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Abstract

Background: Microarray image analysis processes scanned digital images of hybridized arrays to produce the input
spot-level data for downstream analysis, so it can have a potentially large impact on those and subsequent
analysis. Signal saturation is an optical effect that occurs when some pixel values for highly expressed genes or
peptides exceed the upper detection threshold of the scanner software (216 - 1 = 65, 535 for 16-bit images). In
practice, spots with a sizable number of saturated pixels are often flagged and discarded. Alternatively, the
saturated values are used without adjustments for estimating spot intensities. The resulting expression data tend to
be biased downwards and can distort high-level analysis that relies on these data. Hence, it is crucial to effectively
correct for signal saturation.

Results: We developed a flexible mixture model-based segmentation and spot intensity estimation procedure that
accounts for saturated pixels by incorporating a censored component in the mixture model. As demonstrated with
biological data and simulation, our method extends the dynamic range of expression data beyond the saturation
threshold and is effective in correcting saturation-induced bias when the lost information is not tremendous. We
further illustrate the impact of image processing on downstream classification, showing that the proposed method
can increase diagnostic accuracy using data from a lymphoma cancer diagnosis study.

Conclusions: The presented method adjusts for signal saturation at the segmentation stage that identifies a pixel
as part of the foreground, background or other. The cluster membership of a pixel can be altered versus treating
saturated values as truly observed. Thus, the resulting spot intensity estimates may be more accurate than those
obtained from existing methods that correct for saturation based on already segmented data. As a model-based
segmentation method, our procedure is able to identify inner holes, fuzzy edges and blank spots that are common
in microarray images. The approach is independent of microarray platform and applicable to both single- and dual-
channel microarrays.

Background
Microarray technology has been used in many areas of bio-
medical research and drug development to study the func-
tion of thousands of genes in a single experiment. As an
important early step in microarray studies, microarray
image analysis produces the input spot intensity data to
downstream analysis such as classification and identifica-
tion of differentially regulated genes. Thus, image proces-
sing can have profound effects on those and subsequent
analysis. Microarray images with saturated hybridization
signals are common when the dynamic range of expression

of biological quantities is large. To enhance weak signals, a
common practice is to increase the photometric gain at
scanning. A large gain, however, often causes some pixels
for highly expressed genes to exceed the scanner’s upper
limit of detection. Discarding spots with saturated pixels
can fail to detect target genes that are highly and differen-
tially expressed, whereas using saturated values without
correction tends to underestimate expression levels and
distort high-level analysis [1].
Correcting saturation-induced bias for expression

microarrays has triggered much of recent research. Early
work involves combining spot intensity data from multi-
ple scans, obtained at different laser power or photomul-
tiplier tube (PMT) settings, into an extended linear range
and estimating expression levels beyond the saturation
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threshold by extrapolation [2-4]. Wit and McClure [5]
proposed a maximum likelihood (ML) approach in which
censoring was incorporated to account for signal satura-
tion using the mean, median and variance of each spot.
Dodd et al. [6] developed a censored Gaussian regression
model by exploiting the association between pixel inten-
sities of two channels in dual-dye experiments. Along the
line of saturation adjustments by censoring, Ekstrom
et al. [7] considered parametric spot shape/profile models
for pixel-level data and imputed the values for saturated
pixels. A Cauchy distribution was employed in Khondo-
ker et al. [8] to model spot intensity data with outlying
observations from multiple scans. To account for satura-
tion, the Cauchy location function was specified to follow
the functional form of the mean of a censored Gaussian.
Glasbey et al. [9] imputed censored pixel values based on
the principal components of uncensored spots. Bayesian
hierarchical modeling for handling signal saturation
using data from multiple scans was considered by Gupta
et al. [10] and Gupta et al. [11].
The use of spot-level data in most previous work is lar-

gely motivated by the ready access to such data through
standard output files of image processing software. How-
ever, signal saturation occurs at individual pixels that
form a spot. So using raw pixel values could potentially
provide more effective bias adjustments. We base our
analysis on pixel-level data in this article. Instead of
accounting for saturated pixels in isolation from image
segmentation, as has been done in previous work
reviewed earlier, we propose to combine model-based
segmentation with spot intensity estimation to correct
for saturation at the segmentation stage. In mixture
model-based clustering of pixels, pixel values are typically
assumed to follow a finite mixture of parametric distribu-
tions such as Gaussian [12-15]. When a portion of pixel
values are saturated, the distribution assumption should
be modified to reflect this feature. Consequently, cluster
memberships of the pixels may be altered. Thus,
accounting for saturation during image segmentation has
the potential to improve the accuracy of segmentation,
which in turn would lead to more effective spot intensity
estimation.
Yang et al. [16] and Li et al. [14] provided excellent

reviews on methods for segmenting microarray images
without saturation. As a histogram-based segmentation
method, mixture model-based clustering of pixels has a
few advantages. Not only can it accurately recover irregu-
larly shaped spots, such as commonly seen donut-shaped
spots [17], but it can also identify blank spots and spots
with fuzzy edges. Fuzzy edges are a bigger concern for
saturated spots, since the optical flare caused by extremely
bright pixels often distorts the local background estimate.
In this article, we propose a model-based image segmenta-
tion and spot intensity estimation procedure to correct for

signal saturation at the pixel level. A censored Gaussian
mixture model (GMM) with no more than three mixture
components is developed, in which the number of compo-
nents is selected based on information criteria. The expec-
tation-maximization (EM) algorithm is carried out for
model estimation and implemented in R. Before applying
the proposed method, it is necessary to perform automatic
gridding (i.e., locating the spots on an array) to provide
the data for segmentation. Since the arrays in our data
examples were spotted in an orange-crate packing pattern
to increase spot density, a hexagonal grid was used. To
facilitate high-throughput analysis, we provide Matlab
code that extracts the pixel intensity values and the coor-
dinates of the pixels belonging to each spot after auto-
matic gridding is done. Through microarray examples and
simulation, we demonstrate that our method extends the
dynamic range of measured expression and is effective in
correcting saturation-induced bias. We also illustrate the
influence of saturation adjustments on modifying cluster-
ing results and the impact of image processing on down-
stream classification. Source code and data are available at
http://math.la.asu.edu/~yy/cgmm.html.
The rest of this article is organized as follows. First, the

censored GMM is introduced for segmenting microarray
images with saturated pixels and estimating spot-level
intensities. An EM algorithm is used to estimate the
model. Next, we illustrate the proposed method with pep-
tide microarray images from a human Valley Fever diag-
nosis study and a canine lymphoma diagnosis study, and
compare our method with regular GMM-based segmenta-
tion and intensity estimation without saturation correc-
tion. We conclude with the main findings and comment
on future research.

Methods
Microarray image processing involves three main steps: 1)
gridding or addressing that finds the exact location of each
spot, 2) image segmentation that determines which pixels
form the signal and which pixels form the background,
and 3) intensity estimation that quantifies the expression
level for each spot. The proposed censored GMM focuses
on the second and third tasks to correct for signal satura-
tion. The raw data are 16-bit grayscale images stored as
TIFF files. The input data for our segmentation and inten-
sity estimation procedure are pixel intensity values belong-
ing to individual spots after automatic gridding is done. In
the following we present the microarray studies that pro-
duced the images for the data examples, automatic gridd-
ing and pixel intensity extraction, and model-based
segmentation and spot intensity estimation.

Microarray data
We considered a microarray platform that is still in
its infancy but has profound implications for health
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monitoring and pre-symptomatic disease detection. The
immunosignaturing microarray is composed of 10,000
unique, random-sequence peptides that are printed in
standard microarray format. The peptide probes detect
antibody changes in the serum samples and correlate
them with changes in health status. Microarray images
were obtained from an experiment on Valley Fever
(Coccidioidomycosis) diagnosis in humans and an
experiment detecting T-cell and B-cell lymphoma in
dogs. Both studies were conducted at the Biodesign
Institute of the Arizona State University using the
Immunosignaturing Arrays developed by the Center for
Innovations in Medicine [18,19]. Human subjects were
consented and de-identified according to IRB Protocol#
0905004024. In the Valley Fever diagnosis study, 60
patients with the disease and 30 healthy controls were
examined. The lymphoma diagnosis study examined the
serum samples from 21 dogs with either B-cell or T-cell
lymphoma and 20 healthy dogs.
The microarrays were spotted in an orange-crate pack-

ing pattern using piezo-electric deposition of 10 pL of
1 mg/ml peptide in 20 uM Hepes buffer, 10 uM EDTA,
5 uM TCEP, pH 6.7 (Applied Microarrays, Tempe, AZ).
In both experiments, the serum samples were diluted
1:500 in incubation buffer and allowed to incubate on the
microarray slide. A secondary antibody pre-labeled with
either Alexafluor 647 or Alexafluor 555 (Invitrogen,
Carlsbad, CA) was added to the solution to detect the pri-
mary antibodies. The slides were washed, dried, and
scanned at 645 nm or 550 nm (according to the dye) using
an Agilent ‘C’ laser scanner (Agilent, Santa Clara, CA).

Automatic gridding and pixel intensity extraction
Although the array layout parameters are known in
advance, there are a number of sources that can lead to an
imperfect grid. These include variations in print-tip posi-
tions and the spotting process, hybridization inconsisten-
cies, and the need to produce highly dense arrays [20].
Slight departures from the pre-specified layout can result
in considerable misalignments of the grid. To ensure the

quality of image segmentation, one needs to first find the
exact locations of the spots. The orange packing spotting
pattern of the arrays requires the hexagonal grid instead of
the more common rectangular grid. The boundaries of
the hexagonal grid can be identified based on the spot
centers, provided by the automatic spot finding algorithm
of GenePix 6.0 [21] or other image processing software.
We extract in Matlab the pixel intensity values and their
coordinates within each target mask, the hexagon (or part
of the hexagon for a spot on the edge) containing a spot
and its surrounding background, and use them as the
input data for model-based segmentation. Figure 1 shows
the gridded image of a sub-block on an array from the
Valley Fever diagnosis study. The spot locations are well
identified.

Model-based segmentation and intensity estimation
Let Yi denote the intensity value of pixel i, i = 1, ..., n,
within a target mask on a digital image of one channel on
a single-channel or double-channel microarray; n may
vary for different spots. Assume that the Yi’s are indepen-
dent and identically distributed draws from a K-compo-
nent Gaussian mixture [22], in which the first K - 1
components are regular normal distributions, whereas the
last component is a normal distribution right censored at
the saturation threshold S. When the pixel intensities
within a target mask do not roughly follow a mixture of
Gaussian distributions, the data can be transformed to bet-
ter conform with normality or other distributions may be
assumed [8,15]. The mixture density for yi, a realized value
of Yi, is then given by

f (yi; θ) =
K−1∑
k=1

πkφ(yi; μk, σk)

+ πKφS(yi; μK , σK ),

where 0 ≤ πk ≤ 1, k = 1, ..., K, are the mixing weights
that sum to one, j(·;μk, sk) is the normal density func-
tion with mean μk and standard deviation sk, jS(·; μK,
sK) is the density function of a right-censored normal at

Figure 1 Array image with a hexagonal grid superimposed. Valley Fever diagnosis study: Array image with a hexagonal grid superimposed.
The red +’s are spot centers.
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S with mean μK and standard deviation sK, and θ =
(π1, ..., πK - 1, μ1, ..., μK, s1, ..., sK)

T is the vector con-
taining all parameters. For parameter identification, let
μ1 < μ2 < ... <μK. For model-based clustering of pixels
and spot intensity estimation, we maximize the log-
likelihood function l(θ ; y) =

∑n
i=1 log f (yi; θ), where y =

(y1, ..., yn)
T.

The number of components K can be selected by
likelihood-based information criteria (e.g., Bayesian
information criterion or BIC). Similar to the work of
Li et al. [14] for regular GMM-based clustering of pix-
els without saturation, we limit K to be a number no
greater than three with the following arguments.
When K equals 1, the target mask is associated with
either a blank spot containing only background (BG)
noise or a weak spot whose signal is too low to be dif-
ferentiated from the BG. For K = 2, a “perfect” spot is
resulted, in the sense that the two components corre-
spond to the BG and the foreground (FG) signal,
respectively. In practice, it may be common to observe
K = 3; the extra component with an intermediate
mean accounts for the fuzzy edge of a bright spot or
the inner hole of a donut-shaped spot. Figure 2
depicts FG median intensities for a randomly selected
block with 484 spots of an array image from the Val-
ley Fever diagnosis study. Applying BIC to mixture
component selection in our censored GMM-based

segmentation, we identified 63 blank spots, 376 two-
cluster spots, and 45 three-cluster spots. As shown in
the figure, the three-cluster spots typically have much
higher median intensities than the spots composed of
only signal and BG. Thus, bright spots and saturated
pixels further support the use of K = 3 in mixture
model-based segmentation.
We next focus on the case of K = 3 to illustrate maximi-

zation of the likelihood l(θ; y) using the EM algorithm
[23-25]. For k = 1 and 2, define the latent component indi-
cator variables Zik such that Zik = 1 if Yi is from compo-
nent k and Zik = 0 otherwise. Then Zi3 = 1 - Zi1 - Zi2. Let
zi1, zi2 and zi3 denote the realized values of Zi1, Zi2 and Zi3,
and let (y, z) form the complete data, where z1 = (z11, ...,
zn1)

T, z2 = (z12, ..., zn2)
T, z3 = (z13, ..., zn3)

T, and
z = (zT

1, zT
2, zT

3)T. The log-likelihood function based on the
complete data has the form

l(θ ; y, z) = l0(π1, π2; z) + l1(μ1, σ1; y, z)

+ l2(μ2, σ2; y, z) + l3(μ3, σ3; y, z),

where
l1(μ1, σ1; y, z) =

∑n
i=1 zi1 log φ(yi; μ1, σ1),

l2(μ2, σ2; y, z) =
∑n

i=1 zi2 log φ(yi; μ2, σ2),
l2(μ2, σ2; y, z) =

∑n
i=1 zi2 log φ(yi; μ2, σ2), and

l3(μ3, σ3; y, z) =
∑n

i=1 zi3 log [I(yi < S)φ(yi; μ3, σ3) + I(yi = S){1 − �( S−μ3
σ3

)}];
I(A) = 1 if event A occurs and equals 0 otherwise, and F
(·) is the standard normal cumulative distribution func-
tion. It can be seen that the complete-data likelihood
is decomposed into four parts: the log-likelihood l0 for a
multinomial distribution on z, the weighted log-
likelihoods l1 and l2 for two regular normal distributions
on y with weights z1 and z2, and the weighted log-
likelihood l3 for a right-censored normal on y with
weight z3. The four likelihood parts, each with distinct
parameters, can be maximized separately.
The EM is an iterative procedure for ML estimation that

works with the complete data. Each iteration consists of
an expectation (E) step and a maximization (M) step.
Since the complete-data likelihood l(θ; y, z) is linear in the
missing data z, the E step reduces to computing the condi-
tional expectation of Z given the observed data y and
parameter estimates from the previous iteration. The M
step maximizes the four likelihood parts in l(θ; y, z) sepa-
rately, each corresponding to a standard optimization pro-
blem. At iteration t, the conditional expectations of the
Zik’s are given by

z(t)
ik = E(Zik|yi, θ (t−1))

=
π

(t−1)
k φ(yi; μ

(t−1)
k , σ (t−1)

k )

f (yi; θ (t−1))
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Figure 2 Boxplots of foreground median intensities. Valley Fever
diagnosis study: Boxplots of foreground median intensities for blank
spots, two-cluster spots and three-cluster spots on a random block
with 484 spots. The number of clusters was selected by BIC.

Yang et al. BMC Bioinformatics 2011, 12:462
http://www.biomedcentral.com/1471-2105/12/462

Page 4 of 10



for k = 1, 2 and z(t)
i3 = 1 − z(t)

i1 − z(t)
i2
. In the M step, the

following closed-form solutions are obtained for k = 1, 2:

π
(t)
k =

n∑
i=1

z(t)
ik

/
n

μ
(t)
k =

n∑
i=1

z(t)
ik yi

/
z(t)

ik

σ
(t)
k =

n∑
i=1

z(t)
ik (yi − μ

(t)
k )

2
/

n∑
i=1

z(t)
ik .

For the censored normal component, estimators for μ3
and s3 do not have analytical forms and need to be
solved iteratively. The Newton-Raphson algorithm [26]
for estimating a censored normal model iteratively eval-
uates the first and second derivatives of the likelihood
component l3(μ3, s3; y, z) with respect to the para-
meters. The method is implemented in standard soft-
ware packages for survival analysis, such as the R
survreg function in the survival library and the SAS
LIFEREG procedure. Our R program implementation of
the EM algorithm calls the survreg function in each
M step to update the estimates of μ3 and s3.
To start the iterative procedure, we obtain the initial

values of the mean and scale parameters using the sample
means and standard deviations calculated from appropri-
ate portions of ordered pixel values within a target mask.
The initial mixing weights are estimated based on prior
knowledge about the typical spot and target mask sizes. In
the Valley Fever diagnosis study, the initial value for π1

was taken as 0.8 in a two-component mixture and the
values for π1 and π2 were 0.7 and 0.1 in a three-compo-
nent mixture. Convergence of the algorithm is monitored
by evaluating the increase in the likelihood function l(θ; y).
At convergence, the ML estimate μ̂1 of μ1 is used to quan-
tify the BG noise for a spot. The spot signal is estimated
by μ̂K, given that K ≥ 2. Consequently, the BG-corrected
spot intensity is given by μ̂K − μ̂1 for K ≥ 2. For a refined
selection of K, one may specify a threshold for the relative
difference in BIC below which a simpler model with a
smaller K, even if it has a slightly larger BIC value, is pre-
ferred over a more complex model. A similar idea was
used in Baek et al. [15] to flag spots with low expression
levels for K ≤ 2. The threshold value 0.001 for the relative
difference in BIC was used in the data examples and the
simulation study.

Availability
Source code and sample data are made available at http://
math.la.asu.edu/~yy/cgmm.html. Source code includes
the R program for implementing the censored GMM-
based segmentation and spot intensity estimation, and
the Matlab program for extracting pixel intensity values

and associated coordinates belonging to individual spots
from an automatically gridded image, with either a rec-
tangular grid or a hexagonal grid. Microarray images
from the human Valley Fever diagnosis study are accessi-
ble through Gene Expression Omnibus Series accession
number GSE33899 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE33899).

Results and discussion
In this section we present the results from two data exam-
ples and a simulation study. We compare our method
with the regular GMM similar to the segmentation
method of Li et al. [14] and the fixed circle segmentation
implemented in GenePix 6.0 [21]. Microarray images from
a Valley Fever diagnosis study in humans were processed
to illustrate the capability of the proposed method to
enhance the dynamic range of expression data beyond the
saturation threshold. A canine lymphoma diagnosis study
was used to demonstrate the impact of saturation adjust-
ments at the segmentation stage on downstream classifica-
tion between healthy and cancer tissue. A simulation study
was also conducted to evaluate the selection of K and the
performance of the censored GMM in correcting satura-
tion-induced bias.

A human Valley Fever diagnosis study
Microarray images were obtained from a Valley Fever
diagnosis study for identifying peptides that more effec-
tively predicted the status of Valley Fever patients than a
standard test. Each array consisted of 12 by 4 blocks and
each block contained 22 by 22 spots, with 400-500 pixels
per target mask. The hybridized arrays were scanned at
100% laser power and 70% PMT voltage, resulting in a few
spots saturated at S = 65, 535.
We use three spots with varying degrees of saturation

to illustrate censored GMM-based clustering of pixels.
Figure 3 displays the three spots, superimposed with
model-based segmentation results by the censored GMM
that corrects for saturated pixels or by the regular GMM
without saturation adjustments. The pixel intensity
values of the raw images were log transformed for a bet-
ter contrast. Based on BIC, three-component mixture
models were chosen for spots 1 and 2 in both methods
and for spot 3 in the censored GMM. A two-component
mixture was selected for spot 3 instead in the regular
GMM. Spot 1 in Figure 3(a) and 3(b) has a circular shape
and contains 34 saturated pixels. Spot 2 in Figure 3(c)
and 3(d) appears to have an inner hole with 60 saturated
pixels. Spot 3 depicted in Figure 3(e) and 3(f) is located
on the upper edge of a block. It has 18 saturated pixels
and manifests the so-called peak shape, that is, high
intensity pixels are concentrated at the center while pix-
els with lower intensities fill up the rest of the “circle”.
From the figure, both model-based methods identified
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the circular spot (spot 1) and the donut-shaped spot
(spot 2). For spot 3, the regular GMM failed to capture
the peak shape due to treating saturated values as truly
observed, whereas the censored GMM was able to sepa-
rate the bright signal from its surrounding. The modified
clustering results in the censored GMM demonstrate the
need for saturation correction at the segmentation stage.

Table 1 reports FG median and mean intensities for
the three spots from GenePix, the censored GMM, and
the regular GMM. In GenePix, the size of a circular
spot was fixed at 120. As the number of saturated pixels
increases, the spot intensity estimated by GenePix also
increases, but never exceeds S. The two model-based
methods allow flexible spot shapes and varying spot

(a) (c) (e)

(b) (d) (f)

Figure 3 Three saturated spots segmented by censored GMM and regular GMM. Valley Fever diagnosis study: Three saturated spots
segmented by the censored Gaussian mixture model (top panel) or the regular Gaussian mixture model (bottom panel). Foreground pixels are
bounded by black line segments. Intermediate pixels that are neither foreground nor background are bounded between black and white line
segments.
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sizes. Not accounting for saturation, the regular GMM
cannot produce spot expression levels beyond S. In the
extreme case of spot 2, the regular GMM grouped all
the saturated pixels as the signal (i.e., the third compo-
nent was a degenerate point mass at S), so the spot
intensity is equal to S. In contrast, the censored GMM
extends the dynamic range of expression levels, giving
rise to spot intensity measures above S for spots 2 and 3
that have high percentages of saturated FG pixels (60/78 =
77% and 18/26 = 69%, respectively). About 29% of the FG
pixels for spot 1 are saturated. In this case, the censored
GMM reduces the downward bias with a larger spot inten-
sity estimate than GenePix and the regular GMM.
The BG intensities for the three spots are summarized

in Table 2. The two sets of model-based estimates are
close to each other and do not seem to be affected by
saturated pixels. As a result, saturation adjustments in
estimating the FG intensities are unlikely to be offset
when BG-subtracted spot intensities are calculated. The
GenePix BG intensity estimates are based on a much lar-
ger set of BG pixels for each spot and appear to be lower
than the model-based estimates.

A canine lymphoma diagnosis study
Peptide microarrays from a canine lymphoma diagnosis
study are used to illustrate the impact of saturation correc-
tion on downstream class prediction. The original images,
obtained by scanning the arrays at 100% laser power and
70% PMT voltage, contained few saturated pixels, because
most lymphoma tumors do not elicit a strong antibody
response or the response is immunologically repressed.
For the purpose of illustration, we censored the original
pixel intensity values at artificial saturation thresholds to

generate new data sets with desired saturation rates. An
additional benefit of artificial censoring was to set a gold
standard for comparing classification results, since in this
case we know the original, uncensored data. In the analysis
we included samples from 14 affected dogs and 7 healthy
dogs. Each array consisted of a top sub-array and a bottom
sub-array. A sub-array had 16 blocks, each containing 65
by 10 spots with around 400 pixels per target mask.
We applied artificial saturation thresholds S1 = 1000

and S2 = 800 to pixel intensity values on the 21 arrays
and selected four spots as candidate peptides to be used
for classifying a sample as healthy or with cancer. Our
goal here was not to identify the complete set of pep-
tides that contributed to class prediction. Instead, we
used a small set of spots to demonstrate the potential
impact of signal saturation on classification. Given the
chosen saturation thresholds, the median percentages of
saturated FG pixels across arrays in the new data sets
were ranged from low to medium for S1 and from med-
ium to high for S2 (see Table 3).
Figure 4 compares BG-subtracted median intensity esti-

mates for the four spots. First, we fit the original, uncen-
sored data using both the regular GMM and GenePix.
Figure 4 shows that the two sets of spot median intensities
are in good agreement (i.e., black circles are close to the
diagonal line). Next, the censored GMM and regular GMM
were used to cluster the artificially censored data sets.
Figure 4(a) suggests that the censored GMM is capable of
correcting the downward bias. When the spot intensities
are way above the saturation threshold (see the upper right
corner of the plot), the adjustments tend to downshoot
somewhat because a great amount of information on the

Table 2 Background median and mean intensities for
three saturated spots

Spot BG pixels BG median (mean)

GenePix CGMM GMM GenePix CGMM GMM

1 556 249 250 5784 (5825) 5845 5857

2 596 284 288 1619 (1992) 2458 2546

3 671 348 349 1038 (1107) 1243 1248

Valley Fever diagnosis study: Number of background pixels and background
median and mean intensities from GenePix, censored Gaussian mixture
model, and regular Gaussian mixture model for the three saturated spots
displayed in Figure 3

Table 1 Foreground median and mean intensities for three saturated spots

Spot Saturated pixels FG pixels FG median (mean)

GenePix CGMM GMM GenePix CGMM GMM

1 34 120 116 114 52548 (48565) 57174 55538

2 60 120 78 60 59077 (42119) 70460 65535

3 18 120 26 140 20607 (26909) 74128 24738

Valley Fever diagnosis study: Number of saturated pixels, number of foreground pixels, and foreground median and mean intensities from GenePix, censored
Gaussian mixture model, and regular Gaussian mixture model for the three saturated spots displayed in Figure 3

Table 3 Median percentage of saturated foreground
pixels

Spot Median % of saturated FG pixels

S1 = 1000 S2 = 800

1 3.3 27.9

2 4.9 50.0

3 10.9 69.4

4 26.5 72.2

Lymphoma diagnosis study: Median percentage of saturated foreground
pixels, calculated as # of saturated foreground pixels divided by # of
foreground pixels, across 21 arrays for four spots. The artificial saturation
threshold was taken at S1 = 1000 or S2 = 800.
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signal is lost. In contrast, intensity estimates based on the
regular GMM are severely biased downwards; see Figure 4
(b). Three data points with median intensities ranged
between 4000 and 8000 are not displayed for a better visua-
lization of the rest of the data, but the results are similar.
Using BG-corrected median intensities for the four

selected spots, each of the 21 samples was classified as
healthy or having cancer based on logistic regression.
The misclassification rates using leave-one-out cross
validation are summarized in Table 4. The censored
GMM has lower error rates at both saturation thresh-
olds than the regular GMM. The higher the amount of
saturated pixels (i.e., the smaller the saturation thresh-
old), the larger the misclassification rate due to
increased loss of information. Thus, correcting for signal
saturation can potentially improve diagnostic accuracy.

Simulation
A simulation study was performed to investigate the use
of information criteria on mixture component selection
and the performance of our optimization algorithm
implementation. A K-component GMM, K = 2 or 3
with one component right-censored at S = 65, 535, was
used as the true model. At each K, the parameters were
chosen to mimic the Valley Fever diagnosis study and
allow 10%, 40% or 70% of saturated FG pixels. The
number of pixels within a target mask was fixed at 500.
1000 simulated trials were run in R for each of the six
settings. Each simulated data set was fitted by both the
censored GMM and the regular GMM. The complete,
uncensored data were also analyzed by the regular
GMM. Akaike information criterion (AIC) and BIC
were used to select K in each model.
The EM algorithm converged fast in all simulation

runs. In addition, we observed that spot intensity esti-
mates were somewhat robust to the choice of EM initial
values. Table 5 summarizes the percent of times K was
correctly selected by BIC; the results based on AIC are
similar and not shown. In the regular GMM for fitting
uncensored data, the correct number of mixture compo-
nents was chosen for all simulated runs, regardless of
the true K. The censored GMM with censored data cor-
rectly selected K in all except for five trials (when the
true K was three and there were 70% of saturated FG
pixels). When the percentage of saturation was small,
the regular GMM with censored data identified K

Figure 4 Comparison of background-subtracted median intensities for four selected spots. Lymphoma diagnosis study: Comparison of
background-subtracted median intensity estimates for four spots on 21 arrays, based on the regular Gaussian mixture model and GenePix each
with the original, uncensored data (S = 65535) as well as the censored Gaussian mixture model and the regular Gaussian mixture model each
with the artificially saturated data (S = 1000 or 800).

Table 4 Misclassification rate based on leave-one-out
cross validation

Method Data TP TN FP FN Error rate

GenePix Original 12 4 3 2 0.24

GMM Original 13 3 4 1 0.24

CGMM Censored at 1000 13 3 4 1 0.24

GMM Censored at 1000 10 2 5 4 0.43

CGMM Censored at 800 11 3 4 3 0.33

GMM Censored at 800 9 0 7 5 0.57

Lymphoma diagnosis study: Numbers of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) out of 21 samples, and
misclassification rate based on leave-one-out cross validation
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correctly most of the time. With medium and high
amounts of saturated FG pixels, however, the chance of
choosing an incorrect K increases. For example, when
fitting the censored data generated under K = 3 and
70% of saturation, a three-component regular GMM
was selected only 69% of times; for the rest trials a two-
component GMM was selected as the final model based
on BIC, causing severe downward bias in estimating
spot intensities. This provides additional evidence that
treating saturated values as truly observed, as in a regu-
lar GMM, can alter the selection on the number of clus-
ters and result in modified cluster memberships. Thus,
accounting for signal saturation at the image segmenta-
tion stage may lead to more accurate spot intensity
estimation.
In Table 6 and Table 7, we report the simulation

behavior of parameter estimates. Only the simulated
trials in which K was correctly chosen were included to
separate the effect of an incorrect number of clusters
from the impact of signal saturation given that K was
correctly identified. The relative bias for a parameter is
defined as the difference between the mean simulation
parameter estimate and the true parameter value,
divided by the true value. The tables suggest that, with
moderate to high amounts of saturated FG pixels, the
regular GMM-based spot intensity estimates are ser-
iously biased downwards. In contrast, the censored
GMM extends the dynamic range of the signal and

effectively corrects the negative bias in estimating the
FG signal over a wide range of saturation percentages.
Estimation of BG intensities is not affected by whether
or not saturation is accounted for.

Conclusions
In analysis of expression microarrays, the issue of signal
saturation has been frequently neglected, causing down-
ward bias in estimating spot expression levels and
potentially distorting high-level analysis. Previous work
has focused on saturation correction based on already
segmented data, at either the spot or pixel level. In this
article, we combine model-based segmentation and spot
intensity estimation into an integrated procedure that
has the potential to recover or partially recover the lost
information on expression levels due to saturated pixels.
The procedure models saturated pixels as right censored
at the saturation threshold and is implemented in R for
high-throughput analysis. As demonstrated in microar-
ray examples and simulation, the proposed method
extends the dynamic range of expression data at the
high end, is effective in correcting saturation-induced
bias at the pixel level, better identifies the cluster mem-
berships of pixels, and has the potential to increase the
predictive power for downstream class prediction. As a
model-based segmentation method, our procedure can
identify inner holes, fuzzy edges and blank spots that
are common in microarray images. Although illustrated
with single-dye peptide microarrays, the approach is
independent of microarray platform and applicable to
both single- and dual-channel microarrays. Our method
does not need multiple scans of an image to achieve
saturation correction as required by some of the existing
methods.
Possible extensions to the current work include devel-

opment of model-based image segmentation procedures
that assume robust or other distributions for the fore-
ground and background pixels [8,15] and also account
for signal saturation. The spatial information in a micro-
array image should also be exploited in different means
to more effectively guide the model-based clustering of
pixels.

Table 5 Percent of times the mixture component was
correctly selected

K % of saturated FG pixels GMM0 CGMM GMM1

2 10 100.0 100.0 99.0

40 100.0 100.0 76.3

70 100.0 100.0 82.7

3 10 100.0 100.0 100.0

40 100.0 100.0 95.0

70 100.0 99.5 68.9

Percent of times the mixture component K was correctly selected by BIC in
the regular Gaussian mixture model for complete, uncensored data (GMM0),
the censored Gaussian mixture model for censored data, and the regular
Gaussian mixture model for censored data (GMM1)

Table 6 Relative bias in the two-component mixture model

Parameter GMM0 CGMM GMM1

10 40 70 10 40 70 10 40 70

π1 = 0.8 0.0006 0.0007 0.0006 0.0006 0.0006 0.0006 0.0026 0.0075 0.0035

μ1 = 8, 000 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0007 0.0006 0.0014

s1 = 2, 000 -0.0043 -0.0043 -0.0044 -0.0044 -0.0044 -0.0045 -0.0010 0.0032 0.0073

μ2 -0.0002 0.0000 -0.0001 -0.0001 0.0004 -0.0019 -0.0104 -0.0867 -0.2220

s2 -0.0079 -0.0080 -0.0075 -0.0070 -0.0068 -0.0162 -0.1121 -0.3784 -0.6426

Simulation with true K = 2: Relative bias based on runs with K correctly selected by BIC. The models considered were regular Gaussian mixture for complete,
uncensored data (GMM0), censored Gaussian mixture for censored data, and regular Gaussian mixture for censored data (GMM1). Percents of saturated
foreground pixels were set at 10% (μ2 = 46, 300, s2 = 15, 000), 40% (μ2 = 60, 450, s2 = 20, 000) and 70% (μ2 = 78, 650, s2 = 25, 000).
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Simulation with true K = 3: Relative bias based on runs with K correctly selected by BIC. The models considered were regular Gaussian mixture for complete,
uncensored data (GMM0), censored Gaussian mixture for censored data, and regular Gaussian mixture for censored data (GMM1). Percents of saturated
foreground pixels were set at 10% (μ3 = 52, 700, s3 = 10, 000), 40% (μ3 = 62, 500, s3 = 12, 000) and 70% (μ3 = 75, 000, s3 = 18, 000).
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