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Abstract: Ultrasonic transducers are often used in the nuclear industry as sensors to monitor the
health and process status of systems or the components. Some of the after-effects of the Fukushima
Daiichi earthquake could have been eased if sensors had been in place inside the four reactors and
sensed the overheating causing meltdown and steam explosions. The key element of ultrasonic
sensors is the piezoelectric wafer, which is usually derived from lead-zirconate-titanate (Pb(Zr,
Ti)O3, PZT). This material loses its piezoelectrical properties at a temperature of about 200 ◦C. It
also undergoes nuclear transmutation. Bismuth titanate (Bi4Ti3O12, BiTi) has been considered as a
potential candidate for replacing PZT at the middle of this temperature range, with many possible
applications, since it has a Curie–Weiss temperature of about 650 ◦C. The aim of this article is
to describe experimental details for operation in gamma and nuclear radiation concomitant with
elevated temperatures and details of the performance of a BiTi sensor during and after irradiation
testing. In these experiments, bismuth titanate has been demonstrated to operate up to a fast neutron
fluence of 5 × 1020 n/cm2 and gamma radiation of 7.23 × 1021 (gamma/cm2). The results offer a
perspective on the state-of the-art for a possible sensor for harsh environments of high temperature,
Gamma radiation, and nuclear fluence.

Keywords: high temperature; ultrasonic testing; radiation tolerance; nuclear reactors; gamma
radiation; transducer; sensors

1. Introduction

Current research and development are targeting the radiation endurance of transduc-
ers for possible sensors in reactors [1]. Bismuth titanate (BiTi) has been viewed favorably
because of its potential to replace ferroelectrics such as lead-zirconate-titanate (Pb(Zr,
Ti)O3, PZT) for application in high-temperature and radiation environments. This paper
describes the details and conclusions of a long-term test of bismuth titanate (BiTi) in the
high-temperature and nuclear radiation environment of a nuclear test reactor.

2. Bismuth Titanate (BiTi)—Material Properties

Bismuth titanate (BiTi) was discovered in 1949 by Bengt Aurivillius [2]. It is a bis-
muth layered ferroelectric oxide that belongs to the Aurivillius family—structures that are
described by the formula (Bi2O2)2+ (Mn − 1RnO3n + 1)2−, where n is 1 to 6. The (Mn −
1RnO3n + 1)2− formula is the n pseudo perovskite unit which is in between two (Bi2O2)2+
layers, as shown in Figure 1. In the case of bismuth titanate (BiTi), where n = 3, the M cation
(typically a large mono-, di-, or tri-valent cation) is Bi3+, and the R cation (a smaller tri-,
tetra-, penta-, or hexa-valent cation) is Ti4+.
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Figure 1. Crystal Structure of bismuth titanate (BiTi) [3]. 

Bismuth titanate (BiTi) was originally prepared by ball milling a combination of Bi2O 
and TiO2 powders, then sintering at a very high temperature. This led to an accumulation 
of large Bi4Ti3O12 particles, causing poor microstructure and ferroelectric properties. To 
prevent this from happening, chemical precursor methods are now used, including co-
precipitation, hydrothermal, and molten salt synthesis [3–7]. 

Bismuth titanate has a plate-like microstructure with anisotropic properties, a low 
coercive field (Ec), small remnant polarization (Ps), high dielectric strength, high dielectric 
constant (approximately 200), and good fatigue properties. Its high Curie temperature [3] 
allows it to be used for high-temperature piezoelectric applications (>300 °C), memory 
storage, and optical displays [6–9]. BiTi-100, produced by Del Piezo Specialties, LLC, has 
a high Curie temperature and high piezoelectric properties, as shown in Table 1 listing the 
most relevant material properties [8]. 

Kazys et al. and Ferrandis et al. [10–13] have discussed the effects of nuclear radiation 
on bismuth titanate and shown that it is resistant to low-level gamma and neutron radia-
tion. 

Table 1. Bismuth titanate (BiTi) material properties [8,14]. 

Material Structure Transition  
Temp (°C) 

Transition  
Type 

d33  
(pC/N) 

K33 

Bi4O12T3 Perovskite 650 Curie Temp 20 0.23 

3. Overview of Reactor Project 
In 2012, a research grant was awarded to the Penn State University (PSU) by the Ad-

vanced Test Reactor—National Science User Facility (ATR-NSUF) to work with Idaho Na-
tional Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, 
and the Massachusetts Institute of Technology to develop and test piezoelectric and mag-
netostrictive transducers for in-pile applications. This paper is based on the Penn State 
Ph.D. Thesis of Dr. Brian Reinhardt [14] and will discuss the details of the experiment for 
bismuth titanate (BiTi). The results for the other sensor materials have been discussed in 
detail elsewhere [15–21]. 

A capsule was designed to house the ultrasonic sensors for an in-pile test at the Mas-
sachusetts Institute of Technology Reactor (MITR) and was inserted into the reactor on 18 
February 2014 and removed on 12 May 2015. The samples were in the reactor for a total 
of 448 days before they were moved to the hot cell for post-irradiation analysis. The cap-
sule experienced scheduled and unscheduled shutdowns as it was riding along with the 
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Bismuth titanate (BiTi) was originally prepared by ball milling a combination of Bi2O
and TiO2 powders, then sintering at a very high temperature. This led to an accumulation
of large Bi4Ti3O12 particles, causing poor microstructure and ferroelectric properties. To
prevent this from happening, chemical precursor methods are now used, including co-
precipitation, hydrothermal, and molten salt synthesis [3–7].

Bismuth titanate has a plate-like microstructure with anisotropic properties, a low
coercive field (Ec), small remnant polarization (Ps), high dielectric strength, high dielectric
constant (approximately 200), and good fatigue properties. Its high Curie temperature [3]
allows it to be used for high-temperature piezoelectric applications (>300 ◦C), memory
storage, and optical displays [6–9]. BiTi-100, produced by Del Piezo Specialties, LLC, has a
high Curie temperature and high piezoelectric properties, as shown in Table 1 listing the
most relevant material properties [8].

Kazys et al. and Ferrandis et al. [10–13] have discussed the effects of nuclear radiation
on bismuth titanate and shown that it is resistant to low-level gamma and neutron radiation.

Table 1. Bismuth titanate (BiTi) material properties [8,14].

Material Structure Transition
Temp (◦C)

Transition
Type

d33
(pC/N) K33

Bi4O12T3 Perovskite 650 Curie Temp 20 0.23

3. Overview of Reactor Project

In 2012, a research grant was awarded to the Penn State University (PSU) by the
Advanced Test Reactor—National Science User Facility (ATR-NSUF) to work with Idaho
National Laboratory, Pacific Northwest National Laboratory, Argonne National Labora-
tory, and the Massachusetts Institute of Technology to develop and test piezoelectric and
magnetostrictive transducers for in-pile applications. This paper is based on the Penn State
Ph.D. Thesis of Dr. Brian Reinhardt [14] and will discuss the details of the experiment for
bismuth titanate (BiTi). The results for the other sensor materials have been discussed in
detail elsewhere [15–21].

A capsule was designed to house the ultrasonic sensors for an in-pile test at the
Massachusetts Institute of Technology Reactor (MITR) and was inserted into the reactor
on 18 February 2014 and removed on 12 May 2015. The samples were in the reactor for a
total of 448 days before they were moved to the hot cell for post-irradiation analysis. The
capsule experienced scheduled and unscheduled shutdowns as it was riding along with
the reactor’s typical operation. Due to periodic shutdowns, the capsule was only exposed
to 219 days with the reactor above 5 MW.
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4. Reactor Environment

The MITR is a heavy-water-reflected, light-water-cooled, and moderated nuclear
reactor that uses plate-type fuel packed into a rhombohedral shape. An artistic rendering
of the MITR is shown in Figure 2 and the rhombohedral fuel elements are noticeable.

Figure 2. Artistic rendering of the MITR reactor core [14].

Figure 2 is a cartoon of the reactor pressure vessel. The blue tube is a dry tube with the
ability for atmosphere regulation and is where the capsule for this experiment was located.
MIT used helium and neon to control the temperature during the experiment.

The purpose of the experiment was to expose the transducers to a fast fluence, with
neutrons with a higher energy than 1 MeV, of approximately 1021 n/cm2. To achieve
this, the top of the reactor was lifted off and the capsule was lowered through the dry
tube into position, near the peak flux produced by the reactor fuel elements. The capsule
housed each of the sensors and provided cabling so that they could be monitored in a safe
environment. The cables inside the reactor were selected for their radiation tolerance. They
were connected to a breakout box designed to impedance-match the cables that would run
outside the reactor to the monitoring equipment. The experimental capsule was placed in
the blue tube, indicated by the red arrow in Figure 3.
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5. Capsule Environmental Characterization

Due to space limitations, only a finite number of sensors could be tested. Here, we
report only on bismuth titanate (BiTi). The other instruments placed in the capsule were
used to monitor environment variables. Figure 4 shows a 3D rendering of the ultra-capsule
as constructed for the irradiation. The bismuth titanate (BiTi) sensor is shown in yellow [14].
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Figure 4. 3D renderings of the ultra-capsule as constructed for the irradiation. The bismuth titanate
(BiTi) sensor is shown in yellow [14].

A cable fixture was designed to hold all cables in position and alleviate strains as the
capsule was lowered into position in the reactor.

In order to monitor temperature, two K-type thermocouples were used. These have
been used extensively in reactor environments and have a minimal drift, 2%, at temper-
atures above 850 ◦C and exposed to neutron fluence of up to 2 × 1022 n/cm2 [22]. The
temperature measured by these two thermocouples is shown in Figure 5.
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Figure 5. Temperature of bismuth titanate (BiTi) as a function of elapsed time (days) calculated from
TC1 and TC2 thermocouples [14].

In addition to the thermocouples, the maximum temperature reached at selected
locations during the irradiation was verified using melt wires encapsulated in a quartz
tube. Five wire compositions were included, with melting temperatures ranging between
approximately 327 and 514 ◦C. Melting temperatures of the wires have been verified using
a Differential Scanning Calorimeter (DSC). Integrated thermal and fast neutron fluences at
selected locations have been evaluated through post-irradiation analysis of Fe-Ni-Cr flux
wires.

Two sensors were placed in the capsule to monitor both gamma and neutron flux.
The gamma flux detector was a platinum emitter, self-powered gamma detector, while
the neutron detector was a vanadium emitter, self-powered neutron detector. The basic
principle behind both detectors was that the radiation either transmutes species or induces
radiolysis to generate small electrical currents depending on the flux levels.

6. Neutron Power

Neutron power is proportional to the overall fission rate, while thermal power mea-
sures the heat generated by the reactor. While the fission was driving the overall thermal



Sensors 2021, 21, 6094 5 of 15

process, alternative sources of heat were generated from gamma radiation. During the
experiment, the reactor was monitored and controlled by the position of six boron-stainless-
steel blade-type control rods.

Depending on the needs, the reactor may be required to be shut down without much
notice. These events are called SCRAM (Safety Control Rod Axe Man) events and could
happen at any time, reducing the neutron flux and temperature of the experiment. There
are several outages that were scheduled for various reasons, such as refueling, testing, or
adjusting experimental equipment. The reactor power was measured by the MIT staff and
provided along with the thermocouple output, flux detector output, and a time stamp for
reference with the acoustic data. The reactor neutron power for this experiment is plotted
in Figure 6.
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During the experiments, it became convenient to discuss the samples’ performance
during specific power cycles. As such, a power cycle was defined as any stretch of time
that the reactor is at constant power, not including SCRAM events. These power cycles are
indicated in Figure 6.

6.1. Neutron Fluence

For this experiment, the neutron fluence was determined from the theoretical neutron
flux at a reactor power of 5.8 MW. A linear assumption was made with the flux at full
power and the flux at intermediate power levels.

6.2. Gamma Fluence

The total gamma flux was 3.2 × 1023 gamma/cm2-s at 5.5 MW. The flux at intermediary
power levels was approximated using a linear relationship between gamma flux and
neutron power. The max gamma exposure was approximately 7.23 × 1021 gamma/cm2.

7. Measurement Process
7.1. Insertion Capsule

An insertion capsule with a piezoelectric transducer was designed for the tests and
fabricated with bismuth titanate (BiTi) as the active element (BT-100) [8]. Figures 7 and 8
show a sketch and a photo, respectively, of the insertion capsule. High-purity aluminum
foil was used to bond the bismuth titanate sensor to a Kovar cylinder used as an ultrasonic
waveguide for a pulse-echo operation.

Spring pressure was used for coupling the bismuth titanate wafer to the waveguide.
The backing material was a layer of carbon-fiber/carbon-matrix composite (C/C, obtained
from Bendix Airbrake Co.). After the sensor was assembled, the test capsule was heat-
treated at 610 ◦C to soften the foil and achieve better coupling to the waveguide. The
capsule was then readied for insertion into the reactor. Included in the reactor insertion
was a “drop-in” bismuth titanate wafer for post-treatment material examination.
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During the irradiation, the sensors were hooked up to a national instruments NIPXI 

1042 chassis through PXI-2593 switch cards. The switch card was connected to the NDT-
5800 PR pulser/receiver and a SMX-2064 Digital Multimeter. This enabled either DC im-
pedance measurements or pulser/receiver measurements. The settings used for the 
pulser/receiver are saved alongside each of the waveforms in an associated file. In this 
way, measurement parameters were accessible after the experiment. The pulser/receiver 
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Figure 7. Sketch of the transducer capsule consisting of an outer casing (1), a cap (2), a high-
temperature spring (3), the bismuth titanate wafer (4), the Kovar cylinder (5), the coaxial connection
(6), the C/C backing material (7), the pressure plunger (8), and insulation (6,9,10). The bismuth
titanate wafer was placed between the backing and the Kovar cylinder using foil [14].
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Figure 8. Photos of the test capsule components shown as a diagram in Figure 1 [14].

First, the test capsule with the bismuth titanate wafer was tested up to 650 ◦C and
was found to be operating well up to 550 ◦C. The pulse-echo amplitude experienced a
significant increase in amplitude at 200 ◦C, rising as much as 250%. This was thought
to be a result of softening of the coupling film providing better ultrasonic transmission.
This amplitude was maintained until 550 ◦C. Upon cooling of the sample chamber, the
ultrasonic pulse-echo amplitude returned to its pre-failure amplitude. The bismuth titanate
always recovered its high pulse amplitude upon re-heating. The signals were analyzed in
the frequency domain and were found to have several peaks in the frequency spectrum
of the signal. Besides the main through thickness resonant mode at 2.1 MHz, up to 6 odd
harmonics were found.

7.2. In-Pile Ultrasonic Measurement Equipment

During the irradiation, the sensors were hooked up to a national instruments NIPXI
1042 chassis through PXI-2593 switch cards. The switch card was connected to the NDT-
5800 PR pulser/receiver and a SMX-2064 Digital Multimeter. This enabled either DC
impedance measurements or pulser/receiver measurements. The settings used for the
pulser/receiver are saved alongside each of the waveforms in an associated file. In this
way, measurement parameters were accessible after the experiment. The pulser/receiver
was connected to a ZTEC ZT4211 digital oscilloscope. Finally, everything was connected
in LabVIEW 2009. The LabVIEW program was designed so that periodic measurements
could be made on each of the transducers connected to the switch board. Custom software
to control the equipment was developed by Data Science Automation, Inc., utilized during
the irradiation. The data output was organized by the transducer and tagged with the
acquisition date and time.

7.3. Out-of-Pile Optical Inspection and Ultrasonic Measurements

After the irradiation, the capsule was moved into one of MIT’s hot boxes. This box
provides sufficient shielding to view and operate on materials from the reactor. Due to the
dangerous levels of gamma emission from the capsule, it was not possible to handle any of
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the components without proper caution. In the hot box, manipulators were used to interact
with the capsule and deconstruct various components. An off-the-shelf web camera was
dropped into the hot box and used to both record the deconstruction process as well as
take photographs at various angles. Pictures of the various components were taken using
this webcam.

Pulse-echo measurements were performed after the irradiation. The first time was
while the sensors were still connected to the LabVIEW box and thus the measurement
procedure did not change from those described in the in-pile measurement procedures.
After the sensor was deconstructed, and the piezoelectric inserts were removed from the
capsule, their activity was measured. If it was low enough for transportation, they were
moved to a measurement area shielded with lead bricks.

To conduct acoustical measurements on these samples, a fixture was designed and
fabricated from PVC, as shown in Figure 9. A female–male 50 Ω BNC adapter was screwed
into the PVC. One of the nickel plungers, used during the construction of the piezoelectric
sensors, was inserted into the female end of the BNC adapter and a BNC cable was attached
to the other end of the adapter.
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is the design sketch.

Since the sensor material was not attached to a waveguide, a waveguide was con-
structed to be one inch in diameter and one inch in length, cut from aluminum 6061. The
waveguide was placed underneath the nickel plunger in the PVC fixture. Water was used
to couple the sensor material to the waveguide. A small drop was placed on the surface of
the waveguide, and the sensor was placed on the drop. A small piece of aluminum foil
was placed as a lead conductor on the sensor material and the nickel plunger was lowed to
contact the lead electrode and apply pressure to the sensor material.

The other end of the BNC cable was attached to the LabVIEW measurement system,
which was used to pulse/receive to and from the sensor.

8. Out-of-Pile Measurements of Piezoelectric Coefficient, d33

The out-of-pile d33 measurements were performed with an APC International wide-
range d33 which is shown in Figure 10. The d33 m can measure the range of 1–2000 pC/N
with an accuracy of 0.1 pC/N. It used a piezoelectric actuator to mechanically actuate the
specimen at 100 Hz with a force of 0.25 N.

Before each measurement, the system was calibrated according to the manual cali-
bration procedures and provided reference specimen. Since the d33 is dependent on the
force applied by the clamp system, a mark was placed on the dial to count the number
of turns when applying pressure to the element. Since the specimens used were still too
active, these measurements were conducted by the MIT staff utilizing lead brick shielding.
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9. Data Processing

Although many measurements can be obtained from the pulse-echo response, the pur-
pose of the experiment was to characterize the sensor materials’ performance throughout
the experiment. As such, parameters such as pulse-echo amplitude, center frequency, and
quality were measured where possible. The pulse-echo amplitude was measured as the
peak of the fundamental harmonic. The center frequency was measured as the average
of the −3 dB left and right frequency values. This was measured by first identifying the
central peak, fpk, and subsequently measuring the frequency, where the power efficiency
dropped by 50%. Approximately 5000 data points were obtained during the experiment,
averaging out to be approximately ten measurements per day. This is approximately 30 GB
of data, all of which needs careful organization. Before the data could be analyzed, they
needed to be converted from a directory of excel files to a Matlab data file. Although the
acoustic measurements were performed using the aforementioned National Instruments
box and associated equipment, other equipment was utilized to monitor the thermocouples,
self-powered detectors, and reactor power. These measurements were shared with us by
MIT in several comma separated files with associated acquisition date and time stamps.
Since all data were given date and time stamps, for each A-scan, the nearest environment
time stamp to the acoustic measurement time stamp was used as the environment variable
parameters for that measurement. This simply required a parsing program to extract the
date from the file name and compare it with dates associated in the environment variable
spreadsheet. Several programs were developed to handle the synthesis of the data, and
most programs were developed using MatLab. To view the data on a day-to-day basis, a
plotting tool was developed to access environment variables, monitor A-scan signals from
each of the transducers, and select different processing techniques based on an adjustable
window.

10. Bismuth Titanate (BiTi) Sensor Results
10.1. Ultrasonic Measurements

The bismuth titanate transducer was pulsed periodically using the LabVIEW system
described in the in-pile ultrasonic measurement section. The pulser/receiver sampled
the sensor output at 1 GS/s for a period of 100 µs. The pulser was set to a repetition rate
of 1 kHz and a total of 256 measurements were averaged for each measurement. A total
of 5038 measurements were obtained during the irradiation, with measurements being
performed every 30 min until the first power cycle, when the sensor was sampled every
2 h.

The first waveform was acquired directly after the transducer was inserted into the
reactor, as shown in Figure 11. There was a significant ring down time from the main bang,
taking between 10 and 15 µs to subside. Figure 12 shows the Fast Fourier Transform (FFT)
of A-scan collected directly after insertion of bismuth titanate (BiTi) into the reactor [14].
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10.2. Performance during Irradiation

The performance of the bismuth titanate (BiTi) sensor was measured as the amplitude
of the fundamental harmonic, measured using the power spectral density. The amplitude
as a function of accumulated fluence is plotted in Figure 13.

An initial decline in the amplitude was observed starting on day 10 or at 1.28 × 1019

n/cm2, and reached a minimum relative amplitude of 60% at 5.29 × 1019 n/cm2 on day 25.
The amplitude gradually recovered to a relative amplitude of 100% at 1.1 × 1020 n/cm2.
None of the environment variables were associated with this change in amplitude. The
relative amplitude of 100% was maintained until an accumulated fluence of 5 × 1020 n/cm2

was reached. Then, there was a significant decrease in the amplitude. A decline developed
over a period of 17 days, dropping the pulse amplitude by 80%. Then, there was some
recovery and some small amplitude remained until nearly the end of the experiment.

Figure 14 shows the A-scans measured at the beginning of the experiment, just before
the decline, and just after the decline. There was a significant change in the time domain
of the signal. An echo was observed just before 20 microseconds, which indicated that
the sensor was still capable of transduction, however, its performance had significantly
declined.
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11. Bismuth Titanate (BiTi) Drop-In Sample
11.1. Overview

In case the bismuth titanate (BiTi) was not recoverable from the sensor capsule, an
additional piece was placed in the test capsule to be irradiated. Although the resources at
MIT were limited in terms of post-irradiation analysis, the activity of the bismuth titanate
(BiTi) was low enough that it could be removed from the hot box. Several measurements
with the sensor were reported: pulse-echo, impedance, and d33.

As shown in Figure 15, the bismuth titanate drop-in wafer was significantly darker
after the irradiation. Aside from the discoloration, little visible differences were seen in the
wafer.
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11.2. Ultrasonic Measurements on Drop-In Sample of Bismuth Titanate

Figures 16 and 17 show the case of pulse-echo from a piece of bismuth titanate in a
pristine condition, as received from TRS Technologies, and the irradiated drop-in sample,
respectively. Although the same ultrasonics pulser/receiver settings were used, there
was a significant difference in the pulse-echo amplitude. However, the irradiated drop-in
bismuth titanate active element did show a non-negligible signal after the full treatment in
the reactor.
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12. Measurements of Piezoelectric Coefficient, d33

A d33 m was purchased from American Piezo Ceramics, Inc., and used to measure
d33 for each of the insert pieces. The meter was calibrated to a calibration block before
performing measurements. The insert samples were safe to handle outside the hot cell,
with no significant radiation only a few feet away. However, they were not safe to directly
manipulate by hand and so, for safety, bricks were placed between the meter and the sensor
block and the personnel. The d33 m reading and calibration depend on the force applied to
the sensor. To control the force exerted by the meter of the piezoelectricity, an indicator
mark was placed on the top of the dial. Once the pin made contact with the sensor, the dial
was rotated 720 degrees. Using this procedure, calibration measurements were repeatable
within ±1% of the reported value.

As can been seen from Table 2, post-irradiated d33 is approximately half of that of the
pristine bismuth titanate. This is consistent with the reduction in pulse amplitude in the
A-scan measurements of Figures 16 and 17. On the other hand, these results show that
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bismuth titanate did survive the harsh reactor conditions, although with a considerable
decline in piezoelectric performance once the threshold of flux 5 × 1020 n/cm2 was reached.

Table 2. d33 readings of bismuth titanate sensors [14].

Post-Irradiated d33 (pC/N) Pre-Irradiated d33 (pC/N)

10.8–11.3 20

13. Radiation Damage

The results raise questions about the source of the damage incurred by bismuth
titanate (BiTi) in these reactor experiments. It is apparent that considerable damage must
have resulted from the effects of radiation. The effects of temperature and radiation on
piezoelectricity have been studied to some extent, previously [23–56]. According to Parks
et al. [56], since the temperature in the reactor was kept below the transition temperature
(Curie temperature), the effects might be narrowed down to four primary forms of damage:

• De-poling via thermal spike processes;
• Amorphization/metamictization due to displacement spikes or high concentration of

point defects;
• Increase in point defect concentration;
• Development of defect aggregates.

In the work of Parks et al. [56], two likely damage mechanisms were outlined, namely
thermal spikes and displacement spikes. Additionally, transmutation products are consid-
ered, as these in fact induce both thermal spikes and displacement spikes in some cases.
The radiation tolerance of piezoelectric materials is governed by not only resistance to de-
poling in thermal spikes, but also resistance to amorphization, and a lack of atomic species
having large nuclear cross-sections for thermal neutron-induced transmutations. Bismuth
titanate (BiTi) contains bismuth (Bi), which has approximately double the cross-sections of
titanium (Ti) or oxygen (O), approaching that of lead (Pb), as shown in Table 3. However, a
thorough discussion of this topic is beyond the scope of this paper.

Table 3. Cross-sections of materials.

Nuclei Cross-Section
Barnes (10−24 cm2)

Bismuth (Bi) 9.16
Titanium (Ti) 4.35
Oxygen (O) 4.23
Lead (Pb) 11.2

14. Conclusions

Developing ultrasonic transducers for in-pile applications is a growing concern in the
nuclear industry. With the advances in liquid-cooled sodium fast reactors, development of
high-efficiency nuclear fuels, and demands for increased security, having ultrasonic tools to
investigate the evolution of the material microstructure and structural integrity is becoming
a high priority. Considerable effort has been expended in the development of sensors based
on single-crystal wafers, with good success, such as aluminum nitride [18–21]. However,
many researchers have found value in working with ceramics, such as bismuth titanate
(BiTi), because of the ease of preparation and the many means of preparation, such as
sol-gel and spray-on processes. With the spray-on process, the ceramic can be deposited on
curved surfaces, such as pipes, and used to generate guided waves [32–38]. It is therefore
valuable to know about the survival of this ceramic in a harsh environment, such as in a
nuclear reactor.

This paper summarized the testing of piezoelectric sensors with bismuth titanate (BiTi)
active elements while being tested in a nuclear reactor for a period of 448 days. During this
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time, the sensors were subject to a neutron flux comparable to a commercial reactor. The
sensors were subjected to high temperatures in the range of 400 to 450 ◦C. The sensor also
saw constant fluctuations due to either SCRAM events or scheduled shutdowns, cycling
the temperature environment.

The results showed that measurements of the sensors could be performed throughout
most of the duration of the experiment. This is the first time that bismuth titanate (BiTi) has
been tested to a fast fluence of 8.68 × 1021 (n/cm2) in an instrumented lead test. Table 4
shows the list of fluence metrics for the sensor, and Table 5 summarizes the performance of
bismuth titanate (BiTi) during the experiment.

Table 4. Total fluence for irradiation in MITR [14].

Radiation Source Exposure

Thermal flux (<0.4 eV) 2.27 × 1020 (n/cm2)
Epithermal flux (0.4 eV, 0.1 MeV) 1.72 × 1021 (n/cm2)

Fast flux 1 (>0.1 MeV) 1.88 × 1021 (n/cm2)
Fast flux 2 (>1 MeV) 8.68 × 1021 (n/cm2)

Total (Full range) 4.05 × 1021 (n/cm2)
Gamma 7.23 × 1021 (gamma/cm2)

Table 5. Performance metrics for the bismuth titanate (BiTi) sensor. The fast fluence is calculated for
the last measured acoustic response of the sensor considering neutrons greater than 1 MeV.

Fast Fluence (n/cm2) % Change in Amp % Change in fc

5 × 1020 –80% 0.0%

Although the performance of the sensors varied depending on the environment
variables as well as the duration for which those variables remained constant, the last
fluence level of a measurable echo from the back wall of the waveguide was reported.
Further, the percent difference of this amplitude to the amplitude of the reflection at the
beginning of the experiment, given similar environment variables, was also reported.
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