen-
tial for LANA N-terminal chromosome binding (Barbera et al.,
2006a,b). Furthermore, LANA interacts with Brd2/Ring3, which is
a member of the BET family of double bromodomain-containing
genes and contains two tandem bromodomains (Viejo-Borbolla
et al., 2005).

Xiao et al. (2010) reported that LANA is associated with
centromeres via the formation of complexes with Cenp-F and
Bub1, which are kinetochore-associated proteins. This suggests
that LANA preferentially interacts with kinetochore-associated
proteins and that its association is critical for segregation into
daughter cells. Though the interaction of LANA with kinetochore
factors might interfere with correct spindle formation, it suggests
that LANA should support viral genome segregation along with
condensed chromatin.

A NuMA plays a critical role in the nuclear architecture in the
interphase. After nuclear envelope breakdown in mitosis, NuMA
is hyperphosphorylated by p34cdc2 and is distributed at spindle
poles, where it remains until the anaphase and plays an essential
role in tethering spindle microtubules to each pole (Merdes et al.,
1996; Gehmlich et al., 2004). Although NuMA drastically alters
the localization and functions in the interphase and M phase, bio-
chemical fractionation analysis shows that NuMA is localized in

FIGURE 3 | A model for latent DNA replication of KSHV. LANA can associate with the nuclear matrix and can directly bind to the ori-P so that LANA can
recruit the ori-P to the nuclear matrix. Cellular DNA replication machinery assembles to the nuclear matrix in a cell cycle-dependent manner, and is therefore
available for viral DNA replication.
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the insoluble nuclear matrix fraction in both phases. A recent study
demonstrated that the C-terminus of LANA was co-localized with
NuMA during the interphase and that the knockdown of NuMA
expression caused the disruption of genome segregation and TR-
containing plasmid maintenance (Bhaumik et al., 2008) and thus,
KSHV genome segregation is disrupted in the absence of NuMA.
Through siRNA and knockdown strategies in mice, NuMA has
been shown to be an essential protein for early embryogenesis and
cellular proliferation (Harborth et al., 2001; Silk et al., 2009), and
it is thus unclear how the interaction with LANA actually works
for viral genome segregation.

In either case, LANA has the capability of associating with vari-
ous cellular proteins so that KSHV can maintain the genome stably
if the cells are divided into two daughter cells. Nuclear matrix
proteins function as a scaffold of DNA replication, transcription,
and repair during the interphase, and also play an essential role
in the segregation of condensed chromosomes in mitosis. Con-
densed chromosomes include, for example, NuMA, which can
behave as a component of a spindle pole during mitosis, or Cenp-
F, which is a nuclear matrix protein during the interphase and is
distributed to kinetochores in mitosis. Taken together, the previ-
ous and present results suggest that nuclear architectures such as
the nuclear matrix have essential roles not only in DNA replication
and transcription but also in genome segregation during mitosis
(Figure 4).

CONCLUSION AND PERSPECTIVES FOR FUTURE ANALYSIS
The importance of nuclear architecture is increasingly recognized
as important in various nuclear events, such as DNA replication,

transcription, and DNA repair. It is well accepted that the chro-
mosomes are organized into distinct territories in the interphase.
These distributions of chromosomes are closely related to the
place for active or inactive transcription, the presence of DNA
replication machinery, and the formation of higher-order struc-
tures of chromatin loops. DNA looping appears to be mediated by
attachment to the nuclear matrix and thus achieves transcriptional
control (Ostermeier et al., 2003). Other studies have suggested that
the gene-rich chromosomes are frequently located in the nuclear
interior. On the other hand, gene-poor chromosomes are located
in the nuclear periphery (Tanabe et al., 2002; Reddy et al., 2008).
A recent study shows that the transcriptional silencing might be
accomplished by the binding of a specific promoter region to lamin
type A (Lee et al., 2009). It is reported that replication foci at the
middle to late S phase are also preferentially located toward the
nuclear periphery, whereas early replication foci are located in the
nuclear interior (Grasser et al., 2008) or throughout the nucleus
(Izumi et al., 2004).

The spatial and temporal analyses using live-cell imaging
revealed that replication forks are generated at the same origin and
are closely associated during replication (Kitamura et al., 2006).
Interestingly, two replication loci, located at the same distance
from the origin, were in closer proximity when DNA replication
took place at these loci, after which they moved apart from each
other after replication. It is speculated that the replication fac-
tory anchors some region and that replicated DNA can move away
from a replication factory immediately after DNA synthesis. This
anchored region may be a nuclear scaffold such as the nuclear
matrix.

FIGURE 4 | A model for KSHV genome segregation. The KSHV genome
associates with the nuclear matrix through LANA, which exhibits nuclear
matrix localization activity. DNA replication factories are supposed to anchor
to the nuclear matrix, and DNA replication of the KSHV genome occurs on the
nuclear matrix at the G1/S phase. Nuclear architectures, including the nuclear
matrix, are disrupted at the prophase (nuclear envelope breakdown), and

nuclear matrix proteins drastically change these functions and distributions;
such as spindle pole or kinetochore proteins. It has been reported that KSHV
LANA interacts with various proteins such as MeCP2, Brd2, Brd4, Histone
H2A/B, Cenp-F, NuMA, Bub1, and so on. These interactions can associate a
sister-chromatid with LANA, and thus KSHV genomes can separate into two
daughter cells.
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The cellular environment is critical for viral survival, for
which viruses make full use of the cellular machinery. The analy-
sis of insoluble proteins, including nuclear matrix proteins, is
difficult for the investigation of protein–protein and protein–
DNA interactions in vitro, because the conditions of in vitro
experiments always include soluble fractions. To overcome these
problems, recent new approaches, such as genome-wide analysis

using chromatin immunoprecipitation or live-cell imaging that
reflects the in vivo environment, may be more powerful and
accurate.

As for KSHV genome replication and maintenance, it would be
first necessary to clarify how LANA is involved in both. Consider-
ing the real and actual cellular environments, we need to develop
more powerful tools to know what the virus does in cells.
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