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Abstract 

Background:  Evolutionary conservation is an invaluable tool for inferring functional significance in the genome, 
including regions that are crucial across many species and those that have undergone convergent evolution. Compu-
tational methods to test for sequence conservation are dominated by algorithms that examine the ability of one or 
more nucleotides to align across large evolutionary distances. While these nucleotide alignment-based approaches 
have proven powerful for protein-coding genes and some non-coding elements, they fail to capture conservation 
of many enhancers, distal regulatory elements that control spatial and temporal patterns of gene expression. The 
function of enhancers is governed by a complex, often tissue- and cell type-specific code that links combinations of 
transcription factor binding sites and other regulation-related sequence patterns to regulatory activity. Thus, func-
tion of orthologous enhancer regions can be conserved across large evolutionary distances, even when nucleotide 
turnover is high.

Results:  We present a new machine learning-based approach for evaluating enhancer conservation that leverages 
the combinatorial sequence code of enhancer activity rather than relying on the alignment of individual nucleo-
tides. We first train a convolutional neural network model that can predict tissue-specific open chromatin, a proxy for 
enhancer activity, across mammals. Next, we apply that model to distinguish instances where the genome sequence 
would predict conserved function versus a loss of regulatory activity in that tissue. We present criteria for systemati-
cally evaluating model performance for this task and use them to demonstrate that our models accurately predict 
tissue-specific conservation and divergence in open chromatin between primate and rodent species, vastly out-
performing leading nucleotide alignment-based approaches. We then apply our models to predict open chromatin 
at orthologs of brain and liver open chromatin regions across hundreds of mammals and find that brain enhancers 
associated with neuron activity have a stronger tendency than the general population to have predicted lineage-
specific open chromatin.

Conclusion:  The framework presented here provides a mechanism to annotate tissue-specific regulatory function 
across hundreds of genomes and to study enhancer evolution using predicted regulatory differences rather than 
nucleotide-level conservation measurements.
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Background
The study of conservation has had a tremendous impact 
in multiple areas of mammalian biology. When a new 
genome is sequenced, conservation is applied to provide 
high-quality annotations of candidate exons, introns, 
promoters, and other likely functional genomic regions 
[1]. Regions of the human genome conserved across 
other primates or mammals show a stronger enrich-
ment for disease-associated loci than any other evalu-
ated category of regions [2]. Conversely, regions of the 
human genome that display accelerated evolution have 
been implicated in human-specific adaptation [3]. In 
endangered species, molecular conservation has been 
applied predict which regions of low heterozygosity 
may be impacting fitness [4]. Conservation has also 
been applied to find regions of the genome associated 
with the evolution of complex phenotypes across mam-
mals and vertebrates more broadly, including the loss 
of limb function [5], loss of eyesight [6], and longevity 
[7]. The powers of these studies are still growing, with 
many consortia, including the Vertebrate Genomes Pro-
ject [8], the Genome 10 K Project [9], the Bat1K Project 
[10], and the Zoonomia Consortium [4], sequencing, 
assembling, and aligning [11] genomes from hundreds 
of mammals, including endangered species and species 
that live in remote parts of the world. Using these data, 
we can investigate conservation by comparing the DNA 
sequences of species whose most recent common ances-
tors lived tens of millions of years ago.

The methods used to infer conservation across spe-
cies, including those applied to many of the challenges 
described above, typically rely on nucleotide-level con-
straint. They generally begin by aligning the nucleo-
tides of multiple genomes together [12, 13]. From those 
alignments, PhyloP calculates nucleotide-level con-
straint relative a neutral model of evolution, which can 
be aggregated across broader regions to identify sig-
natures of conservation or acceleration [3, 13, 14]. To 
study the diversity of mammalian phenotypes, nucleo-
tide alignments are often modeled in the context of a tree 
structure to look for signatures of positive or negative 
selection [15–18]. Once nucleotide-level selection has 
been inferred, additional techniques have been applied to 
link those patterns of selection to convergent evolution, 
instances where a specific phenotype has evolved inde-
pendently in multiple lineages [6, 18, 19].

As new genomic resources have become available and 
computational techniques have advanced, it has become 
clear that a large component of phenotypic evolution 
is mediated by differences in cis-regulatory elements, 
many of which are enhancers that control gene expres-
sion [20–22]. Within the human population, enhancers 
show a strong enrichment for disease-associated genetic 

variants [23, 24]. Across species, nucleotide-level selec-
tion in enhancers has been associated with the loss of 
eyesight, hindlimbs, and external testes [6, 19, 25, 26], 
and, in the last few years, with craniofacial development 
[27], response to ocean cooling [28], and vocal learning 
[29]. Numerous other complex phenotypes have been 
linked to gene expression differences across species, 
including domestication [30, 31], longevity [32–34], brain 
size [35], echolocation [36], and monogamy [37]. While 
nucleotide-level selection in enhancers is being applied 
to study the evolution of some of these phenotypes [38], 
recent studies of enhancers across species suggest a 
model of evolution in which nucleotide-level conserva-
tion of enhancers can be low in spite of enhancers main-
taining their function [39, 40].

Much of our knowledge of enhancers comes from regu-
latory genomics measurements that are associated with 
enhancer activity, especially the Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-seq) and 
the DNase hypersensitivity assay for open chromatin and 
chromatin immunoprecipitation sequencing (ChIP-Seq) 
for the histone modifications H3K27ac and H3K4me1 
[41–44]. Studies involving these assays have demon-
strated that enhancers, relative to genes, are substantially 
more tissue- or cell type-specific and generally less con-
served across species [45–48]. Within a given cell type or 
tissue, a combinatorial code of transcription factor (TF) 
binding motifs and other sequence patterns determines 
the ultimate regulatory activity of enhancers [49–51]. In 
a striking example of this, a recent study found that an 
Islet enhancer’s developmental function remains remark-
ably conserved across the 700 million years of evolution 
between mammals and sponges by maintaining a similar 
set of TF motifs despite negligible detectable conserva-
tion at the nucleotide level [39]. This understanding is 
further supported by studies of TF binding across spe-
cies that display a large turnover in individual binding 
sites [52–54], even though gene expression is often highly 
conserved, and genes with highly conserved expression 
often have conservation in the TFs whose motifs occur 
within their candidate enhancers [55]. Therefore, to 
study conservation of many enhancers, new methods are 
required that link genome sequence differences at candi-
date enhancers to differences in enhancer function.

Advances in the application of machine learning tech-
niques to regulatory genomics enable us to evaluate 
conservation at the level of the regulatory code rather 
than the alignment of individual nucleotides. In one 
recent study, support vector machines (SVMs) and con-
volutional neural networks (CNNs) were able to predict 
which 3 kb regions have the enhancer-associated histone 
modification H3K27ac in brain, liver, and limb tissue of 
human, macaque, and mouse [56]. Importantly, the study 
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found that models trained in one mammal achieved high 
accuracy in another mammal in the same clade and in 
another mammal in a different clade, suggesting that the 
regulatory code in all three of these tissues is highly con-
served across mammals [57]. Another study obtained a 
similar result for regions associated with H3K27ac [58], 
and two other studies have obtained similar results using 
another proxy for enhancer activity – open chromatin 
regions (OCRs) [59, 60]. One of these studies found that 
training CNNs on OCRs from multiple mammals had 
better performance than training CNNs on OCRs from 
a single mammal, albeit using 131,072  bp sequences as 
input. The boost in power from incorporating multiple 
species generalized to predicting TF binding strength 
from ChIP-seq data and gene expression from RNA-
seq data [59]. An additional study found that a com-
bined CNN-recurrent neural network [61, 62] trained 
on sequences underlying 500  bp OCRs from melanoma 
cell lines in one species can accurately predict melanoma 
cell line open chromatin in other species at a wide range 
of genetic distances from the training species, including 
in parts of the genome with low sequence conservation 
between the training and evaluation species [60].

While these studies represent major advances in cross-
species enhancer prediction, they have yet to compre-
hensively demonstrate an ability to identify sequence 
differences between species that are associated with 
differences in regulatory genomic measurements of 
enhancer activity, which is crucial for their application 
as a conservation metric (Table 1). In fact, an additional 
study trained SVMs to predict liver enhancers using 
dinucleotide-shuffled candidate enhancers as nega-
tives. While the overall performance was good, human 
enhancers whose orthologs are active in Old World 
monkeys but not New World monkeys were predicted to 
have consistent activity across all primates, showing that 
models with good overall performance do not always 

work well on enhancer orthologs whose activities differ 
between species [63].

To investigate the feasibility of accurately predicting 
candidate cis-regulatory element differences across spe-
cies, we chose to focus on OCRs, which are only a proxy 
of regulatory activity, but whose high resolution has the 
potential to identify specific genome sequence differ-
ences associated with putative regulatory activity. We 
leveraged new, controlled open chromatin experiments 
conducted by our laboratory [64] and trained a set of new 
models to predict OCR differences across species (Fig. 1). 
We evaluated model performance using new criteria 
that we developed for this task, which focus on the abil-
ity to predict similarities and differences across species 
and tissues rather than the large number of regions that 
are consistently open or closed (Fig. 1b). We also devel-
oped a novel method for associating previously identified 
candidate enhancer sets with predicted lineage-specific 
open chromatin and lack of open chromatin, in which 
we clustered OCRs based on their predicted open chro-
matin and identified clusters overlapping candidate 
enhancer sets more than would be expected by chance. 
While we developed our methods and evaluation crite-
ria for open chromatin, they can be applied to any high-
resolution measurement of enhancer activity. Thus, our 
methods for evaluating approaches to enhancer ortholog 
enhancer activity prediction and for identifying predicted 
lineage-specific enhancers associated with candidate 
enhancer sets can be applied to any tissue or cell type 
with enhancer activity data from multiple species. This 
allows for putative annotation of enhancer activity across 
the hundreds of new genomes that are being sequenced, 
providing a valuable resource for research communities 
studying gene regulation in non-model organisms, espe-
cially where direct measurements are not feasible. We 
anticipate that this work will encourage researchers to 
develop and properly evaluate new models for predicting 

Table 1  Comparison of evaluation criteria used to evaluate models in candidate enhancer activity conservation prediction papers

Evaluation Criterium Chen et al. 2018 
[57]

Huh et al. 2018 
[58]

Kelley 2020 
[59]

Minnoye et al. 
2020 [60]

This Paper

Evaluation on Genomic Regions not Used in Training ✓  ✓  ✓  ✓  ✓
Evaluation on Species not Used in Training  ✓  ✓  ✓  ✘  ✓
Comparison of Model Trained on One Species to Model 
Trained on Multiple Species

 ✘  ✓  ✓  ✘  ✓

Evaluation of Lineage-Specific Enhancer Accuracy  ✘  ✘  ✘  ✘  ✓
Evaluation of Tissue-Specific Enhancer Accuracy  ✘  ✘  ✘  ✘  ✓
Evaluation of Phylogeny-Matching Correlations  ✘  ✘  ✘  ✘  ✓
Comparison to Conservation Scores  ✘  ✘  ✘  ✘ ✓ 

Identification of Biologically Relevant Enhancers with Cor-
rectly Predicted Lineage-Specificity

 ✘  ✘  ✘  ✓ ✓ 
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enhancer ortholog enhancer activity across species and 
help reveal potential functional roles of lineage-specific 
enhancers, enabling us to uncover transcriptional regula-
tory mechanisms underlying the evolution of mammalian 
phenotypic diversity.

Results
Dataset construction for evaluating approaches for OCR 
ortholog open chromatin prediction
To demonstrate the ability to predict OCR differences 
across species, we curated publicly available data to create 
a dataset of brain OCRs and their orthologs across dozens 
of species (Methods). Specifically, we created two positive 
sets: The first consisted of brain OCRs from Mus muscu‑
lus [66], which we used to evaluate the ability of a model 
trained in one species to generalize to species not used in 
training. The second consisted of brain OCRs from Homo 
sapiens [41, 67, 68], Macaca Mulatta [64], Mus muscu‑
lus [66], and Rattus norvegicus [64]. Rather than focus on 
longer regions, which have been shown to work well in 
some previous studies [57, 59], we used 500 bp regions for 
multiple reasons. 500 bp is the approximate resolution of 
open chromatin, shorter regions help the model to focus 
on the impact of local sequence differences, obtaining 
orthologs of shorter regions in genomes with short scaf-
folds is more often feasible than obtaining orthologs of 
longer regions, and predictions of enhancer activity for 
shorter regions are easier to experimentally validate than 
predictions for longer regions are. We compared perfor-
mance for two measures of conservation scores – Phast-
Cons [13] and PhyloP [14] – and machine learning models 
trained using our mouse-only positive set and each of five 
different mouse negative sets that are similar to those used 
for in previous work for related tasks. These negative sets 
were: (1) flanking regions [69], (2) OCRs from other tis-
sues [59, 60], (3) about ten times as many G/C- and repeat-
matched regions as positives [57], (4) about twice as many 

G/C- and repeat-matched regions as positives, and (5) ten 
dinucleotide-shuffled versions of each positive [70] (Sup-
plemental Fig.  1a). We additionally created a sixth, novel 
negative set to help the model learn signatures of OCRs 
whose open chromatin is not conserved–brain closed 
chromatin regions in a species whose orthologs in another 
species are brain OCRs (called “non-OCR orthologs of 
OCRs,” white regions in left part of Fig. 1). We combined 
this new negative set with the positive set as a part of our 
comparison (Supplemental Fig. 1a). We refer to the com-
bination of the mouse-only positive set and each mouse 
negative set as a “training set.” For a modeling approach, 
we chose CNNs [56, 71] for multiple reasons. CNNs can 
model combinatorial relationships between sequence pat-
terns, and changes in a single TF motif often do not cause 
changes in open chromatin [51]; CNNs do not require an 
explicit featurization of the data, and many sequence pat-
terns involved in brain open chromatin are unknown; 
and CNNs make predictions quickly relative to SVMs, 
the other leading approach for related tasks [57]. While 
we had only tens of thousands of examples for most of 
our training sets (Table 2), multiple previous studies have 
trained CNNs to predict measures of enhancer activity 
with training sets of similar sizes [57, 60, 72], so we were 
optimistic that our datasets would be sufficiently large for 
CNN training. We did the initial comparisons using con-
servation scores generated using mouse reference-based 
alignments [12, 73] and models trained on only mouse 
sequences so that we could evaluate their performance 
on both closely and distantly related species not used for 
training the machine learning models [57].

Best overall performances does not guarantee 
lineage‑specific OCR accuracy
Although all our brain models trained on mouse 
sequences had good overall performance (Supplemen-
tal Notes, Supplemental Fig. 1b), the many OCRs whose 

Fig. 1  OCR Ortholog Open Chromatin Status Prediction Framework Overview. a We trained a convolutional neural network (CNN) for predicting 
brain open chromatin using sequences underlying brain open chromatin region (OCR) orthologs in a small number of species and used the 
CNN to predict brain OCR ortholog open chromatin status across the species in the Zoonomia Consortium. Specifically, we used the sequences 
underlying the orthologs for which we have brain open chromatin data to train a CNN for predicting open chromatin. Then, we used the CNN to 
predict the probability of brain open chromatin for all brain OCR orthologs; predictions are illustrated on the right. Animals for which we do not 
have open chromatin data are in dark gray instead of black to indicate that their brain open chromatin is imputed. While we cannot evaluate the 
accuracy of most of our predictions, obtaining open chromatin data from most tissues in most species is infeasible, so predictions might be the 
best OCR annotations that we can obtain. b To demonstrate that our models can accurately predict whether sequence differences between species 
are associated with open chromatin differences, in addition to the evaluations described in previous work [57], we evaluated our performance 
on species-specific open chromatin for a species not used in model training and clade-specific open and closed chromatin for clades not used in 
model training. Since such regions often comprise a minority of OCR orthologs, models could obtain good overall performance while obtaining 
poor performance on such regions. We also evaluated our performance on tissue-specific open and closed chromatin for a tissue not used in model 
training, where we expect models to predict 0 if model learns sequence signatures related to the tissue used in training. c Full mouse test set and 
lineage-specific OCR accuracy evaluations for mouse sequence-only brain model, illustrating that, even for the best of these models, performance 
on clade-specific and species-specific OCRs and non-OCRs for clades and species not used in training is not as good as performance on the full test 
set. Animal silhouettes were obtained from PhyloPic [65].

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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orthologs are open in many species are much less likely 
to be involved in gene expression differences between 
species than the few whose open chromatin statuses 
differ between species, so we needed to also evalu-
ate our models on the strict subset of likely relevant 
sequences. We therefore created a group of “evaluation 
sets” for evaluating the ability of our models to make 
accurate predictions on these sequences and evaluated 
all of our mouse sequence-only brain models on the 
same evaluation sets. We began by evaluating whether 
our models and conservation scores can obtain “line-
age-specific OCR accuracy,” the ability to predict open 
chromatin differences between species (Fig.  1b). We 
did this by evaluating models for the OCR orthologs 
whose brain open chromatin status differ between spe-
cies, an evaluation not done in previous studies, which 
evaluated only overall performance in species not used 
in training (Table  1) [57]. Specifically, we evaluated 
performance on a few subsets of brain OCRs and non-
OCRs: mouse regions whose open chromatin status 
differ in another species (MouseBr ≠ OtherBr), regions 
in species not used in training whose open chroma-
tin status differ from mouse (HumanBr ≠ MouseBr, 
MacaqueBr ≠ MouseBr, RatBr ≠ MouseBr), regions 
whose open chromatin status differ between closely 
related species used and not used in training 
(MouseBr ≠ RatBr, RatBr ≠ MouseBr), and regions 
whose open chromatin status differ between clades 
used and not used in training (GliresBr ≠ EuarchontaBr, 
EuarchontaBr ≠ GliresBr). We found that all our 
machine learning models achieved decent performance 
for all these criteria. However, the model trained on 
training set with the dinucleotide-shuffled brain OCR 
negatives, which had the best test set performance, 
had the worst or second-worst performance for all 

these evaluation sets (Fig. 1c, Supplemental Figs. 1b-i)), 
demonstrating the necessity of these additional evalua-
tions. Although some models seemed poorly calibrated 
(0.5 might be  a non-ideal positive class threshold) for 
GliresBr ≠ EuarchontaBr and EuarchontaBr ≠ GliresBr, 
re-calibrating models with the positives and our novel 
negative set did not substantially change their rela-
tive performances (Supplemental Notes, Supplemental 
Tables 1–6, Supplemental Fig. 2).

We also compared the predictions of our machine 
learning model trained with our novel negative set 
and of our model trained with the dinucleotide-shuf-
fled negatives to conservation scores for macaque 
regions with different brain activity conservation pat-
terns. The region sets were those open in the mouse 
and macaque orthologs (expect positive prediction), 
those open in the macaque ortholog but closed in the 
mouse ortholog (expect positive prediction), and those 
closed in the macaque ortholog but open in the mouse 
ortholog (expect negative prediction). We found that 
conservation scores tended to be only slightly lower 
for regions whose open chromatin differed between 
species than for regions open in both species. We also 
found that conservation scores could not clearly distin-
guish between whether an OCR’s ortholog was open in 
mouse or in macaque (Fig.  2a-b). On the other hand, 
the machine learning models generally had larger pre-
dictions for macaque open regions than they did for 
macaque closed regions, regardless of whether the 
mouse ortholog was open, though the model trained 
on the dinucleotide-shuffled brain OCR negatives 
predicted that almost half of the macaque non-OCRs 
whose mouse orthologs are OCRs are open in brain 
(Fig.  2c-e). We repeated this same analysis for human 
and rat regions with the same and differing open 

Table 2  Number of positives and negatives used for training, tuning, and testing each model

Model 
Number

Genomes Used in 
Training

Tissue Negative Set Positives (Training, 
Validation, Test)

Negatives (Training, 
Validation, Test)

Negatives:Positives 
(Training, Validation, 
Test)

1 mm10 Brain Flanking Regions 21,594, 2416, 4576 35,640, 4018, 7440 1.65:1, 1.66:1, 1.63:1

2 mm10 Brain OCRs in Other Tissues 21,594, 2416, 4576 427,174, 70,504, 82,172 19.78:1, 29.18:1, 17.96:1

3 mm10 Brain Large G/C- and Repeat-
Matched

21,594, 2416, 4576 175,912, 23,880, 32,008 8.15:1, 9.88:1, 6.99:1

4 mm10 Brain Small G/C- and Repeat-
Matched

21,594, 2416, 4576 35,358, 4776, 6654 1.64:1, 1.98:1, 1.45:1

5 mm10 Brain Dinucleotide-Shuffled 
OCRs

21,594, 2416, 4576 215,940, 24,160, 45,760 10:1, 10:1, 10:1

6 mm10 Brain Non-OCR Orths. of OCRs 21,594, 2416, 4576 25,086, 3456, 4694 1.16:1, 1.43:1, 1.03:1

7 mm10 Liver Non-OCR Orths. of OCRs 32,498, 4032, 7752 22,890, 2994, 4434 1:1.42, 1:1.35, 1:1.75

8 mm10, hg38, rheMac8, rn6 Brain Non-OCR Orths. of OCRs 74,688, 9036, 15,266 111,206, 14,650, 19,688 1.49:1, 1.62:1, 1.29:1

9 mm10, rheMac8, rn6 Liver Non-OCR Orths. of OCRs 81,886, 10,428, 17,688 67,278, 8680, 14,544 1:1.22, 1:1.20, 1:1.22
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chromatin statuses from mouse and obtained similar 
results (Supplemental Fig. 3, Supplemental Fig. 4a). We 
did additional evaluations to further show that con-
servation scores are significantly inferior to our best 
machine learning models at predicting open chroma-
tin conservation across lineages (Supplemental Notes, 
Supplemental Tables  7–9). These results demonstrate 
the limited ability of conservation scores to reveal if 
open chromatin is conserved and to identify the spe-
cies in which OCRs with open chromatin conserved in 
a strict subset of species are open.

Best overall model performance does not guarantee 
tissue‑specific OCR accuracy
Many known OCRs are in closed chromatin regions 
in the brain [48, 74, 75], so we also need to ensure that 
our models predict that OCRs that are open in only 
non-brain tissues are closed in the brain. We therefore 
also determined if conservation scores and our machine 
learning models achieved high “tissue-specific OCR 
accuracy” (Fig.  1b) – accurate performance on tissue-
specific OCRs and non-OCRs, an evaluation that has not 
been done directly in any previous studies (Table 1). To 
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Fig. 2  Violin Plots for Brain Model Lineage-Specific and Tissue-Specific OCR Accuracy Evaluation in Macaque. Comparison of a PhastCons [13] 
and b PhyloP [14] scores to c-e three different machine learning models’ predictions for brain OCRs with conserved open chromatin across mouse 
and macaque, macaque brain OCRs whose mouse orthologs are closed in brain, macaque brain non-OCRs whose mouse orthologs are open in 
brain, macaque brain OCRs that are closed in liver, macaque brain OCRs that are open in liver (centered on brain peak summits), and macaque 
liver OCRs that are closed in brain. + ’s indicate that values should be large, and -‘s indicate that values should be small. Conservation scores were 
generated from the mm10-based placental mammals alignment [12, 73] and averaged over 500 bp centered on peak summits, where mouse 
peak summits were used for OCRs conserved between mouse and macaque and for OCRs in mouse whose macaque orthologs are closed, and 
mouse orthologs of macaque peak summits were used for other evaluations. All machine learning model predictions were made using macaque 
sequences. The macaque sequences for OCRs conserved between mouse and macaque and for OCRs in mouse whose macaque orthologs are 
closed were centered on macaque orthologs of mouse peak summits, and macaque peak summits were used for other evaluations. Note that the 
models in c and d were trained on only mouse sequences, demonstrating their performance in a species not used in training. Animal silhouettes 
were obtained from PhyloPic [65]. *’s indicate the species from which sequences were obtained for making predictions. Dinuc.-shuf. stands for 
dinucleotide-shuffled, and orths. stands for orthologs
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determine if our models learned sequence patterns asso-
ciated with only brain-specific open chromatin or only 
shared open chromatin across tissues, we evaluated our 
models’ predictions for the subset of brain OCRs that 
do not overlap liver OCRs and the subset of brain OCRs 
that do overlap liver OCRs. Test chromosome predic-
tions from all models for both subsets of the positive set 
were usually close to one (Supplemental Fig. 5a). We also 
evaluated our models’ predictions for the liver OCRs that 
do not overlap brain OCRs, for which we would expect 
negative predictions, and compared this to the predic-
tions on the negatives in the training set. We found that 
predictions on both sets tended to be close to zero. How-
ever, the liver, non-brain open chromatin status predic-
tions from the model trained with dinucleotide-shuffled 
OCR negatives tended to be more evenly distributed 
between zero and one than the liver, non-brain open 
chromatin status predictions for the models trained 
with the other negative sets (Supplemental Fig.  5a). We 
also did a comparison of the performances of models 
with different negatives in their training sets in which we 
limited the positive set to brain OCRs that overlap liver 
OCRs and defined the negatives as liver OCRs that do 
not overlap brain OCRs (MouseBrVsLv, MacaqueBrVsLv, 
and RatBrVsLv). We found that all models worked well 
(AUPRC > 0.6) on mouse as well as on macaque and rat, 
which were not used in training, with the model trained 
on dinucleotide-shuffled brain OCR negatives perform-
ing the worst (Supplemental Fig. 5b), demonstrating the 
value of these new evaluation criteria. The difference in 
performance may be a result of differences between the 
TF motifs learned by the models (Supplemental Notes, 
Supplemental Fig.  6). Calibration with the mouse-only 

training set with our novel negative set had a similar 
effect to calibration for clade-specific open and closed 
chromatin regions (Supplemental Tables 10–12, Supple-
mental Fig. 5c).

We also compared the predictions from the model 
trained with our novel negative set, which was one of 
the best-performing models for these evaluations, and 
the model trained with dinucleotide-shuffled OCR nega-
tives to conservation scores. Unlike the machine learn-
ing model predictions, the conservation scores for brain, 
non-liver OCRs; OCRs in brain and liver; and liver, non-
brain OCRs are similar (Fig. 2a, Supplemental Figs. 2–3), 
demonstrating that conservation scores, in contrast to 
most of our machine learning models, provide little infor-
mation about the tissue-specificity of open chromatin.

Predictions from models of OCR ortholog open chromatin 
status have phylogeny‑matching correlations
We also determined whether our models’ predictions 
have “phylogeny-matching correlations.” We did this 
by making open chromatin predictions at mouse OCR 
orthologs in dozens of species and determining if our 
predictions tend to match what we would expect based 
on the amount of time since the species diverged from 
mouse. All our models had strong performance (Supple-
mental Notes, Supplemental Fig. 7).

Machine Learning Models Trained Using Data 
from Multiple Species Can Accurately Predict OCR 
Orthologs’ Open Chromatin Statuses
Based on other research showing that training models 
with data from multiple species can improve OCR pre-
diction accuracy [59], we trained additional machine 

Table 3  Hyper-parameters for multi-species models (models 8–9)

Hyper-Parameter Hyper-Parameter Value

Number of Filters per Convolutional Layer 350

Width of Convolutional Filters 7

Stride of Convolutional Filters 1

Number of Convolutional Layers 5

Dropout for Each Convolutional Layer 0.2

L2 Regularization for Each Convolutional Layer 0.00001

Max-Pooling Width 26

Max-Pooling Stride 26

Number of Units in First Fully Connected Layer 300

Optimizer Stochastic Gradient Descent

Learning Rate 0.001

Momentum 0.99 (Nesterov)

Batch Size 100

Class-Weighting Fraction of Examples in the Other Class
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learning models using open chromatin data from multi-
ple species. For each of brain and liver, we used the open 
chromatin data from all the species that we had collected 
as positives (four species for brain, three species for liver) 
and the orthologs of all these OCRs in the other species 
for which we had data that did not overlap brain or liver 
open chromatin, respectively, as negatives. Before train-
ing multi-species models, we trained mouse-only models 
for liver and found that they achieved good performance 
for all our criteria (Supplemental Notes, Supplemental 
Figs.  8–9). We then trained brain and liver multi-spe-
cies models (Tables  2–3) and found that they achieved 
high lineage-specific and tissue-specific OCR accuracy, 
where performance was generally better than the per-
formance achieved by any of the models trained on only 
mouse sequences (Figs. 2, 3a-b, Supplemental Fig. 9). We 
also evaluated the multi-species liver model’s ability to 
predict conservation of H3K27ac ChIP-seq and found 

that it worked well (Supplemental Notes, Supplemental 
Table 13). In addition, we determined whether the multi-
species brain and liver models’ predictions had phylog-
eny-matching correlations by using them to predict the 
OCR ortholog open chromatin status of mouse brain 
and liver OCRs, respectively, across Glires and found 
strong negative correlations between divergence from 
mouse and mean OCR ortholog open chromatin status 
predictions (Fig.  3c-d). We also found strong positive 
correlations between divergence from mouse and stand-
ard deviations of OCR ortholog open chromatin status 
predictions (Supplemental Figs.  10a-b). For both these 
models and our mouse-only models, our phylogeny-
matching correlation results could not be fully explained 
by genome quality (Supplemental Notes, Supplemental 
Fig.  11, Supplemental Tables  14–15). Finally, we evalu-
ated our mouse-only and multi-species liver models on 
Laurasiatheria-specific liver OCRs and liver non-OCRs 

Fig. 3  Multi-Species Model Performance. a Performance of multi-species brain model on MultiBr, MultiBrClade, MultiBrSpecies, and MultiBrVsLv 
(Supplemental Tables 20–21). b Performance of multi-species liver model on MultiLv, MultiLvClade, MultiLvSpecies, and MultiLvVsBr (Supplemental 
Tables 20–21). We reported area under the negative predictive value (NPV)-specificity (Spec.) curve instead of the AUPRC because these 
evaluation sets have more positives than negatives. c Divergence from mouse versus mean multi-species brain model predictions across mouse 
test chromosome brain OCR orthologs in Glires. d Divergence from mouse versus mean multi-species liver model predictions across mouse 
test chromosome liver OCR orthologs in Glires. e Performance of mouse-only liver model versus multi-species liver model on MultiLvLauras 
(Supplemental Tables 20–21). Animal silhouettes were obtained from PhyloPic [65]. AUC stands for area under the receiver operating characteristic 
curve, AUPRC stands for area under the precision-recall curve, and MYA stands for millions of years ago. The red curves are the best fit exponential 
function of the form y = aebx. The red dotted lines are the average prediction across test set negatives.
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[76], as no Laurasiatheria were used in training either 
model, and found that the multi-species liver model had 
better performance than the mouse-only liver model 
(MultiLvLauras, Fig.  3e). Like our mouse-only models, 
our multi-species brain and liver models also learned TF 
motifs for TFs that are known to be involved in brain and 
liver, respectively (Supplemental Notes, Supplemental 
Figs.  10c-d). In addition, their predictions were signifi-
cantly more associated with open chromatin conserva-
tion than were conservation scores (Fig. 2, Supplemental 

Notes, Supplemental Figs. 2–3, Supplemental Fig. 9, Sup-
plemental Table 16).

Some of the OCR orthologs for which our multi-spe-
cies brain model outperformed conservation scores 
(i.e., correctly predicted brain open chromatin con-
servation despite low mean sequence conservation or 
correctly predicted lack of brain open chromatin con-
servation despite high mean sequence conservation) are 
near genes that have been shown to play important roles 
in the brain. For example, there is a region on mouse 

Fig. 4  Examples of Mean Conservation Score and Open Chromatin Status Prediction versus Open Chromatin Conservation. a 7-week-old mouse 
cortex and striatum and macaque orofacial motor cortex (“Cortex”) and putamen (“Striatum”) open chromatin signal for a mouse brain OCR 
that is 50,328 bp away from the Stx16 transcription start site (TSS). Experimentally identified and predicted brain open chromatin statuses are 
conserved even though mean mouse PhastCons score is low. b 7-week-old mouse cortex and striatum and macaque orofacial motor cortex 
(“Cortex”) and putamen (“Striatum”) open chromatin signal for a mouse brain OCR that is 144,474 bp away from the Lnpk TSS. Experimentally 
identified and predicted brain open chromatin statuses are not conserved even though mean mouse PhastCons score is high. c Our mouse liver 
open chromatin, mouse liver H3K27ac ChIP-seq, and macaque liver open chromatin signal for a mouse liver OCR that is 24,814 bp away from 
the Rxra TSS. Experimentally identified and predicted liver open chromatin statuses are conserved even though mean mouse PhastCons score is 
low. d Our mouse liver open chromatin, mouse liver H3K27ac ChIP-seq, and macaque liver open chromatin signal for a mouse liver OCR that is 
154,404 bp away from the Fn1 TSS. Experimentally identified and predicted liver open chromatin statuses are not conserved even though mean 
mouse PhastCons score is high. Animal silhouettes were obtained from PhyloPic [65]. Regions are mouse cortex or liver open chromatin peak 
summits ± 250 bp and their macaque orthologs, signals are from pooled reads across biological replicates, and liver H3K27ac ChIP-seq data was 
obtained from E-MTAB-2633 [40].
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chromosome 2 – part of our test set – that has low mean 
sequence conservation according to PhastCons [13] and 
PhyloP [14] but high brain experimentally identified and 
predicted open chromatin conservation between mouse 
and macaque (Fig. 4a). This OCR’s mouse and macaque 
orthologs are located near the gene Stx16. STX16 is 
involved in vesicle trafficking in most tissues, including 
the brain [77], and may play a role in Alzheimer’s disease 
[78]; in fact, its role in axon regeneration is conserved 
between mammals and the roundworm C. elegans [79]. 
Although this open chromatin region near Stx16 has gen-
erally low sequence conservation, running TomTom [80] 
on the 22  bp sequence with high conservation revealed 
a subsequence that is similar to the FOS motif, which is 
also found in the macaque ortholog. Since our machine 
learning model used sequence similarity to the FOS 
motif in making predictions (Supplemental Fig.  10c), 
the machine learning model was likely able to automati-
cally determine that it should use this 22  bp sequence 
in making its prediction. In addition, there is a region 
on mouse chromosome 2 that has high mean sequence 
conservation but low experimentally identified and pre-
dicted open chromatin conservation between mouse 
and macaque (Fig.  4b) and whose mouse and macaque 
orthologs are located near the gene Lnpk. This gene is an 
endoplasmic reticulum junction stabilizer [81] that has 
been shown to play a role in brain and limb development 
[82], and mutations in this gene have been associated 
with neurodevelopmental disorders [83]. It is possi-
ble that this region of the genome near Lnpk has a high 
degree of sequence conservation because it has functions 
in other tissues. Although this mouse OCR near Lnpk has 
generally high sequence conservation, running FIMO 
[84] on the mouse ortholog’s summit ± 250 bp using the 
motifs learned by our multi-species brain model (Supple-
mental Fig. 10c) revealed a motif similar to that of EGR2 
(q-value = 0.00044). In contrast, repeating this process 
on the macaque ortholog summit ± 250 bp did not reveal 
any occurrences of these motifs (q-value of best match 
to any important motif for positive predictions = 0.19, 
q-value of best match to motif similar to EGR2 = 0.62); 
this may explain why the model was able to accurately 
predict this difference in open chromatin. These results 
demonstrate the benefits of using OCR ortholog open 
chromatin status predictions instead of mean conserva-
tion scores for studying the evolution of the expression of 
important genes in a tissue of interest.

In addition, some of the accurate multi-species model 
liver open chromatin conservation predictions disagreed 
with the mean conservation scores. For instance, there is 
a region on mouse chromosome 2 that has high experi-
mentally identified and predicted liver open chromatin 
conservation but low sequence conservation (Fig.  4c) 

and whose mouse and macaque orthologs are located 
near Rxra. This gene is a TF involved in regulating lipid 
metabolism [85–87], TF-MoDISco identified a sequence 
similar to its motif as being important in our liver mod-
els (Supplemental Fig.  8f, Supplemental Fig.  10d), and 
its liver expression is stable across fifteen mammals 
[88]. Although this region near Rxra has generally low 
sequence conservation, the 15  bp segment with high 
conservation is similar to the motif for CTCF accord-
ing to TomTom [80], and that motif is also found in the 
macaque ortholog. Since our machine learning model 
used sequence similarity to the CTCF motif in making 
predictions (Supplemental Fig. 10d), the machine learn-
ing model was likely able to automatically determine 
that it should use this sequence in making its prediction. 
There is also a region on mouse chromosome 1, which 
is also part of our test set, whose mouse ortholog is an 
OCR and macaque ortholog is not an OCR according to 
our data and predictions despite being highly conserved 
(Fig.  4d) and whose mouse and macaque orthologs are 
near Fn1. This gene has been implicated in liver fibrosis 
[89–91], and a multi-species liver RNA-seq study found 
that it has higher expression in mouse liver relative to 
livers of other mammals and birds and lower expression 
in primate livers relative to livers of other mammals and 
birds [92]. For both of these OCRs, the H3K27ac signal 
conservation in the same regions [40] is similar to the 
open chromatin status conservation, suggesting that 
the open chromatin status conservation is indicative of 
enhancer activity conservation (Fig.  4c-d). These results 
suggest that using predicted OCR ortholog open chroma-
tin status instead of conservation is beneficial for under-
standing gene expression evolution in multiple tissues.

Lineage‑specific brain and liver OCRs are associated 
with neuron and liver functions
Since our models can accurately predict lineage-specific 
OCRs, we evaluated whether lineage-specific brain and 
liver OCRs were associated with brain and liver func-
tions. We note that these analyses are not feasible with 
conservation scores because they require measurements 
or predicted measurements of enhancer activity in doz-
ens of species, and conservation scores are currently 
available for only human and house mouse. We did these 
analyses by clustering each of the brain and liver OCRs, 
where the features were the predicted activity in each of 
the Boreoeutheria from the Zoonomia Project [4]. We 
first used k-means clustering to cluster the OCRs into 
thousands of small clusters and then used affinity prop-
agation clustering to cluster the smaller clusters into 
larger clusters. We selected affinity propagation clus-
tering because we did not know how many clusters to 
expect, and affinity propagation clustering automatically 



Page 12 of 23Kaplow et al. BMC Genomics          (2022) 23:291 

determines the number of clusters. For each of brain and 
liver, we obtained slightly over one hundred clusters with 
different patterns of predicted open chromatin across 
species (brain clusters: https://​github.​com/​pfenn​inglab/​
OCROr​tholo​gPred​iction/​clust​ers/​brain, liver clusters: 
https://​github.​com/​pfenn​inglab/​OCROr​tholo​gPred​
iction/​liver).

We then determined whether each brain cluster 
that was open in mouse overlapped mouse candidate 
enhancers associated with neuron firing [93] more than 
expected by chance (Supplemental Table  17) and each 
brain cluster that was open in human overlapped human 
candidate enhancers associated with neuron activity [94] 
more than expected by chance (Supplemental Table 18). 
Interestingly, the candidate enhancers from each of these 
sets intersected clusters with predicted lineage-specific 
open chromatin or predicted lineage-specific lack of 
open chromatin more than expected by chance. Spe-
cifically, mouse neuron bicuculline (Bic)-specific candi-
date enhancers, where Bic induces neuron firing, were 
enriched for overlapping two predicted Murinae-spe-
cific brain open chromatin clusters – cluster 43 (Fig.  5) 

and cluster 27 (Supplemental Fig.  12a). We think that 
these results are unlikely to be explained by the num-
ber of usable orthologs or conservation because mouse 
brain OCRs overlapping Bic-specific candidate enhanc-
ers do not have significantly fewer usable orthologs 
or lower conservation according to PhastCons [13] or 
PhyloP [14] than mouse brain OCRs in general. In con-
trast, mouse activity-invariant candidate enhancers were 
enriched for overlapping the predicted open chromatin 
in all species cluster (cluster 1), a noisy cluster without a 
clear pattern of predicted open chromatin (cluster 37), a 
noisy predicted Yangochioptera-specific brain non-open 
chromatin cluster (cluster 81), and a noisy predicted 
Primate-specific brain non-open chromatin cluster 
(cluster 88). Likewise, human candidate enhancers from 
GABAergic neurons made from hiPSCs from four geno-
types that had increased activity two hours after expo-
sure to potassium chloride (KCl), where KCl induces 
neuron activity, were enriched for overlapping multiple 
clusters with clade-specific open or closed chromatin. 
These clusters included a predicted Carnivora-, Perisso-
dactyla-, and Euarchonta-specific brain open chromatin 

Fig. 5  Examples of Brain OCR Clusters with Predicted Lineage-Specific Open Chromatin Associated with Neuron Activity. We clustered the brain 
OCRs, where the features were the brain predictions in each Boreoeutheria species from Zoonomia, and then identified clusters whose regions had 
significant overlap with regions associated with mouse neuron firing and human neuron activity. Mouse neuron firing enhancers had significant 
overlap with a predicted Murinae-specific OCR cluster (cluster 43), and human neuron activity enhancers had significant overlap with a predicted 
Euarchonta and Carnivora-specific non-OCR cluster (cluster 74). Animal silhouettes were obtained from PhyloPic [65] 

https://github.com/pfenninglab/OCROrthologPrediction/clusters/brain
https://github.com/pfenninglab/OCROrthologPrediction/clusters/brain
https://github.com/pfenninglab/OCROrthologPrediction/liver
https://github.com/pfenninglab/OCROrthologPrediction/liver
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cluster (cluster 74, Fig.  5); a predicted Hystricognathi-
specific brain non-open chromatin cluster (cluster 11, 
Supplemental Fig.  12b); and a predicted Muroidea- and 
Pecora-specific brain non-open chromatin cluster (clus-
ter 48, Supplemental Fig. 12b). These results are unlikely 
to be explained the number of usable orthologs or con-
servation because human brain OCRs overlapping this 
set of GABAergic neuron candidate enhancers tended 
to have more usable orthologs and higher conserva-
tion than human brain OCRs overall according to both 
PhastCons [13] and PhyloP [13]. In contrast, candidate 
enhancers from the same source that had decreased 
activity two hours after exposure to KCl were enriched 
for overlapping the predicted open chromatin in all spe-
cies cluster (cluster 1) and a predicted Ruminantia-spe-
cific brain non-open chromatin cluster (cluster 82). These 
results suggest that there may be a relationship between 
enhancer response to neuron activity and whether the 
enhancer’s activity tends to be specific to the lineage in 
which it was identified. We also applied this approach to 
investigate the overlaps between liver clusters and mouse 
candidate enhancers associated with liver regeneration 
[95] and found a potential relationship between mouse 
liver regeneration and Murinae-specific open chromatin 
(Supplemental Notes, Supplemental Table  19, Supple-
mental Fig. 12c).

Discussion

Developing a tissue‑specific metric of regulatory 
conservation
While there are well-established methods for quantifying 
nucleotide-level conservation based on a sequence align-
ment [13, 14, 96], these methods have limited utility for 
the many enhancers with tissue-specific activity [45, 46] 
or low sequence conservation in spite of high functional 
conservation [39]. Yet quantifying enhancers’ conserva-
tion can provide insight into their functional relevance, 
such as the identification of convergent evolution in 
gene regulation underlying complex traits [21, 32, 97]. 
Here, we developed a machine learning-based approach 
to measure tissue-specific enhancer conservation. First, 
we trained CNNs to predict OCR orthologs’ open chro-
matin statuses in the tissue from which the OCRs were 
obtained. Then, we applied our models to predict the 
conservation of over 100,000 OCRs from each of brain 
and liver in over 200 mammals.

Our approach vastly outperformed nucleotide align-
ment-based methods of conservation PhastCons [13] 
and PhyloP [14] at predicting lineage- and tissue-specific 
open chromatin status. As expected, we found many 
examples where nucleotide-level conservation is low 

but the predicted open chromatin in a tissue of interest 
is conserved [39]. Conversely, we also identified cases 
where the nucleotide-level conservation is high, but the 
few differences between species disrupt open chromatin 
in a tissue of interest. Beyond out-performing conserva-
tion scores, our machine learning models’ predictions 
enabled us to do analyses that require direct comparisons 
between pairs of species other than human and mouse 
for which conservation scores are not available. We 
attribute the success of our method to our CNNs’ abili-
ties to learn a conserved regulatory code linking genome 
sequence to tissue-specific open chromatin [57].

Our method builds upon recently published approaches 
that constructed machine learning models that learned 
conserved tissue-specific regulatory codes across species 
[57–60]. This work, however, had a different goal from 
ours. For instance, many previous studies for predict-
ing enhancer activity in different species aimed to obtain 
the best performance on average across all enhancers in 
multiple tissues or cell lines [59, 98]. In contrast, our goal 
was to evaluate the feasibility of obtaining a model that 
can predict enhancer activity conservation or divergence 
across many species in a tissue of interest with decent 
accuracy, and such a model may not have the best over-
all performance (Supplemental Fig.  1b-i). For example, 
a study predicting liver open chromatin using SVMs 
showed overall high accuracy but was not able to accu-
rately predict cases where sequence differences between 
primates were associated with regulatory differences 
[63]. Fully achieving our goal requires us to accurately 
make predictions in large numbers of species, includ-
ing species with highly fragmented assemblies, making 
methods requiring long input DNA sequences, such as a 
previous method requiring over 100 kb input sequences 
[59], infeasible for making predictions at most enhancer 
orthologs. To demonstrate our ability to predict regula-
tory conservation, we developed a new, systematic set of 
evaluation criteria that evaluates if lineage- and tissue-
specific differences can be predicted (Fig.  1b, Table  1). 
We used these criteria to compare the performance of 
machine learning models trained with different negatives 
and conservation scores. We note that, for some evalua-
tion sets, we have a small number of examples (Supple-
mental Table  21) due to the conservative definitions we 
needed to use for defining them (Supplemental Notes), 
limiting our confidence in model performance. Since 
multiple machine learning models worked well according 
to most of our criteria, an exciting extension would be to 
train models on combinations of different types of nega-
tives, which would likely require more training time but 
may improve performance. This is one of many exten-
sions to our work that our criteria can help to evaluate 
(Supplemental Notes).
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Limitations of our approach
Although our models excel in many criteria for their 
stated purpose of predicting lineage- and tissue-specific 
open chromatin, all our models, including our best, per-
form sub-optimally for some of our criteria. Beyond 
model performance, our models’ set-up also has inher-
ent limitations that prevent them from fully fulfilling 
their purposes. For example, many OCRs’ open chro-
matin statuses are influenced by factors beyond the 250 
base pairs in each direction of their summits, and the 
fixed-size inputs required by CNNs prevents us from 
modeling some of the long-range interactions that may 
influence open chromatin (Supplemental Notes) [99]. In 
addition, since we predict open chromatin status of only 
OCR orthologs, we cannot identify non-open chromatin-
conserved OCRs whose orthologs are not OCRs in any 
species for which we have open chromatin data (Sup-
plemental Notes). Likewise, we cannot make predic-
tions for OCR orthologs that do not align to the OCRs 
we identified in an existing alignment, so we are likely to 
miss OCR orthologs that do not align due to poor align-
ment quality, which is more common for distantly related 
species, and we cannot make any predictions in species 
whose genomes are not in alignments that allow us to 
map their genomes to the species for which we have data. 
We also treat open chromatin status as binary, but, in 
bulk open chromatin data, open chromatin is a continu-
ous signal (Supplemental Notes). Finally, our approach 
requires high-quality open chromatin or some measure 
of enhancer activity from at least two species and is likely 
to have stronger performance when more are included. 
Cases where the datasets are not matched for sex, age, 
time of day, assay type, or other factors could influence 
model performance and may explain the sub-optimal 
performance of our models on species-specific OCRs 
and non-OCRs (Supplemental Notes).

Applications of inferring conservation of tissue‑specific 
regulatory activity
In addition to being accurate, our models’ predictions 
revealed that many OCRs may have lineage-specific pat-
terns of open or closed chromatin and that these pat-
terns may be functional. We developed an approach to 
deciphering the putative lineage-specificity of candidate 
enhancers identified in other studies in which we clus-
tered our OCRs using predicted open chromatin as fea-
tures and identified clusters with more overlap with these 
candidate enhancers than expected by chance. Applying 
this approach revealed that mouse candidate enhanc-
ers activated during neuron firing [93] are enriched 
for overlapping clusters with predicted Murinae-spe-
cific open chromatin, and human candidate enhancers 

activated during neuron activity [94] are enriched for 
overlapping clusters with predicted Euarchonta-specific 
gains or Muroidea-specific losses of open chromatin. 
These results suggest that there may be Muroidea-spe-
cific enhancer signatures of Muroidea neuron activity. 
Although no study, to our knowledge, has evaluated this 
for large numbers of species, a few studies have com-
pared neuron activity between mice and one or two 
Euarchonta and found striking differences, including 
lower spiking frequencies in fast-spiking mouse corti-
cal neurons relative to human and rhesus macaque [100] 
and lack of expression of h-Channels in mouse excitatory 
neurons relative to human [101]. We found clusters with 
predicted lineage-specific open chromatin for additional 
linages, predicted lineage-specific losses in open chro-
matin for additional lineages, and predicted convergent 
gains and losses in open chromatin; investigating the 
roles of the OCRs in these clusters could be an exciting 
path towards identifying mechanisms underlying linage-
specific differences between mammalian brains and liv-
ers. However, we do not have sufficient data to fully 
evaluate model performance on OCR orthologs in Lau-
rasiatherian species, so clusters involving Laurasiatherian 
lineage-specific open or closed chromatin may be a result 
of inaccurate predictions.

Our approach has the potential to be applied to numer-
ous other groups of species, cell types, and tissues because 
it does not require experimentally determined OCR 
data from more than a few species but rather requires 
only genomes, which are being generated in unprec-
edented quantities [4, 9, 10], from many species. Apply-
ing our approach to more species and tissues can enable 
us to use it in a forward genomics approach [102] to help 
identify the mechanisms underlying the evolution of 
the expression of genes of interest or of phenotypes that 
have evolved through gene expression. This can be done 
by identifying OCR orthologs whose changes in pre-
dicted open chromatin status correspond to changes in 
gene expression or phenotypes. Many multi-species gene 
expression datasets in tissues with data from an assay that 
can serve as a proxy for enhancers are publicly available 
[40, 67, 88, 103, 104], and more will likely be generated in 
the near future [105]. Additional multi-species single-cell 
RNA-seq datasets are being generated from some of these 
tissues [106, 107] and will likely soon be supplemented 
by single-cell ATAC-seq. Many of these tissues have been 
associated with phenotypes that have evolved through 
gene expression [32, 97], so we can use the gene expres-
sion data along with predictions from models like ours to 
gain insights how these phenotypes evolved. Such insights 
may also reveal mechanisms underlying diseases associ-
ated with these phenotypes [60].
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Conclusions
The lineage and tissue-specificity of many enhancers lim-
its our ability to quantify the conservation of enhancers 
through nucleotide-level conservation scores. Therefore, 
rather than focusing on identifying cases where natural 
selection is acting on individual nucleotides, we used 
open chromatin data from tissues of interest to train 
CNNs for predicting open chromatin and showed that 
our predictions can reveal potential cases where natural 
selection operates to maintain the TF binding sites that 
are needed to regulate gene expression. We evaluated 
the success of our CNNs as well as nucleotide conserva-
tion-based and other machine learning-based methods 
using new criteria that we designed explicitly for evalu-
ating open chromatin conservation prediction. We then 
used CNNs to predict brain and liver open chromatin 
conservation across mammals and found that candidate 
enhancers associated with neuron firing tended to over-
lap regions of predicted lineage-specific open or closed 
chromatin. Our approaches to quantifying enhancer 
conservation and evaluating methods for this task can 
be applied to any tissue or cell type with enhancer data 
available from multiple species. As this is, to our knowl-
edge, the first study to predict open chromatin conserva-
tion across more than a few species, we anticipate that 
our work will serve as a foundation for identifying OCRs 
whose open chromatin conservation is involved in gene 
expression evolution, providing insights into transcrip-
tional regulatory mechanisms underlying phenotypes 
that have evolved through gene expression and their 
associated diseases.

Methods
Constructing negative set with non‑OCR orthologs of OCRs
Mouse liver open chromatin data generation, curation of 
all other open chromatin datasets, data processing, and 
positive set construction details are described in Supple-
mental Methods. We obtained the non-OCR orthologs 
of OCRs by obtaining the orthologs of OCRs in each 
other species for which we had data from the same tissue 
and filtered the orthologs to include only those that did 
not overlap open chromatin in the same tissue (Supple-
mental Fig.  1a). For example, mouse chr4:127,435,564–
127,436,049 does not overlap any OCRs in mouse cortex 
or striatum, but its human ortholog, chr1:34,684,126–
34,684,689, is an OCR in both cortex and striatum, so 
this mouse region was a member of our novel negative 
set. To ensure that we would have enough negatives for 
training the model, we created a less conservative set 
of OCRs, which we called “loose OCRs” (Supplemental 
Fig.  13). For each species, tissue combination, the loose 
OCRs are the “base peaks” (Supplemental Methods, Sup-
plemental Fig.  13) that are non-exonic, at least 20  kb 

from a TSS, and at most 1  kb long (same criteria used 
in constructing the positive set) and intersect at least 1 
peak from the pooled reads across replicates from each of 
other datasets that are used for the species, tissue com-
bination; we obtained these loose OCRs using bedtools 
[108]. We defined the peak summit of a loose OCR to be 
the peak summit of the corresponding base peak.

We identified orthologs of our loose OCRs in each 
other species with open chromatin data from the same 
tissue using halLiftover [109] followed by HALPER 
[110]. We used these tools instead of liftOver [111] 
because they map regions using Cactus alignments [112], 
which, unlike the pairwise alignment liftOver chains, 
are reference-free, contain many species, and account 
for a wide range of structural rearrangements, includ-
ing inversions. We ran halLiftover with default param-
eters on our loose OCRs and their peak summits using 
the Zoonomia version 1 Cactus alignment [11]. We then 
constructed contiguous loose OCR orthologs from the 
outputs of halLiftover by running HALPER with param-
eters -max_frac 2.0, -min_len 50, and -protect_dist 5. 
Finally, we used bedtools subtract with the -A option 
[108] to remove the loose OCR orthologs in each spe-
cies that overlapped peaks from the pooled reads across 
replicates from any of the datasets from the same tissue 
in that species, a set that we refer to as “Union Pooled 
Peaks” (Supplemental Fig. 13).

For the models trained on only mouse sequences, we 
used only the mouse orthologs of loose OCRs in non-
mouse species (Supplemental Fig.  1a, Supplemental 
Fig.  13). For the multi-species brain models, we used 
the mouse, human, macaque, and rat orthologs of loose 
brain OCRs from each of the other species, and for the 
multi-species liver models, we used the mouse, macaque, 
and rat orthologs of loose liver OCRs from each of the 
other species. When constructing negatives of the non-
OCR orthologs of OCRs, we used sequence underlying 
the ortholog of the base peak summit ± 250 bp and that 
sequence’s reverse complement. Our negative:positive 
training set ratios were approximately 1.16:1 for the brain 
model trained on only mouse sequences, 0.704:1 for the 
liver model trained on only mouse sequences, 1.49:1 for 
the multi-species brain model, and 0.822:1 for the multi-
species liver model (Table 2). Construction of additional 
negative sets is described in Supplemental Methods.

Training mouse‑only brain model
Construction of training, validation, and test sets are 
described in Supplemental Methods [122–128], and 
machine learning models are listed in Table 2. We used 
CNNs [71] for our machine learning model because 
they have achieved state-of-the-art performance in 
related tasks [61, 113, 114]; they can learn complex 
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combinatorial relationships between sequences, which 
we know can play an important role in enhancer activ-
ity [51]; and they do not require an explicit featurization 
of the data, enabling them to learn yet-to-be-discovered 
sequence patterns that are important for enhancer activ-
ity. Our inputs were one-hot-encoded DNA sequences 
[70], and our outputs were probabilities of sequences 
being OCRs in the tissue for which the model was 
trained. We used smaller architectures than those used 
by many previous studies for related tasks [59, 61, 113, 
114] because these previous studies were training multi-
task models, where our models were single-task models 
and therefore likely needed to learn substantially fewer 
sequence signatures. We first tuned hyper-parameters 
for the brain model trained on only mouse sequences for 
which the training set negatives were our novel negative 
set by comparing the validation set performances of vari-
ous models (Model Number 6 in Table 2, Fig. 1c). Specifi-
cally, we began with the architecture that we used for TF 
binding prediction in our previous work [115], a three-
layer CNN with 15–60 filters of size 15 per layer. We then 
tuned hyper-parameters until we had a model that had 
satisfactory performance according to all our evaluation 
criteria on the validation set. [We constructed evaluation 
sets corresponding to the validation set in the same way 
as those for generating the results we present except that 
we used the mouse validation set chromosomes instead 
of the mouse test set chromosomes (Supplemental Meth-
ods).] We did not do an exhaustive hyper-parameter 
search for any model because our goal was to evaluate the 
feasibility of training models that had satisfactory perfor-
mance for all our evaluation criteria and not to train opti-
mally performing machine learning models.

Our final architecture was five convolutional layers 
with 300 filters of width 7 and stride 1 in each, followed 
by a max-pooling layer with width and stride 26, followed 
by a fully connected layer with 300 units, followed by a 
fully connected layer that went into a sigmoid. All con-
volutional layers had dropout 0.2 and L2 regularization 
0.00001. We trained the model using stochastic gradient 
decent with learning rate 0.001, Nesterov momentum 
0.99, and batch size 100, and each class was assigned a 
weight equal to the fraction of the other class in the 
training set. We trained the model using the training 
set until there were three consecutive epochs with no 
improvement in recall at eighty percent precision (or, if 
there were more positives than negatives, no improve-
ment in specificity at eighty percent NPV) on the valida-
tion set. Before training, we initialized the weights to be 
those from a pre-trained neural network with the same 
hyper-parameters and the negative set randomly down-
sampled to be the size of the positive set (or a positive 
set randomly down-sampled to be the size of the negative 

set if the positive set was larger) in order to help the 
model handle the class imbalance, as we did in our pre-
vious work [115]. We initialized the weights for the pre-
training using Keras’s He normal initializer [116, 117]. 
We started with these hyper-parameters for training our 
other models and then tuned them as described in Sup-
plemental Methods.

Evaluating machine learning models
In addition to evaluating models on the test sets cor-
responding to the training sets, we evaluated models 
on multiple additional evaluation sets to compute their 
lineage-specific and tissue-specific OCR accuracies. 
Illustrations of clade-specific and species-specific OCRs 
for the lineage-specific OCR accuracy evaluations and 
tissue-specific OCRs for the tissue-specific OCR accu-
racy evaluations are in Fig. 1b. A list of evaluation sets is 
in Supplemental Table 20, the numbers of positives and 
negatives in each evaluation set are listed in Supplemen-
tal Table 21, and the figures illustrating the performance 
for each evaluation set, model combination are listed 
in Supplemental Table  22. Processing of liver H3K27ac 
ChIP-seq data for comparing predicted open chromatin 
conservation to conservation of H3K27ac ChIP-seq is 
described in Supplemental Methods.

Evaluating models’ lineage‑specific OCR accuracy

OCR orthologs with differing open chromatin statuses 
between two species  To obtain OCR orthologs that 
are open in one species but not in another, we used as 
positives the sequences and reverse complements of 
sequences underlying OCRs from one species whose 
orthologs in the other species have closed chromatin and 
as negatives the sequences and reverse complements of 
sequences underlying non-OCRs whose orthologs in 
at least one other species are OCRs. More specifically, 
to construct positives for the MouseBr ≠ OtherBr and 
MouseLv ≠ OtherLv evaluations, we used halLiftover 
[109] followed by HALPER [110] with the same param-
eters we used previously to identify test set chromosome 
mouse OCR orthologs in human, macaque, and rat for 
brain and macaque and rat for liver. We then removed 
peaks that overlapped the of union pooled peaks from 
any dataset in the same tissue (Supplemental Fig.  13, 
Supplemental Tables  20–21). To construct negatives for 
these evaluations, we used the approach for construct-
ing our novel negative set except that we identified non-
OCR orthologs of OCRs instead of loose OCRs (Fig. 1c, 
Supplemental Fig.  1c, Supplemental Fig.  8b, Supple-
mental Tables  20–21). To construct positives for the 
MouseBr ≠ RatBr and MouseLv ≠ RatLv evaluations, 
we used the subset of regions from MouseBr ≠ OtherBr 
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and MouseLv ≠ OtherLv, respectively, whose orthologs’ 
open chromatin status differ between mouse and rat 
(Fig.  1c, Supplemental Fig.  1d, Supplemental Fig.  8b, 
Supplemental Fig.  13, Supplemental Tables  20–21). 
To construct positives for the MacaqueBr ≠ MouseBr 
and MacaqueLv ≠ MouseLv evaluations, we identified 
macaque OCRs whose mouse orthologs do not overlap 
any of the union pooled peaks in the same tissue (Sup-
plemental Fig.  1f, Supplemental Fig.  8b, Supplemental 
Fig.  13) and are on test set chromosomes. To construct 
negatives for these evaluations, we identified mouse test 
set chromosome OCR orthologs in macaque that do not 
overlap any of the union pooled peaks in the same tissue 
(Supplemental Fig. 1f, Supplemental Fig. 8b, Supplemen-
tal Fig.  13, Supplemental Tables  20–21). We obtained 
regions for HumanBr ≠ MouseBr, RatBr ≠ MouseBr, 
and RatLv ≠ MouseLv using same process that we used 
for MacaqueBr ≠ MouseBr and MacaqueLv ≠ MouseLv 
(Fig. 1c, Supplemental Fig. 1g, Supplemental Fig. 1h, Sup-
plemental Fig. 8b, Supplemental Tables 20–21).

Clade‑ and species‑specific OCRs  We defined a clade-
specific OCR in a tissue as an OCR whose ortholog is 
open in that tissue in every species within a clade for 
which we have data and closed in that tissue in every 
other species for which we have data, and we defined 
a species-specific OCR in a tissue as an OCR whose 
ortholog is open in that tissue in a species for which we 
have data and is closed in that tissue in the single most 
closely related species (there were no ties) for which 
we have data (Fig. 1b). Laurasiatheria data was used for 
only comparing mouse-only to multi-species liver mod-
els (Fig. 3e). More specifically, we identified clade-active 
OCRs in each clade – OCRs in a “base species” whose 
ortholog in the other species in that clade (if there was 
another) overlaps an open chromatin peak from the 
pooled reads across replicates in all the datasets we used 
in that tissue from that species (Supplemental Fig.  13). 
We did not require the OCR ortholog in the non-base 
species to overlap a reproducible open chromatin peak so 
that we could have at least one hundred test set exam-
ples for each evaluation. We chose the “base species” 
to be the species in each clade with the highest-quality 
genomes – mouse for Glires for brain and liver, human 
for Euarchonta for brain, macaque for Euarchonta for 
liver, and cow for Laurasiatheria for liver. We then identi-
fied the subset of clade-active peaks from the base spe-
cies whose orthologs in all species in the other clade do 
not overlap any open chromatin peaks from the union 
pooled peaks; these were our clade-specific OCRs (Sup-
plemental Fig.  13). To obtain clade-specific non-OCRs 
for a clade, we identified orthologs of clade-active OCRs 
from the other clade in the base species in the clade 

whose orthologs in all species in the clade did not overlap 
open chromatin peaks from union pooled peaks (Fig. 1b, 
Supplemental Fig. 13). For the evaluations we present, we 
used only test set chromosomes for mouse and regions 
whose mouse orthologs are on test set chromosomes for 
other species. The sequences of clade-specific OCRs and 
non-OCRs used for evaluating the models were those 
from the base species and their reverse complements 
(Fig.  1c, Figs.  3a-b, Fig.  3e, Supplemental Fig.  1e, Sup-
plemental Fig. 1i, Supplemental Figs. 4a-b, Supplemental 
Fig.  8b, Supplemental Tables  20–21). When evaluating 
the multi-species models, we combined the clade-spe-
cific OCRs and non-OCRs from Euarchonta and Glires 
(Supplemental Table 21).

The species-specific OCRs and non-OCRs are described 
in Supplemental Table 20 (Fig. 1b). For the results we pre-
sent, we used only regions on test set chromosomes for 
mouse and only regions whose mouse orthologs are on 
test set chromosomes for other species (Fig. 3a, Supple-
mental Table  21). We did not include macaque-specific 
OCRs and non-OCRs when evaluating the multi-species 
liver model because we did not have liver open chroma-
tin from any other Euarchonta species. We combined the 
species-specific OCRs and non-OCRs from different spe-
cies when evaluating the multi-species models (Fig. 3a-b, 
Supplemental Table 21).

Evaluating models’ tissue‑specific OCR accuracy
To evaluate the performance of models trained in one tis-
sue on OCRs from another tissue, we defined our posi-
tives to be OCRs that are shared between the two tissues 
(shows our models were learning more than just the 
sequences involved in tissues-specific open chromatin), 
and we defined our negatives to be OCRs in the evalua-
tion tissue that do not overlap OCRs in the training tis-
sue (shows our models were learning more than just the 
sequences involved in general open chromatin) (Fig. 1b). 
For the evaluations we present, we used only regions 
on test set chromosomes for mouse and regions whose 
mouse orthologs are on test set chromosomes for other 
species. We used bedtools intersectBed with options 
-wa and -u [108] to identify OCRs from our training tis-
sue that overlap OCRs from the evaluation tissue, where 
we included OCRs longer than 1  kb for the evaluation 
tissue for mouse (Supplemental Fig.  5, Supplemental 
Fig.  8c, Supplemental Tables  20–21). We used bedtools 
subtractBed with option -A [108] to identify liver OCRs 
that do not overlap any brain union pooled peaks and 
brain OCRs that do not overlap open chromatin from 
liver union pooled peaks (Fig.  1b, Supplemental Fig.  5, 
Supplemental Fig. 8c, Supplemental Fig. 13, Supplemen-
tal Tables 20–21). We combined the data from all three 
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species for evaluating the multi-species models (Figs. 3a-
b, Supplemental Table 21).

For comparing models trained with different training 
sets, we also compared the distributions of test set chro-
mosome predictions for the brain OCRs that do not over-
lap liver OCRs, the brain OCRs that overlap liver OCRs, 
the liver OCRs that do not overlap brain OCRs (Fig. 1b), 
and the negative set. We defined these groups of OCRs 
as we did for other evaluations, and we used predictions 
for sequences and their reverse complements. We com-
pared the distributions for the brain OCRs that overlap 
liver OCRs to the liver OCRs that do not overlap brain 
OCRs using a Wilcoxon rank-sum test and multiplied the 
p-values by 6 to do a Bonferroni correction.

Evaluating if models’ predictions had phylogeny‑matching 
correlations
To evaluate the relationship between OCR ortholog open 
chromatin status and phylogenetic distance, we identified 
test set mouse OCR orthologs in all the fifty-six Glires 
species from Zoonomia, predicted the open chromatin 
statuses of those orthologs, and computed the correla-
tion between those predictions and the species’ phyloge-
netic divergences from mouse. This provides us with an 
approximate measure of how predicted OCR ortholog 
open chromatin statuses change over evolution. Spe-
cifically, we identified the mouse test chromosome OCR 
orthologs and OCR summit orthologs in Glires using hal-
Liftover [109] with the Zoonomia version 1 Cactus align-
ment [11, 112]; we used brain OCRs for evaluating brain 
OCR models and liver OCRs for evaluating liver OCR 
models. We next constructed contiguous orthologs from 
the outputs of halLiftover using HALPER [110] with 
parameters -max_frac 2.0, -min_len 50, and -protect_dist 
5. We constructed inputs for our models from the con-
tiguous OCR orthologs by using bedtools fastaFromBed 
[108] with fasta files downloaded from NCBI [4, 118] 
and the UCSC Genome Browser [119] to obtain the 
sequences underlying their summit orthologs ± 250  bp. 
We constructed the reverse complements of sequences, 
used our models to predict each sequence and its reverse 
complement’s open chromatin status, and averaged the 
predictions between the forward and reverse strands. We 
then removed all predictions from OCRs with orthologs 
in less than one quarter of species. After that, for each 
model, we computed the mean OCR ortholog open chro-
matin status prediction and the standard deviation of 
predictions across all remaining OCR orthologs in each 
species. We finally computed the Pearson and Spear-
man correlations between these means and standard 
deviations of predictions and the millions of years since 
divergence from mouse, which we obtained from Time-
Tree [120]. We did this for brain OCR orthologs using 

brain models trained with each training set as well as 
for liver OCR orthologs using the liver model trained on 
only mouse sequences and the multi-species liver model 
(Fig. 3, Supplemental Figs. 7–8, Supplemental Fig. 10).

Comparing predictions to mean conservation scores
We compared the predictions to mean conservation 
scores by identifying OCR orthologs with conserved 
and non-conserved open chromatin status between spe-
cies, computing the mean conservation scores of those 
OCR orthologs, and comparing those scores to the pre-
dicted open chromatin status of those OCR orthologs. 
We defined an OCR ortholog with conserved open chro-
matin status between mouse and another species as a 
mouse OCR whose ortholog in the other species overlaps 
an OCR in the same tissue. For mouse brain test chro-
mosome OCRs, we identified 441 OCRs with conserved 
open chromatin status in macaque, 195 OCRs with con-
served open chromatin status in human, and 670 OCRs 
with conserved open chromatin status in rat. For mouse 
liver test chromosome OCRs, we identified 689 OCRs 
with conserved open chromatin status in macaque and 
580 OCRs with conserved open chromatin status in 
rat. We defined an OCR ortholog with non-conserved 
open chromatin status between mouse and another spe-
cies as a mouse OCR whose ortholog in another spe-
cies does not overlap any union pooled peaks in that 
tissue in that species (Supplemental Fig. 13). For mouse 
brain test set OCRs, we identified 394 OCR orthologs 
with non-conserved open chromatin status in macaque, 
448 OCR orthologs with non-conserved open chroma-
tin status in human, and 338 OCR orthologs with non-
conserved open chromatin status in rat. For mouse liver 
test set OCRs, we identified 1,114 OCR orthologs with 
non-conserved open chromatin status in macaque and 
1,241 OCR orthologs with non-conserved open chroma-
tin status in rat. We think that the differences in numbers 
of OCR orthologs with conserved and non-conserved 
open chromatin status between species is due not only 
to differences in evolutionary relatedness but also to dif-
ferences between species in numbers of datasets used 
to define OCRs and differences in sequencing depths of 
those datasets [41, 64, 68].

We used our models to predict the OCR ortholog open 
chromatin status for the open chromatin status-con-
served and open chromatin status non-conserved OCR 
orthologs in the non-mouse species and compared it to 
the conservations scores of the mouse OCRs. We com-
puted mean conservation scores of the mouse OCRs by 
calculating the mean PhastCons [13] and PhyloP [14] 
scores at the peak summits ± 250 bp. We evaluated if the 
distributions of the predictions and each type of con-
servation score differed between the open chromatin 
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status-conserved and open chromatin status non-con-
served orthologs using a Wilcoxon rank-sum test. We 
did a Bonferroni correction by multiplying all p-values by 
20 (2 conservation score comparisons and 2 model pre-
dictions comparisons – models trained on only mouse 
sequences and multi-species models – for 5 species, tis-
sue pairs; Supplemental Tables 7–8).

We then evaluated whether the predictions were more 
effective than the mean conservation scores at differen-
tiating between open chromatin status-conserved and 
open chromatin status non-conserved OCR orthologs. 
We first averaged the predictions of the sequence under-
lying the non-mouse OCR ortholog’s summit ± 250  bp 
and its reverse complement so that each OCR ortholog 
would have a single prediction value. We next combined 
our open chromatin status-conserved and open chro-
matin status non-conserved OCR orthologs and ranked 
them according to each of PhastCons score, PhyloP score, 
and OCR ortholog open chromatin status prediction. We 
then did a Wilcoxon sign-rank test to compare the rank-
ing distributions of the open chromatin status-conserved 
OCR orthologs between the OCR ortholog open chro-
matin status predictions and each type of conservation 
score. We also did this for the ranking distributions of the 
open chromatin status non-conserved OCR orthologs. 
We did this for predictions made by the models trained 
using only mouse sequences and by the multi-species 
models. Finally, we did a Bonferroni correction by mul-
tiplying all p-values by 40 (2 conservation score compari-
sons for each of mouse-only and multi-species models 
for open chromatin status-conserved and open chroma-
tin status non-conserved OCR orthologs for 5 species, 
tissue pairs; Supplemental Table 16).

Clustering OCRs
To generate OCR clusters for OCRs from a tissue, we 
mapped the OCRs from each species across all the 
Boreoeutheria from Zoonomia [4, 11] except for Manis 
tricuspis, filtered the OCRs, and clustered the OCRs. 
Specifically, we mapped OCRs from each species with 
OCRs using halLiftover with the Zoonomia version 1 
Cactus [11] and constructed contiguous orthologs from 
halLiftover outputs using HALPER [110] with settings 
-max_frac 2.0, -min_len 50, and -protect_dist 5. We then 
used the multi-species model corresponding to the tissue 
for which the OCR was generated (in Table  2, model 8 
for brain and model 9 for liver) to make predictions for 
the OCR orthologs and OCR orthologs’ reverse comple-
ments in all the Boreoeutheria that we mapped to except 
for Galeopterus variegatus, Hippopotamus amphibius, 
Monodon monoceros, and Platanista gangetica. For each 
OCR ortholog, we set the prediction to be the average 

between the prediction for the ortholog and the predic-
tion for its reverse complement.

We filtered OCRs to ensure that we did not have 
redundant OCRs and to ensure that we had usable 
OCR orthologs in enough species to use predictions in 
each species as features for clusters. First, for brain, we 
removed all human OCRs whose mouse ortholog over-
lapped a mouse brain OCR, all macaque OCRs whose 
mouse ortholog overlapped a mouse brain OCR or 
human ortholog overlapped a human brain OCR, and 
all rat OCRs whose mouse ortholog overlapped a mouse 
brain OCR, human ortholog overlapped a human brain 
OCR, or macaque ortholog overlapped a macaque brain 
OCR. For liver, we removed all macaque OCRs whose 
mouse ortholog overlapped a mouse liver OCR and all rat 
OCRs whose mouse ortholog overlapped a mouse liver 
OCR or whose macaque ortholog overlapped a macaque 
liver OCR. After that, we removed all remaining OCRs 
that did not have a usable ortholog in at least half of all 
species or at least one quarter of each of Euarchonta, 
Glires, and Laurasiatheria.

We clustered the remaining OCRs using the predic-
tion of each species’ OCR ortholog’s open chromatin 
status as a feature and treating species without usable 
orthologs as missing data. We first used k-means cluster-
ing with k = 9,000 (brain) or 12,000 (liver) to cluster the 
OCRs into small clusters; we defined cluster centroid 
values for each species as the mean of all OCR ortholog 
activity predictions for that species in the cluster. We 
did this because affinity propagation clustering was not 
tractable for hundreds of thousands of examples with 
hundreds of features. We then used affinity propagation 
clustering [121], implemented in scikit-learn [122], with 
preference = -0.6 to cluster the outputs of the k-means 
clustering, which we defined as the centroids of the small 
clusters, into larger clusters. In both clustering steps, we 
defined the distance between two OCRs as 1 minus the 
cosine similarity between the vectors of enhancer activ-
ity predictions in the species for which both had usable 
orthologs. We ultimately obtained 102 brain clusters and 
103 liver clusters.

Identifying enhancer sets with more overlap with clusters 
than expected by chance
To identify enhancer sets with more overlap with a 
cluster than expected by chance, we first obtained the 
enhancer sets from the supplemental information of the 
relevant manuscripts. For the mouse neuron firing can-
didate enhancers, we used the regions in Tables S11—
S13 from a recent study of enhancers activated during 
mouse neuron firing [93] and used liftOver [111] to map 
the coordinates from mm9 to mm10. For the human 
GABAergic neuron activity candidate enhancers, we 
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used the regions in Supp Data 12 from a recent study of 
enhancers activated during human neuron activation [94] 
and used liftOver to map the coordinates from hg19 to 
hg38 [111]. For the mouse liver regeneration candidate 
enhancers, we used various subsets of regions from Sup-
plemental Table  1 from a recent study of enhancers acti-
vated during liver regeneration (Supplemental Table 19). 
For each category of regions in a header in Supplemental 
Table  19, we required the FDR to be less than 0.05 and 
the log2 fold-change to be greater than 1 (for ↑) or less 
than 1 (for ↓). We then used LOLA [123] to run a hyper-
geometric test to evaluate the statistical significance of 
the overlap of each enhancer set with each cluster from 
the relevant tissue that is open in the relevant species; 
our query was our enhancer set, our database was our list 
of bed files with the relevant cluster locations, our uni-
verse was our list of OCRs in the relevant species, tissue 
combination, and we set “redefineUserSets” to TRUE. We 
did a Bonferroni correction by multiplying all p-values by 
391, which was the total number of tests.

We wanted to determine if our enrichment for over-
laps with clusters with lineage-specific open chromatin 
or lack of open chromatin could be partially explained 
by OCRs overlapping enhancer sets having fewer usa-
ble orthologs or lower conservation. To evaluate this, 
we used bedtools [108] to identify the OCRs from each 
relevant tissue, species combination overlapping each 
enhancer set. We next computed the number of usable 
orthologs, the average PhastCons [13] score for the peak 
summit ± 250  bp, and the average PhyloP [14] score for 
the peak summit ± 250 bp for all OCRs from the relevant 
tissue, species combination as well as for the OCRs over-
lapping each enhancer set. Then, for each enhancer set, 
we used a Wilcoxon rank-sum test to compare the num-
bers of usable orthologs and the PhastCons and PhyloP 
scores between the OCRs overlapping the enhancer set 
and the full set of OCRs. We considered the difference to 
not be statistically significant if the nominal p-value was 
greater than or equal to 0.05.
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