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Abstract: Responsive (smart, intelligent, adaptive) polymers have been widely explored for a vari-
ety of advanced applications in recent years. The thermoresponsive poly(N,N-diethylacrylamide)
(PDEAAm), which has a better biocompatibility than the widely investigated poly(N,N-isopropyl-
acrylamide), has gained increased interest in recent years. In this paper, the successful synthesis, char-
acterization, and bioconjugation of a novel thermoresponsive copolymer, poly(N,N-diethylacrylamide-
co-glycidyl methacrylate) (P(DEAAm-co-GMA)), obtained by free radical copolymerization with
various comonomer contents and monomer/initiator ratios are reported. It was found that all the
investigated copolymers possess LCST-type thermoresponsive behavior with small extent of hys-
teresis, and the critical solution temperatures (CST), i.e., the cloud and clearing points, decrease
linearly with increasing GMA content of these copolymers. The P(DEAAm-co-GMA) copolymer
with pendant epoxy groups was found to conjugate efficiently with α-chymotrypsin in a direct,
one-step reaction, leading to enzyme–polymer nanoparticle (EPNP) with average size of 56.9 nm.
This EPNP also shows reversible thermoresponsive behavior with somewhat higher critical solution
temperature than that of the unreacted P(DEAAm-co-GMA). Although the catalytic activity of the
enzyme–polymer nanoconjugate is lower than that of the native enzyme, the results of the enzyme
activity investigations prove that the pH and thermal stability of the enzyme is significantly enhanced
by conjugation the with P(DEAAm-co-GMA) copolymer.

Keywords: poly(N,N-diethylacrylamide); glycidyl methacrylate; thermoresponsive copolymer;
α-chymotrypsin; polymer-enzyme conjugate nanoparticle

1. Introduction

Today, polymers with special, advanced properties and targeted functionalities, such
as responsive (smart, intelligent, adaptive) polymers and macromolecules with well-
defined array of functional groups belong to the most intensively investigated fields
of polymer science and technology. Reactive functionalities in polymer chains can be intro-
duced either along the chains (pendant functionalities) and/or at the chain ends (terminal
functionalities). These functional polymers can be applied in various fields of polymer mate-
rial science, technology, and industry, such as crosslinkers, chain extenders, and as building
blocks of complex macromolecular assemblies [1–4], and life sciences and biotechnology as
well, such as targeting delivery [5,6], biological sensors [7], receptors [8], and surfaces to
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control cell behavior [9]. Polymers with epoxide or glycidyl functional groups are among
the most versatile functional polymeric materials for such purposes, because they can react
with numerous nucleophiles, such as amines, thiols, phenols, carboxylic acids, or anhy-
drides via ring-opening reactions [10–14]. Epoxide functional polymers can be obtained
by postmodification of double bond containing side or end group(s) of polymers [15–21],
but such macromolecules can also be synthesized by copolymerizations with epoxy group
containing monomers. Undoubtedly, glycidyl methacrylate (GMA) is the most investigated
and used monomer to obtain functional macromolecules with epoxy side groups, but other
epoxide-containing monomers were also studied, such as 4-vinylphenyl glycidyl ether [22].
Previously, the copolymerization of GMA with numerous monomers, e.g., 3-methylthienyl
methacrylate [23], trimethylolpropane trimethacrylate [24], sulfobetaine methacrylate [25],
ethylene–methyl acrylate [26], styrene [27,28], 2-hydroxyethyl methacrylate [29], by various
polymerization techniques, such as free radical polymerization, ATRP, NMP, RAFT, etc.,
was widely investigated. These functional materials were successfully applied for several
purposes, for instance, medical devices [25,29], compatibilizing agent [26], and metal ion
absorbers [30–32].

Among responsive materials, LCST-type (LCST = lower critical solution tempera-
ture) and UCST-type (UCST = upper critical solution temperature) thermally responsive
polymers belong to a unique class of smart materials with broad application possibilities
ranging from nanotechnologies, oil recovery [33–35], to biomaterials, tissue engineering
scaffolds [36,37], intelligent drug release assemblies [36,38,39], sensors [40,41], self-healing
structures [42,43], responsive hybrid materials [44,45], etc. As to the use of the LCST and
UCST terminology, it has to be noted that most of the authors still report incorrectly the
result of a single-point measurement as LCST or UCST, i.e., the result of only one given
condition with one single polymer concentration, one single heating/cooling rate and
wavelength for cloud point and clearing point determination is claimed misleadingly as
LCST or UCST. In contrast, the LCST or UCST are defined as the minimum or maximum,
respectively, of the polymer concentration versus critical solution temperature (CST) curves,
and not the single CST of a certain selected condition in terms of polymer concentration,
heating/cooling rates, and wavelength for cloud point and cooling point determination.
Hence, for LCST and UCST determination, the full CST versus polymer concentration
(mass fraction or volume fraction) relationship should be measured, and the resulting
minimum or maximum of such curves should be reported as LCST or UCST, respectively.
Therefore, recently a standardization of the conditions for the measurements of CST in
order to obtain comparable results of the laboratories worldwide was proposed on the
basis of systematic investigations on the effect of the experimental conditions on the CST
of poly(N-isopropylacrylamide) (PNIPAAm) solutions [46,47].

Undisputedly, poly(N-isopropylacrylamide) has been the most investigated temperature-
responsive polymer since the first report of its LCST-type behavior (see, e.g., Refs. [46–63]
and references therein). Recently, intensive research has been focused on how to con-
trol the critical solution temperature (CST) of thermoresponsive polymers by using other
monomers than NIPAAm (e.g., other acrylamides and N-vinyl lactams), by copolymeriza-
tion with common monomers, especially with functional monomers, which can further
increase the range of potential applications. Although NIPAAm-GMA copolymers were
already synthesized and investigated for a variety of purposes [56–63], much less attention
was paid to other GMA containing thermoresponsive polymers in the past. Recently,
various N-vinyl lactam monomers were copolymerized with GMA, and the resulting
copolymers were successfully applied as robust building blocks for protein conjugation,
and the biohybrid nanogels of these copolymers exhibited significantly enhanced resistance
against harsh storing conditions, chaotropic agents, and organic solvents [64].

It is interesting to note that due to the better biocompatibility of the LCST-type ther-
moresponsive poly(N,N-diethylacrylamide) (PDEAAm) than that of PNIPAAm [65], inves-
tigations in relation to the responsive and biocompatible behavior of PDEAAm, its deriva-
tives, and gels have gained increased attention only in recent years (see, e.g., Refs. [66–92]
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and references therein). It should also be mentioned that aqueous PDEAAm solutions
possess similar critical solution temperatures (CST) [72,93–96] in the range of ~25–40 ◦C
than that of PNIPAAm [46,55]. On the other hand, although some block copolymers
with PDEAAm and poly(glycidyl methacrylate) (PGMA) segments have been prepared
and studied [91,92], random copolymers of DEAAm with GMA, which provides reactive
pendant epoxy functionalities for the thermoresponsive PDEAAm, and its utilization for
polymer-based protein engineering have not been reported so far according to the best of
our knowledge.

Polymer-based protein engineering mainly focuses on the synthesis, characterization,
and applications of conjugates of proteins, especially enzymes, with polymers for various
purposes, such as stability improvement, better biodistribution, biocatalytic syntheses,
purification, recovery, etc. (see, e.g., Refs. [97–113] and references therein). Among en-
zymes, α-chymotrypsin (CT), a peptide bond cleaving serine protease enzyme, is one
of the most widely investigated proteins in terms of its bioconjugation with a variety
of polymers and applications in bioengineering [106,114–120]. In general, attachment of
polymer chains by covalent bonds to CT and other proteins as well can be carried out
by either grafting from and grafting onto, and rarely by grafting through as well. Graft-
ing from involves the functionalization of the protein with functional groups suitable for
initiating the desired polymerization of selected monomers, usually by a living polymeriza-
tion process [97–107]. This two-step or multi-step laborious and time-consuming process
requires various reagents, in many cases toxic compounds (e.g., copper salts and com-
plex forming amines for quasiliving atom transfer radical polymerization), relatively high
temperatures that may deactivate the enzymes, and vigorous purification steps [99–107].
Grafting onto takes place by reacting the protein with pre-synthesized functional, mainly
endfunctional, polymers, including the widely applied PEGylation with terminally func-
tional PEGs, usually in two or more steps (see, e.g., [97–102,113] and references therein).
Conjugation of proteins, especially enzymes, with thermoresponsive polymers offers ad-
ditional unique possibilities for switching enzyme activity, efficient purification, enzyme
recovery, etc., based on the precipitation of such polymer assemblies above their critical
solution temperature [97,106–108,112]. As to grafting onto proteins with epoxy group con-
taining polymers, only few examples can be found in the literature [111,114,115]. Recently,
a grafting through approach of an enzyme macromonomer, functionalized with glycidyl
methacrylate, was also reported [121]. For α-chymotrypsin, the widely applied method
for polymer conjugation with epoxy-functional polymers involves amination of the epoxy
group with a diamine followed by coupling the resulting amine-functionalized polymer to
the enzyme by glutaraldehyde [114,115]. Although poly(N-isopropylacrylamide) biocon-
jugates have been investigated in numerous cases, its relatively large extent of hysteresis
due to hydrogen bonding between PNIPAAm chains [46,47] and even full activity loss of
the conjugated enzyme [122] may limit its application possibilities. In contrast, the lack of
hydrogen bonding between PDEAAm chains may provide unique advantages for biocon-
jugations with functional PDEAAm. Considering the high reactivity of primary amines
with epoxy, especially glycidyl groups, the question arises whether the biocompatible
poly(N,N-diethylacrylamide) with epoxy functionalities can be conjugated to CT, contain-
ing 15 primary amine sites, directly in a simple one-step process, and if this were possible,
what are the characteristics of such bioconjugates in terms of their size, thermoresponsive
behavior, enzymatic activity, and stability.

Based on the above aspects and unique potentials of the pendant epoxy containing
poly(N,N-diethylacrylamide-co-glycidyl methacrylate) (P(DEAAm-co-GMA)) copolymers,
we aimed at exploring its thermoresponsive property, the one-step conjugation possibility
with α-chymotrypsin, and the catalytic activity and stability of such bioconjugates. Herein,
we present the results of our investigations on the synthesis of P(DEAAm-co-GMA) and on
the thermoresponsive behavior, i.e., on the effect of composition of the resulting copolymers
on the critical solution temperature, of the resulting copolymers. In addition, we also
report on the utilization of the epoxy functionalities of P(DEAAm-co-GMA) for the one-step
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preparation of enzyme–polymer nanoparticles (EPNP) by conjugation with α-chymotrypsin
(CT), its thermoresponsive characteristics, thermal and pH stability, and the enzymatic
catalytic behavior of these new bioconjugates.

2. Materials and Methods
2.1. Materials

Glycidyl methacrylate and N,N-diethylacrylamide (both from Sigma-Aldrich, St. Louis,
MO, USA) were freshly distilled under reduced pressure prior to use. 2,2′-Azoisobuty-
ronitrile (AIBN, 98%, Sigma-Aldrich, St. Louis, MO, USA) was recrystallized from hex-
ane and methanol twice, respectively. Tetrahydrofuran (THF, >99%, Molar Chemicals,
Halásztelek, Hungary) was refluxed over LiAlH4, distilled, and was kept under nitrogen
until its use. Diethyl ether and methanol (>99%, Molar Chemicals, Halásztelek, Hungary),
PBS (pH = 7.4) and phosphate buffers (pH = 6; 7; 7.8; 8; 9 both from Sigma-Aldrich, St.
Louis, MO, USA) were used without further purification. α-Chymotrypsin and N-benzoyl-
L-tyrosine ethyl ester (BTEE, 99%) were purchased from Sigma-Aldrich and were used
as received.

2.2. Synthesis Methods
2.2.1. Synthesis of PDEAAm Homopolymer and P(DEAAm-co-GMA) Copolymers by Free
Radical Polymerization

Poly(N,N-diethylacrylamide-co-glycidyl methacrylate) (P(DEAAm-co-GMA)) copoly-
mers were prepared by free radical copolymerization initiated by AIBN with various
initiator/monomer molar ratios (1:100 and 1:200) and comonomer contents (5 and 10 mol%
GMA). A typical copolymer synthesis is described below. In the case, when the molar
ratio of the components, i.e., AIBN:DEAAm:GMA was 1:95:5, first 1.02 mL of DEAAm
(7.43 mmol) and 0.052 mL of GMA (0.39 mmol) were charged into sealed round bottom
flask, and the monomers were dissolved in 9.5 mL of THF. This solution was deoxygenized
by bubbling with argon for 20 min. Then the reaction mixture was warmed to 60 ◦C, and
0.5 mL AIBN stock solution (25.75 mg/mL, 0.078 mmol) was added. After stirring for 18 h,
the resulting polymer was precipitated twice from THF solution in hexane and filtered.
Finally, the product was dried in vacuum at 60 ◦C until constant weight. The poly(N,N-
diethylacrylamide) (PDEAAm) homopolymer was synthesized by the same method using
100:1 monomer/initiator ratio.

2.2.2. Synthesis of Enzyme–Copolymer Nanoparticle (EPNP)

One selected P(DEAAm-co-GMA) copolymer (Sample C) was measured (15.85 mg)
into a glass vial and dissolved in 2 mL water. Then, 3 mL of α-chymotrypsin stock solution
(10.14 mg/mL in water) was added dropwise to the stirred polymer solution by a syringe
pump (dosing rate was 1.5 mL/h). The reaction mixture was stirred overnight at room
temperature. Subsequently, the reaction mixture was dialyzed (MWCO = 25 kDa) for three
days against water, which was refreshed twice daily. Then, the purified dry product was
obtained by lyophilization.

2.3. Characterization
2.3.1. Gel Permeation Chromatography (GPC)

Average molecular weights and molecular weight distributions (dispersity index,
Ð) of the produced polymers were determined by GPC. The GPC was equipped with
differential refractive index detector (Agilent 390, Agilent Technologies, Santa Clara, CA,
USA), three 5 µm particle size Waters Styragel (columns (HR1, HR2 and HR4) and with a
Waters Styragel guard column (both form Waters, Milford, MA, USA) thermostated at 35 ◦C.
THF was used as eluent with a flow rate of 0.3 mL/min. The average molecular weights
and Ð were determined by using conventional calibration based on linear polystyrene
standards (from PSS Polymer Standards Services GmbH, Mainz, Germany).
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2.3.2. 1H NMR Spectroscopy

The ratio of the incorporated comonomers was determined by 1H NMR measure-
ments. The analysis was performed on Bruker Advance 500 (Bruker, Billerica, MA, USA)
equipment operating at 500 MHz 1H frequency in CDCl3 at 30 ◦C.

2.3.3. Thermoresponsive Behavior

The transmittance versus temperature curves for obtaining the critical solution tem-
peratures (TC), i.e., the cloud point (TCP) and the clearing point (TCL) were measured by
a UV–Vis spectrophotometer (Jasco V-650, JASCO Corporation, Tokyo, Japan) equipped
with Jasco MCB-100 (JASCO Corporation, Tokyo, Japan) mini circulation bath and Peltier
thermostat. Standard 1 cm × 1 cm cuvettes were used for these measurements. Deionised
water was used as reference and solvent. The polymer and the enzyme–polymer nanopar-
ticle solutions (1 mg/mL) were heated and then cooled in the temperature range of 15 to
50 ◦C with 0.2 ◦C/min heating/cooling rate and the transmittance was recorded at 488 nm
according to recent studies on the standardization of measurements for the determination
of the critical solution temperatures [46,47]. The inflection points of the transmittance–
temperature curves were taken as both the TCP and TCL values.

2.3.4. Dynamic Light Scattering (DLS)

The average hydrodynamic diameter and dispersity of the obtained enzyme–polymer
nanoparticle and the applied copolymer as well as the α-chymotrypsin were determined
by a dynamic light scattering (DLS) system (Malvern Zetasizer Nano ZS, Malvern, UK).
The measurements were carried out at 25 ◦C, and the concentrations of the samples were
1 mg/mL in PBS (pH = 7.4).

2.3.5. Quantification of the Enzyme Content in the Nanoparticles

The enzyme content of the nanoparticles was determined by UV-Vis spectroscopy
measurements. The absorbance of the nanoparticle aqueous solution (1 mg/mL) was
recorded by UV-Vis spectrophotometer (Jasco V-650, JASCO Corporation, Tokyo, Japan)
equipped with Jasco MCB-100 mini circulation bath and Peltier thermostat at 25 ◦C in the
200–355 nm range. The enzyme content of the nanoparticles was evaluated on basis of an
α-chymotrypsin calibration curve at 283 nm, where the polymer has no absorbance.

2.3.6. Catalytic Activity Assay

The catalytic activity of α-chymotrypsin and the produced enzyme–polymer nanopar-
ticle (EPNP) was investigated by UV-Vis spectroscopy assay [123]. In this assay, the
transformation of the substrate N-benzoyl-L-tyrosine ethyl ester (BTEE) to N-benzoyl-L-
tyrosine via enzymatic hydrolysis was followed by spectroscopy measurements at 256 nm.
The measurements were carried out in 3 mL quartz cuvettes, where 1.5 mL buffer (pH = 6;
7; 7.4 (PBS); 7.8; 8; 9), 1.4 mL BTEE stock solution (prepared by dissolving 74.3 mg BTEE
in 126.8 mL methanol and adjusted by water to 200 mL in a volumetric flask) and 0.1 mL
enzyme or enzyme–polymer nanoparticle solution were mixed (the enzyme concentration
of the enzyme stock solution was 0.1 mg/mL). The increment in the absorbance at 256 nm
was measured for five minutes with 10 s delays. Three independent measurements were
carried out with every sample with varying pH at 25 ◦C, and good reproducibility was
observed in each case. To eliminate the error due to the autohydrolysis of BTEE, measure-
ments were performed by using a blank at every pH with the replacement of the enzyme
solutions with distilled water. The reference was distilled water. For investigations of
the thermal stability of the enzyme–polymer nanoparticles, the α-chymotrypsin and the
nanoparticle solutions with enzyme concentrations of 0.1 mg/mL were thermostated at
45 ◦C. After predetermined time (5, 15, 30, 60, 120 min) of such thermal treatment, 0.1 mL
samples were withdrawn and allowed to cool to room temperature for 5 min. Then the
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catalytic activity was measured by the method described above using PBS buffer (pH = 7.4)
at 25 ◦C. The enzymatic activity was calculated with the following equation:

Activity = ((∆AT − ∆AB) VT df)/(0.964 vs. ce), (1)

where ∆AT and ∆AB are the maximum rate of increase in the absorbance in one minute
for the test sample and blank, respectively, VT is the total volume (3 mL), df is the dilution
factor (30), 0.964 is the millimolar extinction coefficient of BTEE at 256 nm, vs. is the sample
volume (0.1 mL), and ce is the enzyme concentration (0.1 mg/mL).

3. Results and Discussion

As displayed in Scheme 1, we aimed at synthesizing poly(N,N-diethylacrylamide-co-
glycidyl methacrylate) (P(DEAAm-co-GMA)), preparing α-chymotrypsin-P(DEAAm-co-
GMA) bioconjugate by the utilization of the reactive pendant epoxy functional groups of
this copolymer, and characterization of the resulting copolymers and enzyme–polymer
nanoparticles (EPNP) in terms of their thermoresponsive behavior, enzyme activity, and
stability. The P(DEAAm-co-GMA) copolymers were synthesized by free radical copoly-
merization of PDEAAm and GMA with AIBN as radical initiator by using two different
monomer/initiator ratios (100 and 200) with two different comonomer contents (5 and
10 mol%). PDEAAm homopolymer was also prepared with 100:1 monomer/initiator
ratio under identical conditions to that of the copolymer syntheses. As shown in Table 1,
polymers with relatively high yields in the range of ~60–87% were obtained. The molec-
ular mass distributions (MMD) of the resulting polymers, displayed in Figure 1, were
determined by GPC analysis (the GPC chromatograms are shown in Figure S1 in the
Supplementary Materials). As expected, these MMD curves in Figure 1, and the number
average molecular weight (Mn) and the peak molecular weight values (Mp) in Table 1
clearly indicate that P(DEAAm-co-GMA) copolymers with higher molecular masses are
formed with higher monomer/initiator ratios.

Scheme 1. Synthesis of glycidyl-functional poly(N,N-diethylacrylamide-co-glycidyl methacrylate)
copolymers via free radical copolymerization (1) and the design of enzyme–polymer nanoconjugate
with α-chymotrypsin (2).
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Table 1. Yields and GPC results of the PDEAAm homopolymer and P(DEAAm-co-GMA) copolymers.

Sample Molar Feed Ratio
AIBN:DEAAm:GMA

Yield
%

Mn
(g/mol)

Mp
(g/mol) Ð

A 1:95:5 62.7 6650 7530 1.75
B 1:90:10 69.6 6525 7620 1.88
C 1:190:10 75.6 8620 20,170 2.31
D 1:180:20 86.8 7520 21,470 2.80

PDEAAm 1:100:0 81.5 9820 18,840 1.90

Figure 1. Molar mass distribution curves of the P(DEAAm-co-GMA) copolymers and PDEAAm
homopolymer.

The compositions of the P(DEAAm-co-GMA) copolymers were determined by 1H
NMR spectroscopy. Comparing the 1H NMR spectra of the PDEAAm homopolymer
(Figure 2A) with that of the P(DEAAm-co-GMA) copolymers (Figure 2B and Figures S2–S4),
it can be seen that with the exception of the chemical shifts of the methylene group next to
the epoxy group in the GMA monomer units (dCH2 3.7–4.1 and 4.1–4.6 ppm), the rest of
the signals overlap with that of the PDEAAm homopolymer. This allows the determination
of the composition of the P(DEAAm-co-GMA) copolymers by the integral values of the 1H
NMR signals. As shown in Table 2, the DEAAm/GMA ratios are smaller in the copolymers
than in the feed. This means that the GMA contents in the P(DEAAm-co-GMA) copolymers
are higher than that in the feed, which means that the reactivity of GMA is higher than
that of DEAAm in this copolymerization reaction. This is in line with the reactivity ratios
reported for the copolymerization of another alkyl acrylamide, N-isopropylacrylamide
(NIPAAm), and GMA, according to which r1 = 0.39 and r2 = 2.69 [56]. Taking into account
the similar structure of NIPAAm and DEAAm, higher reactivity of GMA is expected in the
DEAAm-GMA copolymerization process as well, on the one hand. Considering that the
product of the r1 and r2 values of the alkyl acrylamide copolymerization with GMA is in
the range of one, random copolymerization occurs in such cases, on the other hand. Thus, it
can be concluded that random copolymers of DEAAm and GMA with 5.5–11.4 mol% GMA
contents were obtained in the applied copolymerization reactions as shown in Table 2.
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Figure 2. 1H NMR spectra of the PDEAAm homopolymer (A) and the P(DEAAm-co-GMA) copoly-
mer (Sample A, molar feed ratio AIBN:DEAAm:GMA = 1:95:5) (B).

Table 2. The DEAAm/GMA molar ratios in the feed and in the P(DEAAm-co-GMA) copolymers,
the molar percent of the GMA (XGMA) of the polymers and the cloud point (TCP) and clearing point
(TCL) measured by turbidimetry.

Sample
DEAAm/GMA

Comonomerfeed
Ratio

DEAAm/GMA
Ratio in the

Copolymers a

XGMA
(%)

TCP
(◦C)

TCL
(◦C)

A 19:1 17.06:1 5.5 31.2 30.8
B 9:1 8.91:1 10.1 27.2 26.2
C 19:1 15.25:1 6.2 30.6 30.1
D 9:1 7.80:1 11.4 24.8 24.6

PDEAAm - - 0 37.4 36.9
a Determined by 1H NMR analysis.

The thermoresponsive behavior of the P(DEAAm-co-GMA) copolymers was investi-
gated by turbidity measurements under the conditions proposed for standardization of the
determination of critical solution temperatures of thermoresponsive LCST-type and UCST-
type polymers [46,47]. As shown in Figure 3A, the transmittance–temperature curves of the
heating and cooling cycles indicate reversible thermoresponsive precipitation–dissolution
transitions for both the PDEAAm homopolymer and all the investigated copolymers with
relatively small extent of heating–cooling hysteresis due to the lack of hydrogen bond
formation between the PDEAAm chains in accordance with previous results [96]. The
critical solution temperature (TC) is defined as the temperature at the inflection point of
the transmittance–temperature curves, i.e., the so-called cloud point temperature (TCP) for
heating and the clearing point temperature (TCL) for cooling. As presented in Figure 3B and
Table 2, the critical solution temperatures decrease linearly with decreasing DEAAm, i.e.,
with increasing GMA content, independent of the molar mass of the copolymers. It should
also be noted that incorporating relatively low amounts of GMA in the P(DEAAm-co-GMA)
copolymers results in significant decrease of the critical solution temperature (TC) values
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(from 37.4 ◦C for the homopolymer to 24.8 ◦C at 11.4 mol% GMA in the copolymer), and this
can be well tuned on the basis of the found linear relationship between TC and the compo-
sition of the P(DEAAm-co-GMA) copolymers. Similar tendency was found for the critical
solution temperature versus composition of poly(N,N-dimethylacrylamide-co-glycidyl
methacrylate) copolymers but at much higher GMA contents (32–50 mol%) [124].

Figure 3. Transmittance vs. temperature curves of the P(DEAAm-co-GMA) copolymers and the PDEAAm homopolymer
during heating and cooling (A) and the cloud points and clearing points as a function of the DEAAm content (B).

One of the intensively investigated application of epoxy(glycidyl)-functionalized
polymers is their conjugation with various biomaterials, such as proteins and enzymes. In
our work, the applicability of the produced epoxy-functional thermoresponsive P(DEAAm-
co-GMA) copolymers for bioconjugation was investigated via a direct reaction between α-
chymotrypsin, a widely used enzyme, and one selected copolymer (Sample C), as depicted
in Scheme 1. Under the conditions described in the Experimental, 22.5 mg dried conjugate
was obtained, which means that the yield of the conjugation was 48%. The resulting
conjugate was investigated by DLS measurement and the results are compared to that
of the starting copolymer sample and the enzyme. The recorded size distribution curves
are presented in Figure 4. The size of the α-chymotrypsin is 3.34 nm with low dispersity,
which corresponds well to the literature value [125]. The size of the P(DEAAm-co-GMA)
copolymer is somewhat larger and has broader size distribution (d = 6.24 nm, PDI = 0.11).
As observed, the size of the resulting enzyme–copolymer conjugate is in the range of
30–100 nm with average size of 56.9 nm. In addition, peaks do not appear in the range of the
size of the reactants, which means that all unreacted copolymer and enzyme was removed
by the applied dialysis purification method. These findings provide clear evidence that the
designed one-step reaction took place successfully, and enzyme–polymer nanoparticles
(EPNPs) are formed in the direct conjugation reaction between the P(DEAAm-co-GMA)
copolymer and α-chymotrypsin. It has to be noted that usually epoxy containing carriers,
i.e., polymers or inorganic particles, are first converted to amine by either treating with
ammonia or a diamine, and then the conjugation (coupling) to the enzyme is carried out by
glutaraldehyde [114,115]. In contrast to this widely applied two-step conjugation process,
the P(DEAAm-co-GMA) copolymers enable an efficient one-step conjugation reaction with
amine containing proteins and enzymes as proved by our results. This finding may open
new routes for a variety of novel protein-polymer conjugations, especially by applying the
biocompatible thermoresponsive epoxy-functionalized PDEAAm.
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Figure 4. DLS size distribution curves of the α-chymotrypsin (black), the P(DEAAm-co-GMA)
copolymer (Sample C) (red) and the produced enzyme–polymer conjugate (blue).

The enzyme content of the produced enzyme–polymer nanoparticle (EPNP) was
determined by UV-Vis spectroscopy. The recorded UV spectra of the EPNP and the
unreacted copolymer are presented in Figure S5. As can be seen, the copolymer has
no absorbance above 250 nm, but a broad peak appears in the spectrum of the EPNP
in the 260–300 nm range due the aromatic side groups of the enzyme component. This
also confirms that the enzyme is incorporated into the EPNP. In addition, it allows the
determination of the enzyme content as well, because the composition of the EPNP can be
determined on the basis of calibration with the enzyme at a selected wavelength, 283 nm in
this case (see Figure S6 in the Supplementary Materials). The determined enzyme content is
0.687 mg/mg EPNP, which means that the produced nanoconjugate consists of 68.7% of α-
chymotrypsin and 31.3% of P(DEAAm-co-GMA) copolymer. Considering the composition
of the EPNP gives that the molar ratio of GMA to the enzyme in the conjugate is 5.4, i.e.,
sufficiently high for coupling of the copolymer even to more than one CT molecule. A
rough estimate can also be provided on the average number of the copolymer chains and
enzyme molecules in the bioconjugate if it is assumed that the diameter (volume) of the
components does not change by conjugation. On the basis of this approximation, the
average numbers of the P(DEAAm-co-GMA) copolymer and the enzyme in their conjugate
are around 6.5 and 5, respectively.

The effect of the conjugation on the thermoresponsive behavior of the EPNP was
investigated by turbidimetry. The transmittance versus temperature curves (Figure 5A)
and its first derivative (Figure 5B) of the EPNP are plotted and compared to that of the
unmodified copolymer. As shown in this Figure, the thermal transition is slightly shifted
to higher temperature by the conjugation, but the shape of the curve is similar to that of the
unreacted copolymer. In the cooling cycle, the temperature range of the dissolution process
is significantly broadened for the EPNP, but it has to be emphasized that the transmittance
of the EPNP is returned to its maximum value (100% transmittance) by cooling, indicating
that the EPNP preserved the reversible thermoresponsive behavior.
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Figure 5. Transmittance vs. temperature curves (A) and its first derivatives (B) of the copolymer (black) and enzyme–
polymer nanoparticle (red) in heating (full line) and cooling cycle (dashed line).

The applicability of the produced EPNP and the effect of the conjugation on the
catalytic activity were investigated by enzymatic activity assay, where the enzymatic
hydrolysis of BTEE was followed by UV-Vis spectroscopy at 25 ◦C in solutions of various
pH and after thermal treatment at 45 ◦C. The enzymatic activity was calculated based on the
rate of the conversion of the BTEE substrate. The determined enzymatic activity of the α-
chymotrypsin-P(DEAAm-co-GMA) EPNP in the 6–9 pH range is presented and compared
to the unmodified enzyme in Figure 6. As can be seen in this Figure, the enzymatic activity
of the EPNP is significantly lower than that of the native enzyme, but this is a general
phenomenon in the case of enzyme conjugates [50–52]. This can be explained by decreased
accessibility of the substrate to the active pocket of the enzyme in the enzyme–polymer
conjugates. The highest enzymatic activity was observed in the pH 7–7.5 range. The pH
optimum was determined by the inflection point of the first derivative of the Gauss function
fitted on the activity data. As shown in Figure 6A, on the one hand, the pH optimum of
the EPNP is slightly lower (pH = 7.3) than that of the native enzyme (pH = 7.4). On the
other hand, the activity is greatly decreased even with a slight change in pH in the case of
the native α-chymotrypsin, but only a lower extent of change of activity was observed for
the EPNP.

Figure 6. Enzymatic activity (A) and the relative activity (B) of α-chymotrypsin (black) and the enzyme–polymer nanoparti-
cle (red) as a function of pH.

For better understanding, the effect of the pH change on the enzymatic activity, the
relative (also called as residual) activity was expressed by the ratio of the measured activity
and the maximal activity (Figure 6B). In the case of the native enzyme, the activity is
decreased drastically by 0.4 pH change, namely the activity is only 80% and 60% of the
maximum at pH 7.8 and 7.0, respectively. In addition, by getting away from the optimum
pH value to pH 6 and pH 9, the relative activity is further decreased to ~20%. In contrast,
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less than 10% activity loss was observed in the pH range of 7–7.8 in the case of the EPNP,
and the relative activity was also significantly higher than that of the native enzyme at
more extreme pH values. Thus, it can be concluded that the polymer conjugation with
P(DEAAm-co-GMA) advantageously enhances the pH stability of α-chymotrypsin.

The thermal stability of the enzyme–polymer nanoconjugate was also studied. The
solution of the EPNP and the native enzyme as well was thermostated at 45 ◦C, and samples
were taken at predetermined treatment times. Because the results of the thermoresponsive
investigation of the EPNP shows that the hydrophobic–hydrophilic transition occurs in a
wider temperature range during cooling, the withdrawn samples were allowed to cool to
room temperature for 5 min before the activity assay measurements at 25 ◦C. The obtained
relative activity plotted as a function of the thermal treatment time is displayed in Figure 7.
As can be seen in this Figure, the initial activity of the free α-chymotrypsin decreases
to 20% after only 10 min and to 10% after 60 min, and the enzyme becomes completely
inactive after 120 min thermal treatment. This finding is in good agreement with results of
others [118], according to which native CT loses its activity after thermal treatment at 50 ◦C
for 90 min. It is widely accepted that this caused by the unfolding and inactivation during
thermal denaturation of the enzymes. In contrast, the residual activity of the polymer
conjugated enzyme in the EPNP is much higher, namely the relative activity is around
85% after five minutes and it is still over 40% after 30 min. Furthermore, the enzymatic
activity of EPNP does not fall below 20% even after two hours thermal treatment. These
results clearly indicate that the conjugated polymer can reduce the thermal unfolding of
the enzyme in the produced nanoconjugate. Hence, it can be concluded that the enzyme–
polymer nanoparticle preserves the enzymatic activity after heating, that is, the conjugation
with the thermoresponsive P(DEAAm-co-GMA) copolymer increases advantageously the
thermal stability of α-chymotrypsin.

Figure 7. The relative activity of α-chymotrypsin (black) and the CT-P(DEAAm-co-GMA) enzyme–
polymer nanoparticle (EPNP) (red) at 25 ◦C as a function of the time of thermal treatment at 45 ◦C.

4. Conclusions

Poly(N,N-diethylacrylamide-co-glycidyl methacrylate) (P(DEAAm-co-GMA)) copoly-
mers, unreported so far, were successfully synthesized by free radical copolymerization.
On the one hand, turbidity measurements revealed that the P(DEAAm-co-GMA) copoly-
mers still possess reversible thermoresponsive behavior. It was found that the cloud point
and clearing point temperatures of the copolymers are lower than that of the PDEAAm
homopolymer and decrease linearly with increasing GMA content in the investigated com-
position range up to 11 mol% GMA. The reactivity of the epoxy (glycidyl) pendant groups
and the applicability of such copolymers were demonstrated by a conjugation reaction with
α-chymotrypsin. The formation of nanosized enzyme–polymer conjugates was confirmed
by DLS with average diameter of 56.9 nm. In addition, it was also confirmed that not only
the P(DEAAm-co-GMA) copolymers, but its enzyme–polymer nanoparticles (EPNP) also
possess the reversible thermoresponsive behavior. The enzymatic activity of the produced
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EPNP was investigated at various pH and after 45 ◦C thermal treatment, and compared to
that of the native enzyme. It was found that the activity of the EPNP was lower than that
of the free α-chymotrypsin, but the relative activity results proved that the activity of the
EPNP is less sensitive to the changes of the pH and the temperature. On the basis of these
findings, it can be concluded that the enzyme stability can be significantly enhanced by the
polymer conjugation with P(DEAAm-co-GMA) copolymers. These findings can be utilized
in a variety of applications, e.g., preparation of novel thermoresponsive protein-P(DEAAm-
co-GMA) bioconjugates with enhanced stability in a one-step process, separation of the
products from the thermoresponsive enzyme–polymer conjugates precipitating above its
critical solution temperature etc.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
360/13/6/987/s1, Figure S1: GPC chromatograms of the P(DEAAm-co-GMA) copolymers and
PDEAAm homopolymer, Figure S2: 1H NMR spectrum of Sample B P(DEAAm-co-GMA) copoly-
mer (molar feed ratio AIBN:DEAAm:GMA = 1:90:10), Figure S3: 1H NMR spectrum of Sample C
P(DEAAm-co-GMA) copolymer (molar feed ratio AIBN:DEAAm:GMA = 1:190:10), Figure S4: 1H
NMR spectrum of Sample D P(DEAAm-co-GMA) copolymer (molar feed ratio AIBN:DEAAm:GMA
= 1:180:20), Figure S5: UV spectra of the P(DEAAm-co-GMA) (Sample C, blue) and the produced
enzyme–polymer nanoparticle (red), Figure S6: UV spectra of the α-chymotrypsin in the concentra-
tion range of 0.033–1 mg/mL (a) and the calibration curve fitted on the absorbance at 283 nm as a
function of the enzyme concentration (b), Figure S7: Representative enzymatic activity investigation
curves of the absorbance measurement of the enzyme (black) and EPNP (red) in time in different
pH solvents (pH = 6 (A); 7 (B); 7.4 (C); 7.8 (D); 8 (E); 9 (F)), Figure S8: Representative curves of the
activity measurements of the enzyme (black) and EPNP (red) in PBS buffer after thermostated at
45 ◦C for 0 min (A), 5 min (B), 15 min (C), 30 min (D), 60 min (E) and 120 min (F).
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