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Abstract
In this work, the new VIKOR methods are established using the generalized Pythagorean fuzzy soft sets (GPFSSs). For

GPFSSs, the distance measures such as Hamming, Euclidean, and generalized are given. Further, the basic characteristics

of these distance measures are examined. Fuzzy and soft sets are strong instruments for uncertainty. This strongness has

been demonstrated by the GPFSS combining Pythagorean fuzzy sets and soft sets and applied to imprecise and ambiguous

information. In this context, new remoteness index-based methods have been proposed, which are dissimilar from available

VIKOR methods. The displaced and fixed ideals positive and negative Pythagorean fuzzy values (PFV) were defined. Thus,

based on this definition, displaced positive ideal remoteness indices, negative ideal remoteness indices, and fixed positive

ideal, negative ideal remoteness indices were discussed. Two different weights are used here: weights based on OF

preference information and precise weights calculated with the expectation score function. The VIKOR method given here

provides a different way from canonical VIKOR methods: rank candidate alternatives and determining a compromise

solution based on different preference structures. The processes principles of the newly defined GPFSSs VIKOR methods

are given by four algorithms. An example of these algorithms is given with the behavioral development and cognitive

development of the children of Early Childhood children in the COVID-19 quarantine.

Keywords Remoteness Index-Based VIKOR method � Generalized Pythagorean fuzzy soft set � Multi-attribute decision

making � Expectation score function � Early childhood

1 Introduction

Uncertainty is a crucial concept for decision-making

problems. It is not easy to make precise decisions in life

since each information contains vagueness, uncertainty,

imprecision. Fuzzy Set(FS) Theory, Zadeh’s [49]

pioneering work, proposed a membership function to solve

problems such as vagueness, uncertainty, imprecision, and

this function took value in the range of [0,1]. FS Theory

had solved many problems in practice, but there was no

membership function in real life, which only includes

acceptances. Rejection is as important as acceptance in real

life. Atanassov [3] clarified this problem and posed the

Intuitionistic Fuzzy Set(IFS) Theory using the membership

function as well as the non-membership function. In IFS,

the sum of membership and non-membership grades is 1.

This condition is also a limitation for solutions of vague-

ness, uncertainty, imprecision. Yager [46] has presented a
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murat.kirisci@istanbul.edu.tr

1 Department of Biostatistics, Cerrahpasa Faculty of Medicine,

Istanbul University-Cerrahpasa, Istanbul, Turkey

2 Department of Statistics, Yildiz Technical University,

Istanbul, Turkey

3 Department of Mathematics, Istanbul Commerce University,

Istanbul, Turkey

4 Department of Early Childhood Educaiton, Istanbul

University-Cerrahpasa, Istanbul, Turkey

5 Department of Early Childhood Educaiton, Istanbul

Sabahattin Zaim University, Istanbul, Turkey

123

Neural Computing and Applications (2022) 34:1877–1903
https://doi.org/10.1007/s00521-021-06427-3(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-4938-5207
https://orcid.org/0000-0002-7750-6910
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06427-3&amp;domain=pdf
https://doi.org/10.1007/s00521-021-06427-3


solution to this situation and suggested Pythagorean Fuzzy

Sets(PFS). PFS is more comprehensive than IFS because it

uses the condition that the sum of the squares of mem-

bership and non-membership grades is equal to or less than

1. PFS is also a particular case of the Neutrosophic Set

initiated by Smarandache [43]. There are many studies in

the literature on FS, IFS, and PFS theories

[1, 2, 13–20, 23–27, 29, 30, 38–41, 43–45, 47, 48, 51].

Despite all the possible solutions, these theories have

limitations. How to set the membership function in each

particular object and the deficiencies in considering the

parametrization tool can be given as examples of these

limitations. These limitations handicap decision-makers

from making a correct decision during the analysis.

A new method, called Soft Set, was proposed by

Molodtsov [33], in which the preferences for each alter-

native were given in distinct parameters, and thus a solu-

tion was found for the limitations expressed. Immediately

after the occurrence of SS theory, Fuzzy Soft Sets [29] and

Intuitionistic Fuzzy Soft Set(IFSS) [30] were defined and

their various properties were studied [31, 32]. Pythagorean

Fuzzy Soft Set(PFSS) is defined by Peng et al. [38]. PFSS

is a natural generalization of IFSS and is a parameterized

family of PFSs. In [4, 5, 22, 34, 42], the main features of

PFSS were examined and applied to various areas such as

medical diagnosis, selection of a team of workers for

business, stock exchange investment problem. The benefit

of these extended theories is that they are capable of sim-

plifying the characterization of real-life cases with the help

of their parameterized feature.

It is possible that people may hesitate during decision-

making. In order to avoid human hesitations from

adversely affecting the decision-making process, hesitation

value is also taken into account in PFS, just like IFS. Thus,

experts may have hesitations about membership grades. If

the expert participating in the decision process is only one

person, this expert’s error or bias will affect the process

negatively. However, hesitation is subjective and the

expert’s hesitation can be directed by her/his own percep-

tions. In this case, enriching the decision process, making

the evaluation with alternative decisions more meaningful,

combining the subjective evaluations of more than one

expert instead of the subjective evaluation of a single

expert will provide a healthier decision-making process.

With this in mind, Agarwal et al. [1] defined Generalized

Intuitionistic Fuzzy Soft Sets(GIFSS). Feng et al. [14]

identified some problems and difficulties in the definition

of GIFSS and operations related to GIFSS in the manu-

script of Agarwal et al [1]. Kirisci [27] defined GPFSS,

considering the fixes in [14].

GPFSS ensures the frame for evaluating the reliability of

the info in the PFSS so as to compensate for any distortion

in the info given. The most important benefit of

incorporation of the generalized parameter into the analysis

is to decrease the likelihood of errors induced by the

imprecise info by taking the chairperson’s view on the

same. For example, a patient may give wrong information

to a physician about her/his symptoms. If the physician

does not notice this wrong information, errors in diagnosis

and treatment will occur. In this case, an experienced

physician can measure the reliability of the information

given by the patient with a generalization parameter. So,

there is a requirement for a generalization parameter,

demonstrating an expert’s level of confidence in the relia-

bility of the info, respectably making the approach quite

close to real-world cases. This assists in extracting the

singular bias from the input data and gets more credibility

to the final decision. GPFSS has a generalization parameter

to states the uncertainties.

Usually, the most present multiple criteria decision

analysis (MCDA) methods goal to discover a unique

solution that maximum achieves the general criteria as

much as possible. The VIKOR method is skilled in speci-

fying a set of compromise solutions(CS) in the existence of

contradictory criteria according to the choices of the

decision-makers. The VIKOR method developed by Opri-

covic and Tzeng [35, 36] focuses on ranking and selecting

from a set of alternatives, and determines compromise

solutions for a problem with conflicting criteria, which can

help the decision makers to reach a final decision. This

abbreviation comes from the Serbian name of the method:

Višekriterijumska Optimizacija I Kompromisno Resenje(-

multicriteria optimization and compromise solution). Here,

the CS is a feasible solution that is the closest to the ideal

solution, and a compromise means an agreement estab-

lished by mutual concessions [21, 35, 37].

VIKOR focalizes on the specification of a set of CSs that

are built by reciprocal compensations [6, 7, 28, 35, 37] to

efficiently help MCDA and improve the quality of DM

[50]. In recent years, VIKOR method studies have acquired

popularity in varied MCDA areas because of their large

ability to compromise rank performance by comparing the

measure of closeness to the ideal solution [21]. Because of

these properties, the VIKOR method has become popular

and has been used in many areas [21]. The VIKOR method

usually utilizes the positive- and negative-ideal solutions to

serve as points of reference, and the specification of these

ideal solutions is immediately produced from the evalua-

tive ratings of all alternatives according to various criteria

[35, 37]. Chen [12] defined the VIKOR method based on

distance index for Pythagoras fuzzy clusters and applied it

to various problems.

PF sets include more uncertainties and are generally able

to accommodate higher degrees of uncertainty. To effi-

ciently administrate the complex uncertainty in human

cognitive and DM activities, it is necessary to expand the
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valid VIKOR methods that previously focalized on certain

settings and fuzzy environments to the PF context.

Although the VIKOR method is a very qualified approach

in terms of DM processes, it has been used very little in

medical DM, health services, and child development.

The aim of this study is to develop a new approach to

solve MADM problems by integrating the VIKOR method

with GPFSS. It is known that the importance of the VIKOR

method is to determine the CS and to improve the standard

of the DM process. The VIKOR method is balancing the

majority’s maximum group utility and the opponent’s

minimum individual regret. In the VIKOR method, the best

and worst solutions serve as the point of reference and the

distance between the best solution and evaluative ratings

does not have an upper bound. The new idea of remoteness

index is considerable because it ensures the upper bounds

by dividing the distance between the best solution and

evaluative ratings by the distance between the best solution

and the worst solution. The novel ranking indexes based on

the new idea of remoteness indexes are debated to ensure

more efficient compromise rankings. Thus, a remoteness

index-based VIKOR method for GPFSS is improved.

The negatives caused by early childhood children stay-

ing at home during quarantine times are measured with

new algorithms. All areas of development are in interaction

with each other, and the problem that may occur in one

area has reflections on other areas. In this context, prob-

lems in the cognitive field may cause problems in other

areas, as well as problems in other areas that may reflect on

cognitive development. Therefore, it is necessary to know

the development characteristics of each field well and to

identify the problems that may arise in a timely and

accurate manner. The pre-school period has a very

important place in human life. In this period, the child’s

personality development and emotional, social, cognitive,

language, and academic development are largely com-

pleted. The child completes her/his cognitive and behav-

ioral development in a healthy way with the contribution of

her family and school environment. That’s why new

algorithms have been applied to such an important subject.

The originality of this study can be expressed as follows:

New distance measures such as Euclidean, Hamming, and

Generalized for GPFFS are defined. The properties of these

distance measures were examined, and an example was

given. The displaced and fixed ideals are defined for PFVs.

In addition, the displaced and fixed remoteness indexes are

given for PFVs. Two types of weights called precise

weights and PF weights are defined and discuss in their

methods of generation. The precise importance weights are

obtained by the expectation score function. The PF

importance weights represented the importance and unim-

portance degrees of the criteria. The displaced and fixed

ideals, the displaced and fixed remoteness indexes are

identified as ranking indexes (four groups). Based on these

definitions, four algorithms expressing VIKOR methods

have been proposed. The problem of the cognitive and

behavioral development of early childhood children in

quarantine is examined with the suggested remoteness-

based VIKOR method.

2 Preliminaries

In this section, basic definitions, theorems, propositions

and properties that will be used in the whole study will be

given. Throughout the study, the initial universe, parame-

ters sets will denote ! , R, respectively.

2.1 Pythagorean fuzzy environment

The theory of IFS was developed by Atanassov [3] and is a

natural generalization of the theory of FS. IFS is defined by

MS and NMS degrees and, for this reason, can indicate the

fuzzy character of data in more elaboration comprehen-

sively. The significant qualification of IFS is that it

appoints to each element MS and NMS degrees

(MSþ NMS� 1). However, in some DM processes, the

sum of the MS and NMS values obtained may be greater

than 1. In this case, we can take the sum of the squares of

these MS and NMS values obtained, which will be less

than or equal to 1.

As an original idea, PFSs were created by Yager [45].

PFS is a very useful tool for uncertainty. PFS offers good

results especially in solutions where IFS is insufficient. The

differences between PFSs and IFSs can be mentioned as

follows: For IFS, MSþ NMS� 1, 0�MSþ NMS� 1, p ¼
1 � ðMSþ NMSÞ and pþMSþ NMS ¼ 1.

For PFS, MSþ NMS� 1 or MSþ NMS� 1,

0�MS2 þ NMS2 � 1, p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðMS2 þ NMS2Þ
p

and

p2 þMS2 þ NMS2 ¼ 1.

For, the initial universe set !, the function uAðxÞ : ! !
½0; 1� is called FS on !. The FS can be indicated by

A ¼ ðai; uAðaiÞÞ : uAðaiÞ 2 ½0; 1�; 8ai 2 !f g: ð2:1Þ

Choose the MS function uB : ! ! ½0; 1� and the NMS

function vB : ! ! ½0; 1�. Let’s assume that the condition

0� uBðaÞ þ vBðaÞ� 1 for any a 2 ! is satisfied. Then, the

set B ¼ fða; uBðaÞ; vBðaÞÞ : a 2 !g is said to be an IFS B

on ! . In this case, the condition pB ¼ 1 � uBðxÞ � vBðxÞ
holds [3].

Suppose that condition 0� ½uCðxÞ�2 þ ½vCðxÞ�2 � 1 sat-

isfies for uC : ! ! ½0; 1� and vC : ! ! ½0; 1�. Then, an PFS

C in ! is defined by C ¼ fðx; uCðxÞ; vCðxÞÞ : x 2 !g. In
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this case, the condition pC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ½uCðxÞ�2 � ½vCðxÞ�2
q

holds [45, 46, 48].

Let C be a PFS over R. In this definition, (F, C) can be

represented as

ðF;CÞ ¼
�

�

a; uFðaÞ; vFðaÞ
�

:

a 2 P; uFðaÞ 2 ½0; 1�; vFðaÞ 2 ½0; 1�
�

:

ð2:2Þ

The set of all PFS on ! will be denoted by Xð!Þ.
Let ! ,R be an initial universe and a parameters sets,

respectively. For D � R, consider a set-valued mapping

F : D ! xð!Þ, where the power set of ! is showed by

xð!Þ. Therefore, a pair (F, D) is called a SS on !.

For E � R, choose F : E ! xð!Þ, where the set of all

PFSs over ! is indicated by xð!Þ. Then, a pair (F, E) is

called a PFSS on xð!Þ [38].

Choose the Pythagorean fuzzy numbers (PFNs) R ¼
ðuR; vRÞ [51]. For three PFNs

h ¼ ðu; vÞ; h1 ¼ ðu1; v1Þ; h2 ¼ ðu2; v2Þ, some fundamental

operations are as follows [45, 48]: For a[ 0, �h ¼ ðv; uÞ,
h1 � h2 ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
1 þ u2

2 � u2
1u

2
2

p

; v1v2Þ,
h1 	 h2 ¼ ðu1u2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
1 þ v22 � v2

1v
2
2

p

Þ,
h1 ^ h2 ¼ ðminfu1; u2g;maxfv1; v2gÞ,
h1 _ h2 ¼ ðmaxfu1; u2g;minfv1; v2gÞ,
a:h ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ð1 � u2Þa
p

; vaÞ, ha ¼ ðua;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ð1 � v2Þa
p

Þ.
The PFS defined by MS and NMS which satisfies the

condition MS2 þ NMS2 � 1 is initiated by Yager [45]. For

example, choose p ¼ ð0:87; 0:42Þ. Since

ð0; 87Þ þ ð0:42Þ[ 1, these values are not suitable for IFS.

However, since ð0; 87Þ2 þ ð0:42Þ2\1, these values can be

used with PFS.

A new PFN formula consisting of the strength of com-

mitment rp and the direction of commitment dp was also

given by Yager [45]. The new PFN is denoted by

P ¼ ðrp; dpÞ, where rp 2 ½0; 1�. The stronger commitment is

defined by the larger the value of rp, in this case the lower

the uncertainty of the commitment. rp and dp are charac-

terized by up ¼ rp cosðhpÞ, vp ¼ rp sinðhpÞ, i.e., these val-

ues are related to MS and NMS grades. Here hp is

expressed in radian and calculate hp ¼ ð1 � dpÞðp=2Þ. If

P ¼ ðrp; dpÞ is defined in terms of polar coordinates, it is

denoted as ðrp; hpÞ. In this case, dp has a formula in the

form of dp ¼ 1 � ð2:hp=pÞ. It can then be said that PFNs

consists of up; vp; pp; rp; dp and hp parameters. If

up; vp 2 ½0; 1�, then it is clear that u2
p � up, v

2
p � vp.

2.2 Generalized Pythagorean fuzzy soft sets

Consider the L ¼ fða; bÞ : a; b 2 ½0; 1�; a2 þ b2\1g with

the partial order � L. The complete lattice ðL; � LÞ is

defined by ða; bÞ� Lði; jÞ , a� i and b� j, for all

ða; bÞ; ði; jÞ 2 L.

The ða; bÞ 2 L given in this way is called Pythagorean

fuzzy value (PFN)(or Pythagorean fuzzy number(PFN))

[16].

Definition 2.1 [25] Take the PFS C. Let the PFS

f : C ! L. If the set

ðF;C; f Þ ¼
�

�

a; uCðaÞ; vCðaÞ; fCðaÞ
�

:

a 2
X

; fCðaÞ 2 L; uCðaÞ 2 ½0; 1�; vCðaÞ 2 ½0; 1�
�

ð2:3Þ

is a PFSS, the (F, C, f) is called Pythagorean fuzzy

parameterized Pythagorean fuzzy soft set (generalized

Pythagorean fuzzy soft set-GPFSS), where (F, C) is a

fundamental PFSS (FPFSS). Furthermore, fC is said to be

the parametric PFS(PPFS) and is indicated by uf ; vf .

Example 2.2 Choose the patients set H ¼ fh1; h2; h3g and

the symptoms set B ¼ fb1; b2; b3; b4g and

C ¼ fb1; b3; b4g 
 B. The values fCðb1Þ ¼ ð0:77; 0:35Þ,
fCðb3Þ ¼ ð0:65; 0:42Þ and fCðb4Þ ¼ ð0:88; 0:24Þ express the

diagnostic view of a physician. The (F, C, f) is shown in

Table 1.

For all R ¼ ðuR; vRÞ 2 L , the score function for PFNs ie

described

SCR ¼ u2
R � v2

R ð2:4Þ

where SC : L ! ½�1; 1� [1, 51].

For any two PFNs R, T,

R � T ; if SCðRÞ\SCðTÞ;
R�T ; if SCðRÞ[SCðTÞ;
R
 T ; if SCðRÞ ¼ SCðTÞ;

8

>

<

>

:

ð2:5Þ

Table 1 The GPFSS (F, C, f)

b1 b3 b4

h1 (0.71, 0.66) (0.58, 0.48) (0.82, 0.30)

h2 (0.55, 0.70) (0.92, 0.21) (0.63, 0.56)

h3 (0.94, 0.13) (0.76, 0.37) (0.70, 0.44)

fCðbiÞ (0.77, 0.35) (0.65, 0.42) (0.88, 0.24)

1880 Neural Computing and Applications (2022) 34:1877–1903

123



As can be seen from (2.4), the larger the score sR, the

greater the PFN R [16]. It should be noted that SC cannot

differentiate some evidently distinct PFNs that have the

same score. To explain this situation, we can give examples

using (2.5): Take two PFNs R, T as R ¼ ð0:481; 0:402Þ and

T ¼ ð0:527; 0:456Þ. Then, SCR ¼ 0:0697 and

SCT ¼ 0:0697. Again, for R ¼ ð0:123; 0:123Þ and T ¼
ð0:456; 0:456Þ we can write R
 T . Therefore, if only the

scoring function is used for comparison, it is not possible to

make a comparison between these numbers. To overcome

this problem, we can define a new function [1], as follows:

The mapping AC : L ! ½0; 1� is called accuracy

function, if

ACR ¼ u2
R þ v2

R ð2:6Þ

for all R ¼ ðuR; vRÞ 2 L [39].

Using the (2.4) and (2.6), for comparing PFVs, the

following method is presented by Agarwal et al. [1]. For

any two PFNs R, T, if SCðRÞ ¼ SCðTÞ, then

R[ T ; if ACðRÞ[ACðTÞ;
R\T; if ACðRÞ\ACðTÞ

R
 T ; if ACðRÞ ¼ ACðTÞ;

8

>

<

>

:

ð2:7Þ

For a binary relation � ðSC;ACÞ 2 L and R; T 2 L, it can

be written as

R� ðSC;ACÞT , ðSCR\SCTÞ _ ðSCR

¼SCT ^ACR �ACTÞ:
ð2:8Þ

From [14], we can give the new definition:

Definition 2.3 [27] The mapping ES : L ! ½0; 1� is

called expectation score function such that for all

R ¼ ðmR; nRÞ 2 L

ESR ¼ u2
R � v2

R þ 1

2
: ð2:9Þ

Proposition 2.4 [27] Let ES : L ! ½0; 1� and

R ¼ ðuR; vRÞ 2 L. Then, we have

i. ESð0; 1Þ ¼ 0 and ESð1; 0Þ ¼ 1,

ii. ESðuR; vRÞ is increasing with respect to uR,

iii. ESðuR; vRÞ is decreasing with respect to vR.

Definition 2.5 [27] For two PFNs R; T 2 L and the

relation � ðu;ESÞ on L, we have

R� ðu;ESÞT , ðuR\uTÞ _ ðuR
¼uT ^ ESR �ESTÞ:

ð2:10Þ

Theorem 2.6 [27] The relation � ðu;ESÞ is a partial order

on L.

By replacing the approval rates in Definition 2.5, the

other relation � ðES;uÞ is written as follows:

Definition 2.7 [27] For two PFNs R; T 2 L and the

relation � ðES;uÞ on L,

R� ðES;uÞT , ðESR\ESTÞ _ ðESR ¼ EST ^ uR � vTÞ:
ð2:11Þ

The relationship with each other of � ðSF;ACÞ and

� ðES;uÞ can be given as follows:

Proposition 2.8 [27] Let R and T be PFNs in L. Then,

R� ðSC;ACÞT , R� ðES;uÞT.

If we consider the debates of [14, 44], then the following

proposition is given:

Proposition 2.9 [27] Take two PFVs R ¼ ðuR; vRÞ and

T ¼ ðuT ; vTÞ in L. Then, the following conditions are

equivalent:

i. SCR ¼ SCT ^ACR �ACT ,

ii. ESR ¼ EST ^ uR � uT ,

iii. ESR ¼ EST ^ vR � vT ,

iv. SCR ¼ SCT ^ vR � uT ,

v. SCR ¼ SCT ^ vR � vT .

Definition 2.10 [51] Let R ¼ ðuR; vRÞ; T ¼ ðuT ; vTÞ 2 L

be two PFVs. Then, for a[ 0, we have the following

operations:

R� T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
R þ u2

T � u2
Mu

2
T

q

; vRvT

� �

; ð2:12Þ

R	 T ¼ uRuT ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
R þ v2

T � v2
Rv

2
T

q

� �

; ð2:13Þ

aR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ð1 � u2
RÞ

a
q

; ðvRÞa
� �

; ð2:14Þ

Ra ¼ ðuRÞa;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ð1 � v2
RÞ

a
q

;

� �

: ð2:15Þ

Theorem 2.11 [51] For R ¼ ðuR; vRÞ; T ¼ ðuT ; vTÞ 2 L

and a; a1; a2 [ 0,

i. R� T ¼ T � R,

ii. R	 T ¼ T 	 R,

iii. aðRþ TÞ ¼ aR� aT ,

iv. a1R� a2R ¼ ða1 þ a2ÞR,

v. ðR	 TÞa ¼ Ra 	 Ta,

vi. Ra1 � Ra2 ¼ Rða1þa2Þ.
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Proposition 2.12 [27] For R ¼ ðuR; vRÞ;
T ¼ ðuT ; vTÞ;V ¼ ðuV ; vVÞ 2 L, then we have,

R� ðu;ESÞV ) T � R� ðu;ESÞT � V : ð2:16Þ

Corollary 2.13 [27] Let For R ¼ ðuR; vRÞ; T ¼ ðuT ; vTÞ 2
L and a; a1; a2 2 Rþ. Then,

i. If R� ðu;ESÞT , then aR� ðu;ESÞaT ,

ii. If a1 � a2, then a1R� ðu;ESÞa2R.

3 Distance measures for GPFSSs

The Hamming, Euclidean and generalized distance mea-

sures for GPFSSs are given in this section. Some properties

of distance measures are discussed. The new distance

measures offered in this section will be then applied to

build useful concepts of remoteness indices, consisting of

displaced positive- and negative-ideal remoteness indices

as well as fixed positive- and negative-ideal remoteness

indices.

Let ! ¼ fx1; x2; � � � ; xmg,
P

¼ fe1; e2; � � � ; eng be uni-

verse set and parameter set, respectively. Choose the two

GPFSSs X1;X2. For convenience, take

MXðxiÞ ¼ XðX1ÞejðxiÞ � XðX2ÞejðxiÞ.

Definition 3.1 For two GPFSSs X1 ¼ ðF;A; f Þ,
X2 ¼ ðG;B; gÞ, the normalized Hamming distance, nor-

malized Euclidean distance and generalized distance

measures between X1 and X2 are defined, respectively, as

follows:

UGðX1;X2Þ ¼

1

5mn

X

m

i¼1

X

n

j¼1

ðMuðxiÞÞk þ ðMvðxiÞÞk þ ðMpðxiÞÞk

þðMdðxiÞÞk þ ðMrðxiÞÞk þ ðuðf ÞejðxiÞ � uðgÞejðxiÞÞ
k

þðvðf ÞejðxiÞ � vðgÞejðxiÞÞ
k þ ðpðf ÞejðxiÞ � pðgÞejðxiÞÞ

k

þðrðf ÞejðxiÞ � rðgÞejðxiÞÞ
k þ ðdðf ÞejðxiÞ � dðgÞejðxiÞÞ

k

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

1=k

ð3:3Þ

UHðX1;X2Þ ¼
1

5mn

P

m

i¼1

P

n

j¼1

	

jMuðxiÞj þ jMvðxiÞj þ jMpðxiÞj þ jMrðxiÞj þ jMdðxiÞj

þjuðf ÞejðxiÞ � uðgÞejðxiÞj þ jvðf ÞejðxiÞ � vðgÞejðxiÞj þ jpðf ÞejðxiÞ � pðgÞejðxiÞj

þjrðf ÞejðxiÞ � rðgÞejðxiÞj þ jdðf ÞejðxiÞ � dðgÞejðxiÞj



8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

ð3:1Þ

UEðX1;X2Þ ¼

1

5mn

X

m

i¼1

X

n

j¼1

½ðMuðxiÞÞ2 þ ðMvðxiÞÞ2 þ ðMpðxiÞÞ2 þ ðMrðxiÞÞ2

þðMdðxiÞÞ2 þ ðuðf ÞejðxiÞ � uðgÞejðxiÞÞ
2 þ ðvðf ÞejðxiÞ � vðgÞejðxiÞÞ

2

þðpðf ÞejðxiÞ � pðgÞejðxiÞÞ
2 þ ðrðf ÞejðxiÞ � rðgÞejðxiÞÞ

2

þðdðf ÞejðxiÞ � dðgÞejðxiÞÞ
2�

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

1=2

: ð3:2Þ
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where k� 1.

Definition 3.2 The weighted normalized Hamming dis-

tance, weighted normalized Euclidean distance and

weighted generalized distance measures between X1 and

X2 are defined, respectively, as follows:

where k� 1, 0�xi � 1ði ¼ 1; 2; � � � ; nÞ and
Pn

i¼1 xi ¼ 1.

Theorem 3.3 Let ðL; �LÞ be a partially ordered set. For

the GPFSSs X1;X2;X3 belonging to L with the partial

order � L. A generalized distance measure of UG satisfies

the following conditions:

ðU1Þ UGðX1;X1Þ ¼ 0 (reflexivity)

ðU2Þ UGðX1;X2Þ ¼ 0 if X1 ¼ X2

ðU3Þ UGðX1;X2Þ ¼ UGðX2;X1Þ (symmetry)

ðU4Þ 0�UGðX1;X1Þ� 1 (boundedness)

ðU5Þ UGðX1;X2Þ�UGðX1;X3Þ and

UGðX2;X3Þ�UGðX1;X3Þ if p1 � Lp2 � Lp3.

The proof of this theorem is obvious.

UWHðX1;X2Þ ¼
1

5mn

P

m

i¼1

P

n

j¼1

xjjMuðxiÞj þ jMvðxiÞj þ jMpðxiÞj þ jMrðxiÞj

þjMdðxiÞj þ juðf ÞejðxiÞ � uðgÞejðxiÞj
þjvðf ÞejðxiÞ � vðgÞejðxiÞj þ jpðf ÞejðxiÞ � pðgÞejðxiÞj
þjrðf ÞejðxiÞ � rðgÞejðxiÞj þ jdðf ÞejðxiÞ � dðgÞejðxiÞj

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

ð3:4Þ

UWEðX1;X2Þ ¼

1

5mn

X

m

i¼1

X

n

j¼1

xjðMuðxiÞÞ2 þ ðMvðxiÞÞ2 þ ðMpðxiÞÞ2 þ ðMrðxiÞÞ2

þðMdðxiÞÞ2 þ ðuðf ÞejðxiÞ � uðgÞejðxiÞÞ
2

þðvðf ÞejðxiÞ � vðgÞejðxiÞÞ
2 þ ðpðf ÞejðxiÞ � pðgÞejðxiÞÞ

2

þðrðf ÞejðxiÞ � rðgÞejðxiÞÞ
2 þ ðdðf ÞejðxiÞ � dðgÞejðxiÞÞ

2

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

1=2

ð3:5Þ

UWGðX1;X2Þ ¼

1

5mn

X

m

i¼1

X

n

j¼1

xjðMuðxiÞÞk þ ðMvðxiÞÞk þ ðMpðxiÞÞk þ ðMrðxiÞÞk

þðMdðxiÞÞk þ ðuðf ÞejðxiÞ � uðgÞejðxiÞÞ
k

þðvðf ÞejðxiÞ � vðgÞejðxiÞÞ
k þ ðpðf ÞejðxiÞ � pðgÞejðxiÞÞ

k

þðrðf ÞejðxiÞ � rðgÞejðxiÞÞ
k þ ðdðf ÞejðxiÞ � dðgÞejðxiÞÞ

k

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

1=k

ð3:6Þ
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Note 1: If k ¼ 1 and k ¼ 2, UH ¼ UG and UE ¼ UG,

respectively. Then UH satisfies the conditions of Theo-

rem 3.3 with separability and triangle inequality. There-

fore, the Hamming distance measure UH is a metric.

Further, UE satisfies the conditions of Theorem 3.3 with

separability. Fulfilling these conditions indicates that the

UE is a semi-metric. The conditions separability and tri-

angle inequality conditions, respectively, are as follows:

(A1) UGðX1;X2Þ ¼ 0 , X1 ¼ X2, for k ¼ 1 and k ¼ 2.

(A1Þ UHðX1;X3Þ�UHðX1;X2Þ þ UHðX2;X3Þ

Theorem 3.4 For the GPFSSs X1;X2, UðX1;X2Þ
¼ UðXt

1;X
t
2Þ.

Proof We will only prove for normalized Hamming dis-

tance. It can be proved similarly for normalized Euclidean

distance and generalized distance measures. The distance

between two GPFSSs X1;X2 can be written as follows:

From the complement of GPFSS,

the MS degrees of Xt
1 relate to the NMS degrees of Xt

2.

Therefore, the distance between X1;X2 is the same as the

distance between Xt
1;X

t
2. h

Example 3.5 Let ! ¼ fx1; x2g, M ¼ N ¼ fe1; e2; e3g be

universe set and parameter sets, respectively. Choose two

GPFFSs X1 ¼ ðF;M; f Þ, X2 ¼ ðG;N; gÞ as follows:

UHðX1;X2Þ ¼
1

5mn

P

m

i¼1

P

n

j¼1

½juðX1ÞejðxiÞ � uðX2ÞejðxiÞj þ jvðX1ÞejðxiÞ � vðX2ÞejðxiÞj

þjpðX1ÞejðxiÞ � pðX2ÞejðxiÞj þ jrðX1ÞejðxiÞ � rðX2ÞejðxiÞj
þjdðX1ÞejðxiÞ � dðX2ÞejðxiÞj þ juðf ÞejðxiÞ � uðgÞejðxiÞj
þjvðf ÞejðxiÞ � vðgÞejðxiÞj þ jpðf ÞejðxiÞ � pðgÞejðxiÞj
þjrðf ÞejðxiÞ � rðgÞejðxiÞj þ jdðf ÞejðxiÞ � dðgÞejðxiÞj�

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

ð3:7Þ

UðXt
1;X

t
2Þ ¼

1

5mn

P

m

i¼1

P

n

j¼1

½juðX2ÞejðxiÞ � uðX1ÞejðxiÞj þ jvðX2ÞejðxiÞ � vðX1ÞejðxiÞj

þjpðX2ÞejðxiÞ � pðX1ÞejðxiÞj þ jrðX2ÞejðxiÞ � rðX1ÞejðxiÞj
þjdðX2ÞejðxiÞ � dðX1ÞejðxiÞj þ juðgÞejðxiÞ � uðf ÞejðxiÞj
þjvðgÞejðxiÞ � vðf ÞejðxiÞj þ jpðgÞejðxiÞ � pðf ÞejðxiÞj
þjrðgÞejðxiÞ � rðf ÞejðxiÞj þ jdðgÞejðxiÞ � dðf ÞejðxiÞj�

8
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>

;

ð3:8Þ
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Fðe1Þ ¼f\x1; 0:72; 0:55[ ;\x2; 0:68; 0:61[ g
Fðe2Þ ¼f\x1; 0:84; 0:39[ ;\x2; 0:75; 0:65[ g
Fðe3Þ ¼f\x1; 0:91; 0:27[ ;\x2; 0:83; 0:45[ g

f ¼f\e1; 0:48; 0:83[ ;\e2; 0:91; 0:38[ ;

\e3; 0:69; 0:54[ g
Gðe1Þ ¼f\x1; 0:66; 0:55[ ;\x2; 0:76; 0:34[ g
Gðe2Þ ¼f\x1; 0:77; 0:52[ ;\x2; 0:83; 0:25[ g
Gðe3Þ ¼f\x1; 0:80; 0:37[ ;\x2; 0:74; 0:56[ g

g ¼f\e1; 0:46; 0:63[ ;\e2; 0:82; 0:56[ ;

\e3; 0:67; 0:47[ g

Hamming distance measure is calculated as follows:

and UHðX1;X2Þ ¼ 0:11. Similarly, Euclidean distance

measure UEðX1;X2Þ ¼ 0:14 and for k ¼ 3, generalized

distance measure UGðX1;X2Þ ¼ 0:1646.

4 The remoteness index-based VIKOR
method for GPFSSs

The purpose of this section is to develop new remoteness

index-based GPFSS-VIKOR methods that utilize the con-

cepts of displaced and fixed remoteness indices based on

new distance measures to address MCDA problems within

the GPFSS environment. The definition of positive and

negative ideal points for a solution is the basic idea of the

VIKOR method. It focalizes on ranking and selecting from

a finite set of possible alternatives in the presence of con-

tradictory and non-measurable criteria. It interprets a multi-

criteria ranking index based on the nearness to the ideal

solution. By evaluating the alternatives according to each

criterion, a compromise ranking can be obtained when the

relative closeness measure is compared with the ideal

alternative. Thus, the derived compromise solution is a

feasible solution, which is the closest to the positive ideal

solution and farthest from the negative ideal solution, and a

compromise means an agreement established by mutual

concessions made between the alternatives. The acquired

CS can be admitted because it ensures a maximum group

utility of the majority and a minimum of the individual

regret of the opponent. The CSs can be the basis for

negotiations, involving the decision maker’s preference on

criteria weights. In the VIKOR method, the performance

ratings of the alternatives according to a set of criteria are

quantified as crisp values [11].

In this section, we define the displaced positive ideal

PFV (DPI) and the displaced negative ideal PFV (DNI)

which help to define the concept of displaced remoteness

index. The fixed remoteness index is defined based on the

fixed positive ideal PFS (FPI) and the fixed negative ideal

PFV (FNI). The displaced and fixed group utility, indi-

vidual regret and compromise indexes are the precise

importance and Pythagorean fuzzy importance weights.

The extra parameter parametric Pythagorean fuzzy set in

GPFSS, which given by the head or director of decision-

making committee, is used to define the precise importance

and Pythagorean fuzzy importance weights. Each algo-

rithm shows the complete procedure of the remoteness-

based VIKOR method based on the displaced and fixed

terminologies.

Let’s give the general framework of the MCDA problem

about PF information:

Choose the set of candidate alternatives

D ¼ fd1; d2; � � � ; dmg, m ðm� 2Þ and the set of criteria K ¼
fk1; k2; � � � ; kng n ðn� 2Þ as a discrete set of m and a finite

set of n, respectively. Usually, the criteria set K is divided

into two disjoint sets as Ki and Kii. Ki and Kii refer to a

collection of benefit criteria and cost criteria, respectively,

which means a larger value better performance and a larger

value worse performance, respectively. The assessment

rating of alternative di 2 D with respect to criterion kj 2 K

is stated as a PF value pij ¼ ðuij; vijÞ. uij and vij indicate the

degrees that alternative di satisfies and dissatisfies,

respectively, criterion kj. The hesitation degree pij that

corresponds to each pij is calculated as

pij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðuijÞ2 � ðvijÞ2
q

. Describing this situation, the PF

matrix is as follows:

UHðX1;X2Þ ¼
1

5:3:2
j0:72 � :66j þ j0:68 � 0:76j þ j0:84 � 0:77j þ j0:75 � 0:83j þ j0:91 � 0:80j þ j0:83 � 0:74j

þ j0:4232 � 0:512j þ j0:6772 � 0:56j þ j0:38 � 0:37j þ j0:1225 � 0:5j þ j0:315 � 0:47j þ j0:33 � 0:38j
þ j0:906 � 0:86j þ j0:736 � 0:56j þ j0:93 � 0:93j þ j0:992 � 0:87j þ j0:95 � 0:88j þ j0:994 � 0:93j
þ j0:585 � 0:56j þ j0:5331 � 0:73j þ j0:7216 � 0:62jj0:544 � 0:8j þ j0:8 � 0:724j þ j0:32 � 0:586j
þ j0:48 � 0:46j þ j0:91 � 0:82j þ j0:69 � 0:67j þ j0:83 � 0:63j þ j0:38 � 0:56j þ j0:54 � 0:47j

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:
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pij ¼

ðu11; v11Þ ðu12; v12Þ � � � ðu1n; v1nÞ
ðu21; v21Þ ðu22; v22Þ � � � ðu2n; v2nÞ

..

. ..
. ..

. ..
.

ðum1; vm1Þ ðum2; vm2Þ � � � ðumn; vmnÞ

2

6

6

6

6

4

3

7

7

7

7

5

ð4:1Þ

In the PF environment, the importance weight of criterion

kj 2 K is stated as a PF value wj ¼ ðwj;wjÞ, where wj and

wj denote the degrees of importance and unimportance,

respectively, of kj. Then the hesitation degree

sj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � w2
j � w2

j

q

.

4.1 The displaced and fixed ideal IF values

The appropriate reference points need to be designated for

the PF decision process. These points will help define

displaced and fixed remoteness indices. In other words,

locating the PIPF and NIPF values from two different

perspectives of displaced and fixed ideals is the main

problem. Here, PIPF and NIPF values will be used as

points of reference because these points can effectively

form anchored judgments in subjective decision-making

processes. To be more precise, for the anchored judgments,

the displaced PIPF and NIPF values, which consist of all

the best and worst criterion values, respectively, will be

defined.

Firstly in light of anchored judgments with displaced

ideals, the characterization of the PIPF and NIPF values

with respect to each criterion can be identified according to

all of the assessment ratings in the PF decision matrix p.

This means that the PIPF and NIPF values can be often

displaced because they are sensitive to changes in the

available set of candidate alternatives.

Definition 4.1 Take a PF decision matrix p ¼ ½pij�ðm�nÞ.

For the each criterion kj 2 K ðK ¼ Ki [ KiiÞ, the displaced

positive-ideal and negative-ideal PF values are defined as

follows:

pðþÞj ¼ðuðþÞj; vðþÞjÞ

¼
maxm

i¼1 uij;minm
i¼1 vij

� �

; if kj 2 Ki

minm
i¼1 uij;maxm

i¼1 vij
� �

; if kj 2 Kii

(

ð4:2Þ

pð�Þj ¼ðuð�Þj; vð�ÞjÞ

¼
minm

i¼1 uij;maxm
i¼1 vij

� �

; if kj 2 Ki

maxm
i¼1 uij;minm

i¼1 vij
� �

; if kj 2 Kii

(

ð4:3Þ

and also

pðþÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðuðþÞjÞ
2 � ðvðþÞjÞ

2
q

ð4:4Þ

pð�Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ðuð�ÞjÞ
2 � ðvð�ÞjÞ

2
q

ð4:5Þ

Consider anchored judgments with fixed ideals. It is

convenient to designate (1, 0) and (0, 1) as PIPF and NIPF

values, respectively, with respect to benefit criteria,

because (1, 0) and (0, 1) are the top and bottom elements,

respectively, of the lattice ðL; �LÞ. Conversely, (0, 1)

and (1, 0) can be considered the PIPF and NIPF values,

respectively, with respect to cost criteria for simplicity.

These ideal PF values are called fixed ideal PF values.

Definition 4.2 Take a PF decision matrix p ¼ ½pij�ðm�nÞ.

For the each criterion kj 2 K ðK ¼ Ki [ KiiÞ, the displaced

PIPF and NIPF values are defined as follows:

pð bþÞj ¼ðuð bþÞj; vð bþÞjÞ ¼
ð1; 0Þ ; if kj 2 Ki

ð0; 1Þ ; if kj 2 Kii

�

ð4:6Þ

pð b�Þj ¼ðuð b�Þj; vð b�ÞjÞ ¼
ð0; 1Þ ; if kj 2 Ki

ð1; 0Þ ; if kj 2 Kii

�

ð4:7Þ

and also pð bþÞj ¼ pð b�Þj ¼ 0.

4.2 Remoteness index (RI)

In this subsection, it will be constructed the displaced and

fixed RIs.

Usually, the larger and the smaller the assessment rating

pij is, the greater the preference is for the criteria kj 2 Ki

and kj 2 Kii, respectively. Therefore the displaced PIPF

value pðþÞj and the fixed PIPF value pð bþÞj can be deemed

the most favorable values for kj on the basis of anchored

judgments with displaced and fixed ideals, respectively. In

this way, the characterization of the proposed displaced RI

can be reasonably designated via the generalized distance

measure UGðpij; pðþÞjÞ. The smaller UGðpij; pðþÞjÞ value

is, the closer to pðþÞj it is, and the greater the preference is

for each assessment rating pij. In a similar manner, the

characterization of the proposed fixed RI can be defined

using the generalized distance measure UGðpij; pð bþÞjÞ.
Moreover, the smaller UGðpij; pð bþÞjÞ value is, the closer

pð bþÞj it is, and the greater the preference is for each

assessment rating pij.

However, it is worthwhile to mention that the

UGðpij; pðþÞjÞ values for all kj 2 K do not have a consistent

upper bound in most situations. The main reason is that the

displaced PIPF values are most favorable PF values with

all of the currently considered assessment rating with

respect to each criterion; thus, they are usually different

among criteria. As a result, the maximal possible value of
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the generalized PF distances, i.e., the UGðpð�Þj; pðþÞjÞ
values, can be regarded as the upper bounds of the

UGðpij; pðþÞjÞ values for all kj 2 K.

Definition 4.3 Let pij; pðþÞj; pð�Þj denote an assessment

rating, the displaced PIPF value, and the displaced NIPF

value, respectively, in the PF decision matrix p ¼ ½pij�ðm�nÞ.

Moreover, without loss of generality, assume that pð�Þj 6¼
pðþÞj for all kj 2 K. The displaced RI RIðpijÞ of pij based

on the generalized distance measure UG is defined as

follows:

RIðpijÞ ¼
UGðpij; pðþÞjÞ

UGðpð�Þj; pðþÞjÞ
ð4:8Þ

Theorem 4.4 Choose the three assessment ratings

pij; pi1j; pi2j. The displaced RI satisfies the following

properties:

i. RIðpijÞ ¼ 0 , pij ¼ pðþÞj;
ii. RIðpijÞ ¼ 1 , pij ¼ pð�Þj;

iii. 0�RIðpijÞ� 1;

iv. For each kj 2 Ki, RIðpi2jÞ�RIðpi1jÞ, if pi1j �Lpi2j;

v. For each kj 2 Kii, RIðpi1jÞ�RIðpi2jÞ, if pi1j �Lpi2j.

Proof

(i) ): If RIðpijÞ ¼ 0, then it implies that

UGðpij; pðþÞjÞ ¼ 0. According to the separability

condition of Theorem 3.3, it is obtained that

pij ¼ pðþÞj.
( If pij ¼ pðþÞj, it is obvious that RIðpijÞ ¼ 0,

because of the reflexivity condition ðU1Þ of

Theorem 3.3.

(ii) ): If RIðpijÞ ¼ 1, then it implies that

UGðpij; pðþÞjÞ ¼ UGðpð�Þj; pðþÞjÞ. It follows that

pij ¼ pð�Þj.
( If pij ¼ pð�Þj, it is trivial to obtain that

RIðpijÞ ¼ 1 by employing (4.8).

(iii) Applying (4.2) and (4.3), it is obvious that

uð�Þj � uij � uðþÞj and vð�Þj � vij � vðþÞj for

each kj 2 Ki. Moreover uðþÞj � uij � uð�Þj and

vðþÞj � vij � vð�Þj for each kj 2 Kii. Thus, one can

easily obtain pð�Þj �Lpij �LpðþÞj and

pðþÞj �Lpij �Lpð�Þj for kj 2 Ki and kj 2 Kii,

respectively. According to ðU5Þ of Theorem 3.3, it

is known that UGðpij; pðþÞjÞ� ðUGðpð�Þj; pðþÞjÞ
and UGðpðþÞj; pijÞ� ðUGðpðþÞj; pð�ÞjÞ for ki 2
Ki and ki 2 Kii, respectively. Next, combining the

condition UGðpij; pðþÞjÞ� ðUGðpð�Þj; pðþÞjÞ and

the boundedness property of Theorem 3.3, one can

obtain 0�RIðpijÞ� 1.

(iv) From the proof of (iii.), for each ki 2 Ki, it is

easily seen that pi1j �Lpi2j �LpðþÞj. According

to the condition (v.) of Theorem 3.3, the condition

pi1j �Lpi2j �LpðþÞj implies

UGðpi2j; pðþÞjÞ� ðUGðpi1j; pðþÞjÞ. Note that in

the denominator of (4.8), one has

UGðpð�Þj; pðþÞjÞ[ 0 because of the assumption

of pð�Þj 6¼ pðþÞj for ki 2 Ki. Thus, it is easily

proven that RIðpi2jÞ�RIðpi1jÞ for ki 2 Ki.

The proof of condition (v) can be proven as similar to

(iv). h

Example 4.5 Take the set of candidate alternatives

D ¼ fd1; d2; d3g, and the criteria set K ¼ fk1; k2g, where

Ki ¼ fk1g and Kii ¼ fk2g. The PF decision matrix can be

given as follows:

p ¼ ½pij�3�2 ¼
ð0:54; 0:67Þ ð071; 0:43Þ
ð0:88; 0:35Þ ð0:62; 0:49Þ
ð0:50; 0:56Þ ð0:85; 0:36Þ

2

6

4

3

7

5

The displaced positive-ideal PF values are pðþÞ1 ¼
ð0:88; 0:35Þ and pðþÞ2 ¼ ð0:62; 0:49Þ. Further, the dis-

placed negative-ideal PF values are pð�Þ1 ¼ ð0:50; 0:67Þ
and pð�Þ2 ¼ ð0:85; 0:36Þ. Using the BPFSS and from 3.1,

compute the Hamming distance (generalized distance

measure for k ¼ 1), which takes the form

UHðpij; pðþÞjÞ ¼
1

5
	

juðpijÞ � uðpðþÞjÞj þ jvðpijÞ � vðpðþÞjÞj þ jpðpijÞ � pðpðþÞjÞj

þjrðpijÞ � rðpðþÞjÞj þ jdðpijÞ � dðpðþÞjÞjj



8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

ð4:9Þ

From (4.9), XH ¼ ðpð�Þ1; pðþÞ1Þ ¼ 0:58 and

XH ¼ ðpð�Þ2; pðþÞ2Þ ¼ 0:62. RIðp11Þ ¼ 0:1205,

RIðp12Þ ¼ 0:176, RIðp21Þ ¼ 0:101, RIðp22Þ ¼ 0:13,

RIðp31Þ ¼ 0:155, RIðp32Þ ¼ 0:127.

Definition 4.6 Let pij; pð bþÞj; pð b�Þj denote an assessment

rating, the fixed PIPF value, and the fixed NIPF value,

respectively, in the PF decision matrix p ¼ ½pij�ðm�nÞ. The

fixed RI cRIðpijÞ of pij based on the generalized distance

measure UG is defined as follows:

cRIðpijÞ ¼
UGðpij; pð bþÞjÞ

UGðpð b�Þj; pð bþÞjÞ
ð4:10Þ
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Theorem 4.7 Choose the three assessment ratings

pij; pi1j; pi2j. The fixed remoteness index satisfies the fol-

lowing properties:

i. cRIðpijÞ ¼ 0 , pij ¼ pð bþÞj;
ii. cRIðpijÞ ¼ 1 , pij ¼ pð b�Þj;

iii. 0�RIð bdÞðpijÞ� 1;

iv. For each kj 2 Ki, cRIðpi2jÞ� cRIðpi1jÞ, if pi1j �Lpi2j;

v. For each kj 2 Kii, cRIðpi1jÞ� cRIðpi2jÞ, if pi1j �Lpi2j.

This theorem can be proved similar to Theorem 4.4.

Example 4.8 Let D, K and p ¼ pij be as in Example 4.5.

From Definition 4.2, the fixed positive-ideal PF values are

pð bþÞ1 ¼ ð1; 0Þ and pð bþÞ2 ¼ ð0; 1Þ. In the same way, the

fixed negative-ideal PF values pð b�Þ1 ¼ ð0; 1Þ and

pð b�Þ2 ¼ ð1; 0Þ. Take k ¼ 1. Then, XH ¼ ðpð b�Þ1;

pð bþÞ1Þ ¼ ðpð b�Þ2; pð bþÞ2Þ ¼ 0:6. cRIðp11Þ ¼ 0:1033,

cRIðp12Þ ¼ 0:152, cRIðp21Þ ¼ 0:098, cRIðp22Þ ¼ 0:14,

cRIðp31Þ ¼ 0:1035, cRIðp32Þ ¼ 0:15.

As seen in this example, the oppositions between the

remoteness indices become less discernible when anchor-

ing subjective judgments with fixed ideal PF values. This

situation is not so noticeable in Example 4.5.

4.3 Precise and PF importance weights

When decision-making in life, not all of the characteristics

that affect these decisions are evaluated equally. Therefore,

decision-making is determining alternatives according to

the preferences and values of the decision-maker and

choosing among them. Each situation has a weight for this

choice. In DM operates, weights are assigned to the fea-

tures. Two types of weights will be used in this study:

Example 4.9

(i) The precise importance weights are obtained by

expectation score function. The weight vector x

calculated with
ESf ðzÞ

P

z
ESf ðzÞ

.

Choose f ¼ fd1; d2; d3g ¼
fðk1; 0:68; 0:33Þ; ðk2; 0:75; 0:28Þ; ðk3; 0; 84; 0:39Þg.

Using the (2.9), ESf ðd1Þ ¼ 0:21435, ESf ðd2Þ

¼ 0:17955, ESf ðd3Þ ¼ 0:07115 and
P3

i¼1 ESf ðdiÞ
¼ 0:46505. Then the weights are x1 ¼ 0:461, x2 ¼
0:386 and x3 ¼ 0:153 ð

P3
i¼1 xi ¼ 1Þ.

(ii) The PF Importance Weights: The PF importance

weights of criteria ej 2 R are displaced as the PFV

xj ¼ ðxj;xjÞ, where xj and xj represent the

importance and unimportance degrees of the crite-

ria ej 2 R, respectively. Throughout the DM

process, the expert group examines the steps of

the process and records their evaluations as a

parametric Pythagorean fuzzy set (PPFS) at the end

of the process. These PPFS built by experts will be

used as PF importance weights in the DM process.

4.4 Remoteness index-based new VIKOR
methods

New multiple criteria ranking indices for RIðpijÞ and

cRIðpijÞ measures of remoteness to the displaced and fixed

ideal PF values, respectively, will be offered. In this way,

the remoteness index-based new VIKOR method will be

obtained. These multiple criteria ranking indices are:

remoteness-based group utility indices, individual regret

indices, and compromise indices. They can provide a

mechanism to trade off a maximum group utility for the

majority and a minimum individual regret for the opponent

and can be used as an aggregating function for a compro-

mise ranking among alternatives.

The smaller the value obtained in the displaced distance

index RIðpijÞ, the more priority the assessment rating of the

pij will be. That is, the criterion-wise priority relationship

among alternatives can be ordinarily identified according to

ascending order of each RIðpijÞ value. This is because

displaced ideal PF values are to facilitate anchored judg-

ments. In this study, a displaced remoteness-based com-

promise index by combining the suggested new definitions

of a group utility index and an individual regret index is

offered. The reason for this is to synthesize criteria-based

priority relationships to obtain a compromise ranking on all

criteria.

Definition 4.10 The displaced remoteness-based group

utility index, the displaced remoteness-based individual

regret index and the displaced remoteness-based compro-

mise index are defined as follows:

eSðdiÞ ¼
X

n

j¼1

RIðpijÞ:xj

� �

; ðkj 2 KÞ; ð4:11Þ

eRðdiÞ ¼max
n

j¼1
RIðpijÞ:xj

� �

; ðkj 2 KÞ; ð4:12Þ

eQðdiÞ ¼d:
SðdiÞ � minm

i
0 ¼1

Sðdi0 Þ
maxm

i
0¼1

Sðdi0 Þ � minm
i
0 ¼1

Sðdi0 Þ

þ ð1 � dÞ:
RðdiÞ � minm

i
0¼1

Rðdi0 Þ
maxm

i
0¼1

Rðdi0 Þ � minm
i
0¼1

Rðdi0 Þ
ð4:13Þ

where p ¼ ½pij�m�n and xj are PF decision matrix and a set

of precise importance weights, respectively, and d 2 ½0; 1�.
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Further, the conditions 0�xj � 1 and
Pn

j¼1 xj ¼ 1 are the

normalization conditions of precise weights.

Theorem 4.11 The ranking indices eSðdiÞ; eRðdiÞ; eQðdiÞ
satisfy the following properties:

i. 0� eSðdiÞ� 1, 0� eRðdiÞ� 1 and 0� eQðdiÞ� 1;

ii. If pi2j �Lpi1j and pi1j �Lpi2j for all ki 2 Ki and

ki 2 Kii, then eSðdi1Þ� eSðdi2Þ, eRðdi1Þ� eRðdi2Þ and

eQðdi1Þ� eQðdi2Þ, respectively.

Proof

(i) Since 0�RIðpijÞ� 1(the condition of (iii) of The-

orem 4.4) and normalization conditions of precise

weights, 0� eSðdiÞ� 1, 0� eRðdiÞ� 1 hold. Addi-

tionally, since eQðdiÞ is merely a linear combination

of the normalized values of eSðdiÞ; eRðdiÞ, one can

easily infer that 0� eQðdiÞ� 1.

(ii) From the condition of (iv) of Theorem 4.4, since

pi2j �Lpi1j for each ki 2 Ki, then Rðpi1jÞ�Rðpi2jÞ.
Since pi1j �Lpi2j for each ki 2 Kii, Rðpi1jÞ�Rðpi2jÞ
holds from the condition (v) of Theorem 4.4. That

is, Rðpi1jÞ�Rðpi2jÞ is fulfilled for ki 2 K. So, the

inequalities eSðdi1Þ� eSðdi2Þ and eRðdi1Þ� eRðdi2Þ
and eQðdi1Þ� eQðdi2Þ are valid.

h

Next, consider an MCDA problem involving the PF

decision matrix and PF importance weights. In a similar

manner, this paper defines the multiple criteria ranking

indices SðdiÞ;RðdiÞ;QðdiÞ under the condition of PF

preference information. Analogous to Definition 4.10 , the

product of RIðpijÞ multiplied by xj must be calculated

before determining these multiple criteria ranking indices.

However, a difficulty in comparing the multiple criteria

ranking indices among alternatives is encountered because

RIðpijÞ:xj s a PF value when the PF importance weight xj

is taken into account. Here, a score function approach to

acquire a comparable value of RIðpijÞ:xj and then to

identify the multiple criteria ranking indices is offered. It is

worth noting that the score function approach leads to

different ranges among SðdiÞ;RðdiÞ;QðdiÞ because the

score function defined as in (2.4) is between �1 and 1.

Definition 4.12 The displaced remoteness-based group

utility index, the displaced remoteness-based individual

regret index and the displaced remoteness-based compro-

mise index are defined as follows:

SðdiÞ ¼
X

n

j¼1

ES RIðpijÞ:xj

� �

¼
X

n

j¼1

1

2
2 � 1 � ðxjÞ

2
� �RIðpijÞ

�ðxjÞ2:RIðpijÞ
	 
� �

;

ðkj 2 KÞ;
ð4:14Þ

RðdiÞ ¼ max
n

j¼1
ES RIðpijÞ:xj

� �

¼ max
n

j¼1

1

2
2 � 1 � ðxjÞ2

� �RIðpijÞ
�ðxjÞ2:RIðpijÞ

	 
� �

;

ðkj 2 KÞ;
ð4:15Þ

QðdiÞ ¼ d:
SðdiÞ � minm

i0 ¼1
Sðdi0 Þ

maxm
i0¼1

Sðdi0 Þ � minm
i
0¼1

Sðdi0 Þ

þ ð1 � dÞ:
RðdiÞ � minm

i
0 ¼1

Rðdi0 Þ
maxm

i
0¼1

Rðdi0 Þ � minm
i
0¼1

Rðdi0 Þ
ð4:16Þ

where p ¼ ½pij�m�n and xj are PF decision matrix and a set

of PF importance weights, respectively, and d 2 ½0; 1�.

Theorem 4.13 The ranking indices SðdiÞ;RðdiÞ;QðdiÞ
satisfy the following properties:

i. �n�SðdiÞ� n, �1�RðdiÞ� 1 and 0�QðdiÞ� 1;

ii. If pi2j �Lpi1j and pi1j �Lpi2j for all ki 2 Ki and

ki 2 Kii, then Sðdi1Þ�Sðdi2Þ, Rðdi1Þ�Rðdi2Þ and

Qðdi1Þ�Qðdi2Þ, respectively.

Proof According to the (2.9), the inequality

�1�ESðRIðpijÞ:xjÞ� 1 ð8kj 2 KÞ holds. Then,

�1� maxn
j¼1 ESðRIðpijÞ:xjÞ� 1 is valid. From here,

�1�RðdiÞ� 1 is obtained. At the same time,

�n�
Pn

j¼1 ESðRIðpijÞ:xjÞ� n ) �n�RðdiÞ� n. Con-

sider (4.16). Since QðdiÞ is merely a linear combination of

the normalized values SðdiÞ, and RðdiÞ, then, it is obvious

that it will be 0�QðdiÞ� 1.

The proof of the condition (ii.) can be easily get from

part (ii.) of Theorem 4.11 h

For fixed ideal PF values, new definitions are given as

follows:

Definition 4.14 The fixed remoteness-based group utility

index, the fixed remoteness-based individual regret index

and the fixed remoteness-based compromise index are

defined as follows:
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fSFðdiÞ ¼
X

n

j¼1

cRIðpijÞ:xj

� �

; ðkj 2 KÞ; ð4:17Þ

fRFðdiÞ ¼max
n

j¼1

cRIðpijÞ:xj

� �

; ðkj 2 KÞ; ð4:18Þ

gQFðdiÞ ¼d:
fSFðdiÞ � minm

i
0 ¼1

fSFðdi0 Þ
maxm

i
0¼1

fSFðdi0 Þ � minm
i
0 ¼1

fSFðdi0 Þ

þ ð1 � dÞ:
fRFðdiÞ � minm

i
0¼1

fRFðdi0 Þ
maxm

i
0 ¼1

fRFðdi0 Þ � minm
i
0¼1

fRFðdi0 Þ
ð4:19Þ

where p ¼ ½pij�m�n and xj are PF decision matrix and a set

of precise importance weights, respectively, and d 2 ½0; 1�.
Further, the conditions 0�xj � 1 and

Pn
j¼1 xj ¼ 1 are the

normalization conditions of precise weights.

Definition 4.15 The fixed remoteness-based group utility

index, the fixed remoteness-based individual regret index

and the fixed remoteness-based compromise index are

defined as follows:

SFðdiÞ ¼
X

n

j¼1

ES cRIðpijÞ:xj

� �

¼
X

n

j¼1

1

2
2 � 1 � ðxjÞ

2
� �

bRI ðpijÞ
�ðxjÞ2: bRI ðpijÞ

" #( )

;

ðkj 2 KÞ;
ð4:20Þ

RFðdiÞ ¼ max
n

j¼1
ES cRIðpijÞ:xj

� �

¼ max
n

j¼1

1

2
2 � 1 � ðxjÞ2

� �

bRI ðpijÞ
�ðxjÞ2: bRI ðpijÞ

" #( )

;

ðkj 2 KÞ;
ð4:21Þ

QFðdiÞ ¼ d:
SFðdiÞ � minm

i
0¼1

SFðdi0 Þ
maxm

i
0¼1

SFðdi0 Þ � minm
i
0 ¼1

SFðdi0 Þ

þ ð1 � dÞ:
RFðdiÞ � minm

i
0¼1

RFðdi0 Þ
maxm

i
0 ¼1

RFðdi0 Þ � minm
i
0 ¼1

RFðdi0 Þ
ð4:22Þ

where p ¼ ½pij�m�n and xj are PF decision matrix and a set

of PF importance weights, respectively, and d 2 ½0; 1�.

Theorem 4.16 The ranking indices

fSFðdiÞ; fRFðdiÞ;gQFðdiÞ satisfy the following properties:

i. 0� fSFðdiÞ� 1, 0� fRFðdiÞ� 1 and 0�gQFðdiÞ� 1;

ii. If pi2j �Lpi1j and pi1j �Lpi2j for all ki 2 Ki and

ki 2 Kii, then fSFðdi1Þ� fSFðdi2Þ, fRFðdi1Þ� fRFðdi2Þ
and gQFðdi1Þ�gQFðdi2Þ, respectively.

Theorem 4.17 The ranking indices SFðdiÞ;RFðdiÞ;QFðdiÞ
satisfy the following properties:

i. �n�SFðdiÞ� n, �1�RFðdiÞ� 1 and

0�QFðdiÞ� 1;

ii. If pi2j �Lpi1j and pi1j �Lpi2j for all ki 2 Ki and

ki 2 Kii, then SFðdi1Þ�SFðdi2Þ, RFðdi1Þ�RFðdi2Þ
and QFðdi1Þ�QFðdi2Þ, respectively.

These theorems can be proved as Theorems 4.11 and

4.13.

The decision process coefficient is shown by d. One can

modify decision making strategy by changing the value of

d. The value of parameter d indicates the importance of

maximum group utility, while 1 � d indicates the impor-

tance of individual regrets. In the classical VIKOR method,

the higher the value of d (when d[ 0:5), the compromise

ranking procedure is categorized as the procedure with

voting by majority. The compromise ranking procedure is

categorized as the procedure with veto when d\0:5. The

consensus is achieved in the compromise ranking proce-

dure at d ¼ 0:5.

Example 4.18 Consider the (F, M, f) of Example 3.5.

Here, Let M1 ¼ fe1; e2g and M2 ¼ fe3g (M ¼ M1 [M2).

For d ¼ 0:5 and k ¼ 1,

(i). Using the expectation score function, calculate the

precise importance weights: x1 ¼ 0:158811626,

x2 ¼ 0:493797108, x3 ¼ 0:347391266. Choose

k ¼ 1 and d ¼ 0:5. From Definition 4.10, results

are obtained: RIðp11Þ ¼ 0, RIðp12Þ ¼ 0,

RIðp13Þ ¼ 0:911, RIðp21Þ ¼ 0:0406,

RIðp22Þ ¼ 0:98, RIðp23Þ ¼ 0 and

eSðx1Þ ¼RIðp11Þ:x1 þ RIðp12Þ:x2 þ RIðp13Þ:
x3 ¼ 0:32;

eSðx2Þ ¼RIðp21Þ:x1 þ RIðp22Þ:x2 þ RIðp23Þ:
x3 ¼ 0:659

and eRðx1Þ ¼ 0:32, eRðx2Þ ¼ 0:484. Then,

eQðx1Þ ¼ 0 and eQðx2Þ ¼ 1. Therefore, the rank-

ings are obtained: x1\x2 for eSðxiÞ, x1\x2 for

eRðxiÞ,and x1\x2 for eQðxiÞ. Similar calculations

can be made for Definition 4.14.
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(ii). The PF importance weights are given as x1 ¼
ðx1;x1Þ ¼ ð0:65; 0:35Þ and x2 ¼ ð0:55; 0:50Þ,
x3 ¼ ð0:60; 0:60Þ. From Definition 4.12, results

are obtained: eSðx1Þ ¼ 0:467, eSðx2Þ ¼ 1:195,

eRðx1Þ ¼ 0:467, eRðx2Þ ¼ 0:675 and eQðx1Þ ¼ 0,

eQðx2Þ ¼ 1. Therefore, the rankings are obtained:

x1\x2 for eSðxiÞ, x1\x2 for eRðxiÞ,and x1\x2 for

eQðxiÞ. Similar calculations can be made for

Definition 4.15.

5 Quarantine situations application

In this section, firstly, using newly defined distance mea-

surements, weights, displaced and fixed ideals, and dis-

placed and fixed remoteness indices novel algorithms will

be given. Later, these algorithms will be applied to the

cognitive and behavioral development of early childhood

children staying at home in the COVID-19 quarantine.

5.1 Algorithms

For the four different scenarios, algorithms are given as

follows:
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5.2 Quarantine application for early childhood
children

In natural disasters and especially in epidemic diseases,

some measures are taken to protect people from the neg-

ative effects of the situation. One of the measures that can

be taken is quarantine. The quarantine is used to indicate

restrictions on the activities of people or animals exposed

to infectious diseases during the infectious period. Chil-

dren, who are members of society and cannot be isolated

from society, should be informed correctly and sufficiently

to prevent them from being affected by both the biological

effect and the psychological effect of the epidemic. It is

extremely important to inform and raise awareness of

children beforehand in order to prevent a pandemic

because children may face troubles due to the long duration

of natural disasters and measures such as quarantine

restricting people. Children may face personal losses, col-

lective deaths, and discomfort caused by the diseases

caught in natural disasters and outbreaks. These situations

can cause adversities such as stress, anxiety, depression,

and behavioral disorders in children.

Children learn a lot of the information they learn

through environmental stimuli. The interaction of the child

with his/her environment, social relationships, other peo-

ple, especially adults, plays a very important role in

cognitive development. The stimuli that it is exposed to in

the pandemic process direct the perception of children to

the pandemic. In this case, it is clear that children will pay

more attention to the pandemic, quarantine, and related

stimuli. In the process, the vast majority of stimuli around

children, including parents and digital media, lead their

perception of COVID-19. If this perception cannot be

controlled properly, a false cognition and belief in children

will be inevitable.

In this study, the survey model was used. The survey

was prepared to be answered on the internet. Survey

questions were asked to children aged 5-6 and their fami-

lies. The linguistic terms and their numeric labels are: For

Questions to be asked to the child: Yes(1), maybe/some

(2), no(3). For Questions to be asked to parents: too

much(1), much (2), some (3), too little(4), none (5).

The survey included the following questions:

Questions to be asked to the child:

• Do you know Corona-virus?

• Are you afraid of Corona-virus?

• Does Corona-virus harm people?

• Does Corona-virus harm animals?

• Can Corona-virus be prevented?

• Do you think it’s nice not to go to school?

• Are you upset that you can’t go to school?
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• Is the obligation to stay home boring?

• Can we be protected from Corona-virus by staying at

home?

• Do you think you can go to school from now on?

Questions to be asked to parents:

• Does your child behave anxiously after Corona-virus?

• Is your child afraid when a conversation about Corona-

virus has passed?

• Does your child ask about Corona-virus?

• Does your child pay more attention to cleaning after

Corona-virus?

• Has your child’s sleep pattern been impaired after

Corona-virus?

• Have there been changes in your child’s nutritional

habits after Corona-virus?

• Did your child develop undesirable behaviour after

Corona-virus?

• Is your child happy because she/he can’t go to school?

• Has the time your child spent on the Internet after

Corona-virus increased?

• Has the time your child spent in front of the TV

increased after Corona-virus?

The cognitive and behavioural distributions of questions

are as follows:

For children’s cognition;

c1: Do children know about the current situation? (4

questions)

c2: Does the current situation affect children’s emotions?

(4 questions)

c3: Does the current situation affect children’s thoughts?

(2 questions)

For children’s behavioural;

d1: Has Corona-virus changed the basic habits of chil-

dren? (3 questions)

d2: Did behaviour change occur in children after quar-

antine? (5 questions)

d3: Did children’s behaviour regarding information

technologies increase after quarantine? (2 questions)

The target audience is children aged 5-6 in early child-

hood. Children of this age group are in the process of

gaining skills in expressing their feelings during this per-

iod. In addition, the emotional responses of these children

can be noticed by a careful observer or even an expert. This

section is to investigate the effects of quarantine status due

to the COVID-19 pandemic on the cognitions and behav-

iors of children who stay at home. For this, questions were

asked to the children and their parents. Opinions of each

child and each parent about the questions asked were got.

The effect of quarantine on their own cognition in line with

the answers given by the children and the effect of the

behavior of their children in line with the observations of

the parents have been revealed.

Let C ¼ fc1; c2; c3g and D ¼ fd1; d2; d3g represent the

sets of the questions related to children’s cognition and the

questions related to children’s behavioral, respectively. Let

the sets M ¼ fm1;m2;m3g ¼ fyes;maybe; nog and N ¼
fn1; n2; n3g ¼ fmuch; some; noneg represent the answer

given by the children to the questions asked and answer

given by the parents to the questions asked, respectively.

An expert group was formed to ask questions to children

and evaluate their answers. The experts assessed the

answers according to criteria. The experts gave their

judgments based on their knowledge and previous statis-

tical measures. The committee preferences are stored in the

form of GPFSS. These results are shown in Tables 2 and 3.

f and g in these tables represent expert opinions. Algo-

rithm-based solutions will be made for both cognitive and

behavioral developments.

As demonstrated in Theorem 3.3 and Note 1, the

Hamming distance XH is a metric because of its reflexivity,

symmetry, separability and triangle inequality. Thus, when

computing the generalized distance measure XG, this paper

sets the distance parameter k ¼ 1 for the application.

Moreover, assume that the decision-maker would like to

achieve the goal of ‘‘consensus,’’ and thus, set d ¼ 0; 5.

Algorithm 1 for (F, M, f):

A simple MCDA problem concerning three alternatives

and three benefit criteria for evaluating the alternatives,

where K ¼ Ki ¼ fm1;m2;m3g and Kii ¼ ;.

Table 3 Experts’ opinion related to the behavioral development

n1 n2 n3

d1 (0.61, 0.64) (0.66, 0.51) (0.77, 0.37)

d2 (0.73, 0.48) (0.95, 0.09) (0.66, 0.49)

d3 (0.74, 0.42) (0.62, 0.49) (0.51, 0.54)

gNðniÞ (0.65, 0.51) (0.86, 0.32) (0.79, 0.49)

Table 2 Experts’ opinion related to the cognitive development

m1 m2 m3

c1 (0.69, 0.54) (0.76, 0.41) (0.87, 0.27)

c2 (0.73, 0.48) (0.89, 0.19) (0.56, 0.59)

c3 (0.84, 0.34) (0.72, 0.39) (0.61, 0.44)

fMðmiÞ (0.72, 0.56) (0.75, 0.63) (0.86, 0.40)
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The values pðþÞj and pð�Þj for (F, M, f) are calculated

by using (4.2) and (4.3):

pðþÞj ¼ ð0:84; 0:34Þ; ð0:89; 0:19Þ; ð0:87; 0:27Þf g
pð�Þj ¼ ð0:69; 0:54Þ; ð0:72; 0:41Þ; ð0:56; 0:59Þf g

Using (4.9), the distance measures are computed for

XHðpð�Þj; pðþÞjÞ and XHðpij; pðþÞjÞ: XHðpð�Þ1; pðþÞ1Þ
¼ 0:124, XHðpð�Þ2; pðþÞ2Þ ¼ 0:164, XHðpð�Þ3; pðþÞ3Þ
¼ 0:18.

XHðpij; pðþÞjÞ ¼
0:106 0:136 0

0:096 0 0:19

0 0:162 0:222

2

6

4

3

7

5

The displaced RIs are calculated as:

RIðpijÞ ¼
0:855 0:83 0

0:774 0 1:056

0 0:99 1:23

2

6

4

3

7

5

ð5:13Þ

The PPFS values of the PF Importance weights are estab-

lished by the expert group by evaluating the process: For

xj ¼ ðxj;xjÞ, x1 ¼ ð0:8256; 0:1935Þ;x2 ¼ ð0:7756;

0:2559Þ;x3 ¼ ð0:7226; 0:2234Þ.
For compromise ranking of the alternatives, the values

eSðciÞ, eRðciÞ and eQðciÞ are as in Table 4:

Now,

eQðc2Þ � eQðc1Þ ¼ 0:49 � 0:222 ¼ 0:268\ 1
3�1

¼ 0:5. The

first condition in S 8 of Algorithm 1 is not satisfied. Then,

the ultimate compromise solution is proposed. Therefore

the order is fc1; c2g\c3.

Algorithm 1 for (F, N, g):

Consider K ¼ Ki ¼ fn1; n2; n3g and Kii ¼ ;. The values

pðþÞj and pð�Þj:

pðþÞj ¼ ð0:73; 0:42Þ; ð0:95; 0:09Þ; ð0:77; 0:37Þf g
pð�Þj ¼ ð0:61; 0:64Þ; ð0:62; 0:51Þ; ð0:51; 0:54Þf g

The distance measures are computed as

XHðpð�Þ1; pðþÞ1Þ ¼ 0:126, XHðpð�Þ2; pðþÞ2Þ ¼ 0:3162,

XHðpð�Þ3; pðþÞ3Þ ¼ 0:183.

XHðpij; pðþÞjÞ ¼
0:1276 0:322 0

0:0364 0 0:06

0 0:3832 0:16

2

6

4

3

7

5

The displaced RIs are calculated as:

RIðpijÞ ¼
1:013 1:018 0

0:289 0 0:33

0 1:212 0:874

2

6

4

3

7

5

ð5:14Þ

The PPFS values of the PF Importance weights: x1 ¼
ð0:7139; 0:2821Þ;x2 ¼ ð0:6983; 0:3467Þ;x3 ¼ ð0:6762;

0:3345Þ.
For compromise ranking of the alternatives, the values

eSðciÞ, eRðciÞ and eQðciÞ are as in Table 5:

eQðd1Þ � eQðd2Þ ¼ 0:313 � 0:000 ¼ 0:313\ 1
3�1

¼ 0:5.

The first condition in S 8 of Algorithm 1 is not satisfied.

Then, the ultimate compromise solution is proposed.

Therefore the order is fd1; d2g\d3.

Algorithm 2 for (F, M, f):

The values SFðciÞ, RFðciÞ and QFðciÞ as in Table 6:

QFðc2Þ �QFðc1Þ ¼ 0:58 � 0 ¼ 0:58[ 1
3�1

¼ 0:5.

Then, both of the conditions in S 8 of Algorithm 2 are

satisfied. Thus, the order is c1\c2\c3.

Algorithm 2 for (F, N, g) :

The values SFðdiÞ, RFðdiÞ and QFðdiÞ as in Table 7:

QFðd2Þ �QFðd1Þ ¼ 0:87 � 0 ¼ 0:87[ 1
3�1

¼ 0:5.

Then, both of the conditions in S 8 of Algorithm 2 are

satisfied. Thus, the order is d2\d1\d3.

Table 6 Ranking with respect to the cognitive development for

Algorithm 2

m1 m2 m3 Ranking

SFðciÞ 1.443 1.4765 1.5625 c1\c2\c3

RFðciÞ 0.573 0.5965 0.6 c1\c2\c3

QFðciÞ 0 0.58 1 c1\c2\c3

Table 4 Ranking with respect to the cognitive development for

Algorithm 1

m1 m2 m3 Ranking

eSðciÞ 1.463 1.491 1.4175 c3\c1\c2

eRðciÞ 0.78 0.753 0.765 c1\c3\c2

eQðciÞ 1 0.49 0.222 c1\c2\c3

Table 5 Ranking with respect to the behavioral development for

Algorithm 1

n1 n2 n3 Ranking

eSðdiÞ 1.397 0.695 2.837 d2\d1\d3

eRðdiÞ 0.71 0.35 1.491 d2\d1\d3

eQðdiÞ 0.313 0 1 d3\d1\d2
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Algorithm 3 for (F, M, f):

The values pðþÞj and pð�Þj for (F, M, f) as follows:

pðþÞj ¼ ð0:84; 0:34Þ; ð0:89; 0:19Þ; ð0:87; 0:27Þf g
pð�Þj ¼ ð0:69; 0:54Þ; ð0:72; 0:41Þ; ð0:56; 0:59Þf g:

The distance measures are computed for XHðpð�Þj; pðþÞjÞ
and XHðpij; pðþÞjÞ: XHðpð�Þ1; pðþÞ1Þ ¼ 0:124,

XHðpð�Þ2; pðþÞ2Þ ¼ 0:164, XHðpð�Þ3; pðþÞ3Þ ¼ 0:18 and

XHðp11; pðþÞ1Þ ¼ 0:106, XHðp12; pðþÞ2Þ ¼ 0:136, XHðp13;

pðþÞ3Þ ¼ 0, XHðp21; pðþÞ1Þ ¼ 0:096, XHðp22; pðþÞ2Þ ¼ 0,

XHðp23; pðþÞ3Þ ¼ 0:19, XHðp31; pðþÞ1Þ ¼ 0, XHðp32

; pðþÞ2Þ ¼ 0:162, XHðp33; pðþÞ3Þ ¼ 0:222. Further, con-

sider the RI values in (5.13).

Using the expectation score function, calculate the

weights: ES1 ¼ 0:6024, ES2 ¼ 0:5828, ES3 ¼ 0:7898

and x1 ¼ 0:305012658, x2 ¼ 0:295088608, x3 ¼
0:399898734 (

P3
j¼1 xj ¼ 1). The RIs values are multiplied

by precise weights xj:

RIðpijÞ:xj ¼
0:261 0:245 0

0:236 0 0:422

0 0:292 0:492

2

6

4

3

7

5

eQðd2Þ � eQðd1Þ ¼ 0:6234 � 0 ¼ 0:6234[ 1
3�1

¼ 0:5.

Then, both of the conditions in S 8 of Algorithm 3 are

satisfied. Thus, the order is c1\c2\c3.

Algorithm 3 for (F, N, g):

pðþÞj ¼ ð0:73; 0:42Þ; ð0:95; 0:09Þ; ð0:77; 0:37Þf g
pð�Þj ¼ ð0:61; 0:64Þ; ð0:62; 0:51Þ; ð0:51; 0:54Þf g

The distance measures are computed as

XHðpð�Þ1; pðþÞ1Þ ¼ 0:126, XHðpð�Þ2; pðþÞ2Þ ¼ 0:3162,

XHðpð�Þ3; pðþÞ3Þ ¼ 0:183 and XHðp11; pðþÞ1Þ ¼ 0:1276,

XHðp12; pðþÞ2Þ ¼ 0:322, XHðp13; pðþÞ3Þ ¼ 0, XHðp21;

pðþÞ1Þ ¼ 0:0364, XHðp22; pðþÞ2Þ ¼ 0, XHðp23; pðþÞ3Þ
¼ 0:06, XHðp31; pðþÞ1Þ ¼ 0, XHðp32; pðþÞ2Þ ¼ 0:3832,

XHðp33; pðþÞ3Þ ¼ 0:16. Further, consider the RI values in

(5.14).

Using the expectation score function, calculate the

weights: ES1 ¼ 0:5812, ES2 ¼ 0:8186, ES3 ¼ 0:692

and x1 ¼ 0:27784683, x2 ¼ 0:391337604, x3 ¼
0:330815566 (

P3
j¼1 xj ¼ 1). The RIs values are multiply-

ing by precise weights xj:

RIðpijÞ:xj ¼
0:2815 0:4 0

0:803 0 0:11

0 0:474 0:29

2

6

4

3

7

5

eQðd2Þ � eQðd1Þ ¼ 0:28 � 0 ¼ 0:28\ 1
3�1

¼ 0:5. Then,

both of the conditions in S 8 of Algorithm 3 are not sat-

isfied. Thus, the order is fd1; d2g\d3.

Algorithm 4 for (F, M, f):

The values fSFðciÞ, fRFðciÞ and gQFðciÞ are as in

Table 10:

gQFðc2Þ �gQFðc1Þ ¼ 1 � 0:17 ¼ 0:83[ 1
3�1

¼ 0:5.

Then, both of the conditions in S 8 of Algorithm 4 are

satisfied. Thus, the order is c1\c3\c2.

Algorithm 4 for (F, N, g) :

The values fSFðdiÞ, fRFðdiÞ and gQFðdiÞ as in Table 11:

gQFðd2Þ �gQFðd1Þ ¼ 0:242 � 0 ¼ 0:242\ 1
3�1

¼ 0:5.

Then, both of the conditions in S 8 of Algorithm 4 are not

satisfied. Thus, the order is fd1; d2g\d3.

It is obvious that the remoteness index-based GPFSS-

VIKOR algorithms are simple and easy to perform. Besides

facilitating operation and computational efficiency, it has

the ability to generate admissibly and reasonable outcomes

for the final preference rankings. Moreover, the algorithmic

process corresponding to the suggested methods can ensure

Table 7 Ranking with respect to the behavioral development for

Algorithm 2

n1 n2 n3 Ranking

SFðdiÞ 1.5975 1.235 1.7265 d2\d1\d3

RFðdiÞ 0.6125 0.54 0.61 d1\d3\d2

QFðdiÞ 0.87 0 0.985 d2\d1\d3

Table 8 Ranking with respect to the cognitive development for

Algorithm 3

m1 m2 m3 Ranking

eSðciÞ 0.506 0.658 0.784 c1\c2\c3

eRðciÞ 0.261 0.422 0.492 c1\c2\c3

eQðciÞ 0 0.6234 1 c1\c2\c3

Table 9 Ranking with respect to the behavioral development for

Algorithm 3

n1 n2 n3 Ranking

eSðdiÞ 0.6815 0.913 0.764 d1\d3\d2

eRðdiÞ 0.4 0.803 0.474 d1\d3\d2

eQðdiÞ 0 1 0.28 d1\d3\d2
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flexibility to adapt to the particularities in real-world

decision cases, such as different preference information of

criterion significance and distinct points of reference from

displaced and fixed ideal views. As a whole, the practica-

bility and applicability of the developed methods in the

GPFSS have been proved via real-world practice to the

cognitive and behavioral development of early childhood

children. Furthermore, as opposed to the available VIKOR

approaches the suggested methods can sufficiently describe

more uncertainty and ambiguity inherent in the subjective

DM process by employing the GPFSS information.

5.3 Stability analysis

In the application for algorithms, k ¼ 1 and d ¼ 0:5 were

chosen. Solution results for k ¼ 1 and d ¼ 0:5 are shown in

Table 12. When the value of parameter d decreases from 1

to 0, the individual regret gets importance. The ranking of

alternatives varying when the values of d change, but the

alternative y4 remains the best option from alternatives.

Also, different values of the parameter p are used for

Algorithms 1-4. Algorithms 1 and 3 used the displaced

terminologies and concepts, while Algorithms 2 and 4 are

based on the fixed terminologies and concepts. Algorithms

1 and 3 are more sensitive as compared to Algorithms 2

and 4, i.e., the ranking of the alternatives changes rapidly

by changing the values of the parameter d. For more

details, we refer to Tables 13 and 14.

5.4 Comparison with some methods

If there are conflicting criteria among the alternatives, the

sorting and selection procedures for these criteria can be

carried out. These are the main features of the VIKOR

method. In this method, majority and opponent describe

maximum group utility and minimum individual regret,

respectively. Providing these situations with the VIKOR

approach helps decision-makers to obtain a compromise

solution.

While the VIKOR method expresses the aggregation

operator representing the closest to the ideal, TOPSIS

determines a solution with the shortest distance to the ideal

solution and the furthest distance to the negative ideal

solution. Both methods consider that there exists a per-

formance matrix obtained by the evaluation of all the

alternatives in terms of each criterion. Normalization is

used to eliminate the units of criterion values. The VIKOR

method was created with the idea of nearness to the ideal

and emerged from an aggregation operator using linear

normalization. TOPSIS method uses vector normalization

as normalization. This normalization does not take into

account the relative importance of the distances from these

points while using two reference points. The main differ-

ence appears in the aggregation approaches. An aggregat-

ing function is formulated, and it is used as a ranking index.

In addition to ranking, the VIKOR method proposes a

compromise solution with an advantage rate.

Ranking by PROMETHEE [9, 10], with a linear pref-

erence function, gives the same outcomes as ranking by

VIKOR, with measures symbolizing group utility. The

different weights are less important in the PROMETHEE

method than in the VIKOR method. Rankings obtained

using TOPSIS and PROMETHEE usual methods have a

strong relationship between themselves. Although the

PROMETHEE method does not use normalization, it gives

Table 10 Ranking with respect to the behavioral development for

Algorithm 4

m1 m2 m3 Ranking

fSFðciÞ 0.5 0.475 0.55 c2\c1\c3

fRFðciÞ 0.19 0.208 0.29 c1\c2\c3

gQFðciÞ 0.17 1.04 1 c1\c3\c2

Table 11 Ranking with respect to the behavioral development for

Algorithm 4

n1 n2 n3 Ranking

fSFðdiÞ 0.597 0.497 0.704 d2\d1\d3

fRFðdiÞ 0.227 0.227 0.274 d1 ¼ d2\d3

gQFðdiÞ 0.242 0 1 d2\d1\d3

Table 12 Results of Solutions

for k ¼ 1 and d ¼ 0:5
Weights Algorithm for (F, M, f) for (F, N, g)

Ranking Ranking

PF Importance weights Algorithm 1 fc1; c2g\c3 fd1; d2g\d3

PF Importance weights Algorithm 2 c1\c2\c3 fd1; d2g\d3

Precise Importance weights Algorithm 3 c1\c2\c3 fd1; d2g\d3

Precise Importance weights Algorithm 4 c1\c3\c2 fd1; d2g\d3
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quite different results depending on the parameter set used.

This indicates that method selection and configuration are

important for the DM problem.

ELECTRE is an outranking method that is simple but

provides partial ranking [8, 15]. The ELECTRE method is

the concept of elimination from a normalized result

through a function that is further reduced to concordance

and discordance to rank. The ELECTRE method has a

basic understanding of the same data as a previously nor-

malized VIKOR with rules. The largest value is the best

value, or the smallest value is the best value. The end result

can be searched by mathematical deduction of concordance

and discordance resulting in a ranking of alternatives that

can be decided.

VIKOR technique provides an effective DM method in

domains in which the selection of the best alternative is a

highly complex environment. Therefore, the VIKOR

method may give better results than the DM methods dis-

cussed here.

6 Discussion and conclusion

The concept of GPFFS has defined by Kirisci [27]. This

new definition adds the generalization parameter to the

pool of PFNs and extends PFSS to GPFSS. The concept of

GPFSS, which emerged from PFSS, functions to evaluate

the information obtained with a parameter that reflects the

views of an expert. It is important that the uncertainty

associated with an observer be verified by an expert in the

choice of degree of membership, and this is the main

motivation for developing the GPFSS concept. The

Pythagorean fuzzy soft sets are generalized by introducing

the generalization parameter given by an expert to validate

the original Pythagorean fuzzy values. The role of the

expert is to refine PFNs with his domain-specific knowl-

edge. It may be noted that information of any sort often

gets misinterpreted during its presentation. This usually

happens as the presenter has no domain-specific knowledge

or lacks the standard terminologies, and this is sought to be

corrected by the proposed GPFSS. An expert can be

viewed as a domain professional having years of experi-

ence. The expert’s opinion indicates the credibility of the

evaluation of the alternative by the experts. This opinion

coming from the expert constitutes the generalization

parameter. The severity of symptoms as reported by the

patients in the linguistic form as membership grades can be

used in the PFSS.

In this study, new Euclidean, Hamming, and generalized

distance measures were given for GPFSSs according to the

new PFNs P ¼ ðrP; dPÞ, and their basic properties were

examined. Pythagorean membership grade was defined by

Yager [45] as a new pair of PFNs ðrP; dPÞ. Here, rP is stated

as the strength of commitment and dP as the direction of

commitment. rp and dp are characterized by

up ¼ rp cosðhpÞ, vp ¼ rp sinðhpÞ. These values are related to

MS and NMS grades. The new distance measures have

been used to build useful concepts of remoteness indices,

consisting of displaced positive- and negative-ideal

remoteness indices as well as fixed positive- and negative-

ideal remoteness indices. After distance measurements,

new remoteness index-based GPFSS-VIKOR methods

have been developed to address MCDA problems in the

GPFSS environment, using the concepts of displaced and

fixed remoteness indices based on new distance measures.

These VIKOR methods are a generalization of the standard

VIKOR. This generalization is a new compromising deci-

sion-making method based on the proposed generalized

distance measure and the displaced and fixed remoteness

index. In the DM process, appropriate reference points

need to be determined to facilitate the definition of dis-

placed and fixed remoteness indices because these points

can effectively form anchored judgments in subjective

decision-making processes. Finding these points is the first

step for remoteness index-based GPFSS-VIKOR. Then, the

displaced and fixed Remoteness Indexes were built. The

displaced RI and fixed RI were defined, proved the prop-

erties, and given the relevant examples. It has been seen

from the examples that the contrasts between the remote-

ness indices become less noticeable when anchoring sub-

jective judgments with fixed ideal PF values. However, for

the displaced ideal PF values, this situation is not very

clear.

In decision-making processes, the criteria that determine

the decisions are not of equal importance. Therefore, the

criteria are weighted when making a decision. These

weights are used to determine alternatives and make

choices according to the values of subjective evaluations.

Two types of weights were used in this study. The first of

these weights is calculated with the expectation score

function. The second is the weights obtained as a result of

recording the evaluations of the experts as PFSS.

In this study, a multi-criteria ranking was created with

remoteness indices based on displaced and fixed ideal PF

values. Thus, remoteness-based VIKOR methods were

built. The smaller the displaced remoteness index is, the

more prior the evaluative rating is. In the new VIKOR

methods, the priority relationship between the alternatives

is evaluated on the basis of criteria. Thus, this priority

relationship is defined in ascending order according to each

displaced remoteness index because the placed ideal PF

values have properties that facilitate anchored judgments.

Since a compromise ranking is expected on all criteria, new

definitions of a group utility index and an individual regret

index are given to synthesize criterion-based priority
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relationships. As it can be understood from these expla-

nations, in this study, the basic structure of VIKOR has

been expanded and a new compromising decision-making

method has been established with the proposed distance

measures, the displaced remoteness index, and the fixed

remoteness index. The method proposed by the study can

be easily used to solve MCDA problems where data

describing the performance of alternatives are character-

ized by PF values.

In this study, a new way is proposed to evaluate an

aggregated result for each alternative and to obtain a

compromise solution. The remoteness indexes obtained

based on the new distance measures have the function of

formulating the remoteness based on multiple criteria

ranking. The computational processes of the four algo-

rithms presented here suggest various preference structures

and are capable of fully exploiting the complex information

contained in the PF decision matrix. Considering the

VIKOR methods in the PF environment, the remoteness-

based VIKOR methods proposed in this study are extre-

mely flexible since they detect the location of the displaced

and fixed reference points. These new VIKOR methods can

be easily applied to real-life problems and solve many

challenging decision-making problems. As seen in the real-

life example given here, new remoteness-based VIKOR

methods can be easily used in very difficult processes such

as monitoring and evaluating cognitive and behavioral

development. The target audience of the sample discussed

is children aged 5-6 years. The effect of this age group’s

mandatory stay at home in COVID-19 quarantines on their

development has been examined. The factors affecting the

developmental processes of children aged 5-6 years were

evaluated with the newly given remoteness-based VIKOR

methods, and the factors affecting development were listed.
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guider le choix en presence de points de vue multiples. Note de

travail 49. SEMA-METRA. Direction-Scientifique

9. Brans JP, Vincke PH (1985) A preference ranking organisation

method (the PROMETHEE method for multiple criteria decision-

making). Manag Sci 31(6):647–656

10. Brans JP, Mareschal B (2005) PROMETHEE Methods. State of

the Art Surveys, Springer, New York, Multiple Criteria Decision

Analysis, pp 163–195

11. Chatterjee P, Chakraborty S (2016). A comparative analysis of

VIKOR method and its variants. Decis Sci Lett 5(4), 469–486

12. Chen TY (2018) Remoteness index-based Pythagorean fuzzy

VIKOR methods with a generalized distance measure for multi-

ple criteria decision analysis. Inf Fusion 41:129–150

13. Deli I, Cagman N (2015) Intuitionistic fuzzy parameterized soft

set theory and its decision making. Appl Soft Comp 28:109–113

14. Feng F, Fujita H, Ali MA, Yager RR, Liu X, Another view on

generalized intuitionistic fuzzy soft sets and related multi- attri-

bute decision making methods. IEEE Trans Fuzzy Syst. https://

doi.org/10.1109/TFUZZ.2018.2860967

15. Figueira JR, Greco S, Roy B, Słowiński R (2013) An overview of
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