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ABSTRACT

This study probes the distribution of putatively
cancer-specific junctions across a broad set of pub-
licly available non-cancer human RNA sequencing
(RNA-seq) datasets. We compared cancer and non-
cancer RNA-seq data from The Cancer Genome At-
las (TCGA), the Genotype-Tissue Expression (GTEx)
Project and the Sequence Read Archive. We found
that (i) averaging across cancer types, 80.6% of
exon–exon junctions thought to be cancer-specific
based on comparison with tissue-matched samples
(σ = 13.0%) are in fact present in other adult non-
cancer tissues throughout the body; (ii) 30.8% of
junctions not present in any GTEx or TCGA normal
tissues are shared by multiple samples within at least
one cancer type cohort, and 87.4% of these distin-
guish between different cancer types; and (iii) many
of these junctions not found in GTEx or TCGA normal
tissues (15.4% on average, σ = 2.4%) are also found
in embryological and other developmentally associ-
ated cells. These findings refine the meaning of RNA
splicing event novelty, particularly with respect to
the human neoepitope repertoire. Ultimately, cancer-
specific exon–exon junctions may have a substantial
causal relationship with the biology of disease.

INTRODUCTION

Aberrant RNA splicing is increasingly recognized as a
feature of malignancy (1–5), potentially driving cancer
progression (4) and with potential prognostic significance
across many cancer types, including non-small cell lung can-
cer, ovarian cancer, breast cancer, colorectal cancer, uveal
melanoma and glioblastoma (6–11). Due to its potential for
generating novel peptide sequences, aberrant RNA splic-
ing is also interesting as a potential source of neoantigens
for cancer immunotherapy targeting (12). For instance, re-
tained intronic sequences can give rise to numerous po-
tential antigens among patients with melanoma, although
they are not a significant predictor of cancer immunother-
apy response (13), and a patient-specific neoantigen aris-
ing from a gene fusion has been shown to lead to complete
response from immune checkpoint blockade (14). Novel
cancer-specific exon–exon junctions have also been shown
to be a source of peptide antigens (15), and represent com-
pelling potential targets for personalized anticancer vac-
cines (16).

However, the ability of the adaptive immune system to
target a given antigen as ‘foreign’ depends on a complex
prior tolerogenic education, and in particular on whether
or not a given antigen has been previously ‘seen’ by the im-
mune system in a healthy context (17). Therefore, predic-
tion of cancer-specific antigens depends explicitly on their
sequence novelty, and thus requires a comparison with non-
cancer cells.
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Choosing a ‘normal’ tissue standard for comparison is
difficult in the context of RNA sequencing (RNA-seq) data
analysis, given the presence of alternative splicing through-
out normal and cancerous biological processes (2,18,19).
Previously, cancer-specific aberrant splicing has been de-
tected by comparing tumor RNA-seq data against a sin-
gle reference annotation (20) or a limited ‘panel of nor-
mals’ (13). A TCGA network paper (15) used the large
publicly available datasets of The Cancer Genome Atlas
(TCGA) (21) and the Genotype-Tissue Expression (GTEx)
Project (22) to identify and validate thousands of novel
splicing events, including exon–exon junctions present in
a specific TCGA cancer type but not in the correspond-
ing normal adult tissue in GTEx. This study also predicted
alternative splicing neoepitopes via this comparison, and
validated several of these neoepitopes shared between mul-
tiple patients with the intracellular proteomics data avail-
able for select ovarian and breast cancer TCGA donors in
the Clinical Proteomic Tumor Analysis Consortium dataset
(15). More recently, another study has leveraged TCGA and
GTEx, as well as cell line data, to discover and validate
neoepitopes derived from alternative splicing (23).

Here, we propose that the comparison of cancer junctions
with only matched normal GTEx tissue data allows a sig-
nificant number of junctions to be erroneously identified
as cancer-specific, and that GTEx provides neither an ap-
propriately specific nor a fully comprehensive standard for
normal splicing comparison. We investigate the sharedness
of cancer junctions within and across cancer type cohorts,
and their presence across multiple normal cell and tissue
types, including cohorts representing diverse developmen-
tal stages and potential cell types of cancer origin.

MATERIALS AND METHODS

Data download

Previously called exon–exon junction data including
phenotype table, bed and coverage files for both TCGA
and GTEx v6 were downloaded from the recount2 ser-
vice at https://jhubiostatistics.shinyapps.io/recount (24).
These data were previously extracted (25) from RNA-
seq experiments encompassing 10 549 tumor samples
across 33 TCGA cancer types, 788 paired normal samples
across 25 TCGA cancer types and 9555 normal samples
across 30 GTEx tissue types (Supplementary Table S1).
recount2 used Rail-RNA (26) to align RNA-seq samples,
and all command-line parameters affecting alignment
are referenced in supplementary information from the
recount2 paper (25). The metaSRA (27) web query form at
http://metasra.biostat.wisc.edu/ (a tool for identifying SRA
samples of interest) was queried for experiment accession
numbers for (i) non-cancer cell and tissue type samples
(see Supplementary Table S1 for cancer-matched samples
and Supplementary Table S3 for non-cancer samples, and
‘Comparison with SRA tissue and cell types’ section for
a description of how these samples were chosen) and (ii)
TCGA-matched cancer types (see Supplementary Table
S1). For the non-cancer samples, the term ‘cancer’ was
explicitly added as an excluded ontology term in the query,
and the resulting files were filtered to remove any samples

with ‘tumor’ in the sample name field. The resulting
accession numbers represent 12 231 human samples from
the SRA, specifically 10 827 samples from 33 normal
tissue and cell types and 1404 samples from 14 cancer
types (Supplementary Tables S1 and S3). These accession
numbers were queried against the Snaptron junction
database using the query snaptron tool (for interfacing
with uniformly extracted recount2 junctions) (25,28).
This query yielded junctions also previously extracted by
recount2 with the same pipeline used for the GTEx and
TCGA samples for the tissue and cell types of interest (25),
which were subsequently downloaded. TCGA tumor muta-
tional burden (TMB) data (file mutation-load-updated.txt)
were downloaded from https://gdc.cancer.gov/about-data/
publications/PanCan-CellOfOrigin (29). Patient somatic
mutation calls were downloaded from the GDAC fire-
hose (30), while a list of human splicing-associated gene
mutations (keyword search ‘mRNA splicing [KW-0508]’)
was downloaded from the UniProt database (31). Two
lists of cancer-associated genes were downloaded: the
COSMIC Cancer Gene Census cancer gene list from
https://cancer.sanger.ac.uk/census (32) and the OncoKB
cancer gene list from https://oncokb.org/cancerGenes
(33). The GENCODE v.28 comprehensive gene
annotation file (gencode.v28.annotation.gtf, the
noted ”main annotation file”) was downloaded from
https://www.gencodegenes.org/human/release 28.html
(34).

Indexing of GTEx and TCGA junctions

The GENCODE gene transfer format (.gtf) file (34) was
parsed to collect full coordinates and left and right splice
sites of junctions from annotated transcripts and a search-
able tree of protein-coding gene boundaries. The GTEx
phenotype file was parsed to collect tissue-of-origin infor-
mation and donor gender; bone marrow samples derived
from leukemia cell line cells were eliminated. The TCGA
phenotype file was parsed to collect information on can-
cer type, cancer stage at diagnosis, patient gender, vital sta-
tus and sample type (primary tumor, matched normal sam-
ple, recurrent tumor or metastatic tumor). Cancer subtype
classifications were collected for five cancer types beyond
their TCGA designations (Figure 2B, Supplementary Ta-
ble S1): cervical squamous cell carcinoma and endocer-
vical adenocarcinoma was separated into cervical squa-
mous cell carcinoma, endocervical adenocarcinoma and
cervical adenosquamous; esophageal carcinoma was sepa-
rated into esophagus adenocarcinoma and esophagus squa-
mous cell carcinoma; brain lower grade glioma was sep-
arated into astrocytoma, oligoastrocytoma and oligoden-
droglioma; sarcoma was separated into leiomyosarcoma,
myxofibrosarcoma, malignant peripheral nerve sheath tu-
mors, desmoid tumors, dedifferentiated liposarcoma, syn-
ovial sarcoma and undifferentiated pleomorphic sarcoma;
and pheochromocytoma and paraganglioma were sepa-
rated. A new SQLite3 database was created to index all
GTEx and TCGA junctions, with linked tables contain-
ing (i) sample IDs and associated junction IDs; (ii) sample
IDs and phenotype information for each sample; and (iii)

https://jhubiostatistics.shinyapps.io/recount
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Table 1. Junction novelty specification

Junction
novelty stage Definition

0 All junctions
1+ Junctions not found in tissue-matched

GTEx or TCGA normal samples
2+ Junctions not found in any GTEx or TCGA

normal (‘core normal’) samples
3+ Junctions not found in any core normal

samples or in selected SRA tissue and cell
type non-cancer samples

junction IDs and junction information, including 0-based
closed junction coordinates, GENCODE annotation status
and location within protein-coding gene boundaries. SQL
indexes were created on junction ID and sample ID columns
for fast and flexible querying.

Selection of cancer-specific junction filters

For all analyses we apply a light filter, requiring a junction to
have at least a two-read coverage across GTEx, TCGA and
the selected cancer and non-cancer SRA samples, to exclude
false positive junctions but allow for the existence of splicing
noise; we do not require a minimum read count per sample.
To characterize junction novelty in cancer with respect to
normal cells, we defined a hierarchical filter that specifies
inclusion and exclusion of junctions in different RNA-seq
datasets (Table 1). In order from most to least permissive,
these filters are (i) junctions not found in tissue-matched
GTEx or TCGA normal samples; (ii) junctions not found in
any GTEx or TCGA normal (‘core normal’) samples; and
(iii) junctions not found in any core normal samples or in se-
lected SRA tissue and cell type non-cancer samples. For our
analyses, we do not explicitly filter on whether a junction is
annotated in GENCODE. We do not set a limit on presence
in the core normal sample cohorts: any junction present
at any coverage level in only one sample is counted as ‘in’
these cohorts. This yields a more stringent filter on normal-
ity than that used by the TCGA splicing paper, which uses
the term ‘neojunctions’ to refer to junctions not found in
tissue-matched GTEx or TCGA normal samples, with a 10-
read coverage requirement in TCGA, and allowing through
the filter lowly expressed junctions in GTEx tissue-matched
samples (15).

Extraction and analysis of cancer-specific junctions

We queried the junction database to extract junctions of in-
terest, specifically (i) all junctions for all tumor samples of
each cancer type and (ii) all junctions not present in any
core normal samples for each cancer type cohort, with their
cohort prevalence levels. All junctions are presented in a 0-
based closed coordinate system. We also identified a set of
‘shared junctions’ for every cancer type, defined as up to
200 most highly recurring junctions that occur in at least
1% of the cancer type samples and are not found in any core
normal samples. Protein-coding region presence was deter-
mined for all junctions, with location assessment as follows:
the junction is categorized as protein-coding if it is present
in a protein-coding gene region (with at least one junction

splice site within the gene boundaries) and antisense if it is
present on the reverse strand of a protein-coding gene re-
gion, based on gene regions described in GENCODE v.28
(34). Cancer-associated genes were collected from the On-
coKB and the COSMIC Cancer Gene Census; any gene
listed in one or both lists was categorized as a cancer-
associated gene. Any junction assigned to a protein-coding
gene region corresponding to one of these genes was cate-
gorized as associated with cancer-relevant loci.

For comparison between cancer sample junctions found
and not found in core normal samples, we performed a
Kruskal–Wallis H-test to determine the significance of the
decreased sharedness levels, since the junction prevalence
data are not normally distributed and there are many fewer
cancer-specific junctions than junctions found in core nor-
mal samples.

Comparison with SRA tissue and cell types

Non-cancer sample types from the SRA were chosen via
manual curation informed by a clustering of junctions ac-
cording to ontology term prevalence, with commonly oc-
curring terms that do not meaningfully distinguish junc-
tions eliminated. The selected sample types in Supplemen-
tary Table S3 comprise all non-cancer data from the SRA
analyzed. All junctions for samples associated with these
cell and tissue types but not with ‘cancer’ were downloaded
via Snaptron, translated to a 0-based closed coordinate sys-
tem and compared with those found in TCGA cancer sam-
ples. Junctions present in a TCGA cancer type cohort and
SRA samples from a specific assigned category determined
set assignments, which were used for subsequent data anal-
ysis. To exclude false positive junctions but allow for the ex-
istence of splicing noise, only junctions with at least two
reads across GTEx, TCGA and the selected cancer and
non-cancer SRA samples are considered true junctions. All
SRA junctions not found in TCGA cancer samples were ig-
nored. For the supplementary two-sample minimum filter
analysis, we retained all junctions that are present in only
one SRA sample, but required at least two samples across
the broad SRA category (adult, developmental or stem cell)
for inclusion in that set. (For developmental subsets, only
one sample within a subset category was required, as long
as the two-sample criterion across the full developmental
category was met.)

For comparison between TCGA cancer sample junctions
not found in core normal samples with SRA junctions from
matched cancer type samples, we performed a Kruskal–
Wallis H-test to determine the significance of the increased
sharedness levels, since the junction prevalence data are not
normally distributed and the difference in junction counts
between the two cohorts (TCGA junctions in or not in the
SRA-matched cohort) is large.

Comparison of junction burden and TMB

Silent and non-silent mutations per Mb per patient were
added to give a total TMB per patient. Junctions considered
for the ‘junction burden’ calculation were all tumor sam-
ple junctions not found in core normal samples. The total
junction count per patient was divided by the mapped read
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count of the sample divided by 10 000 (scaling to ‘per Mb’
with the assumption of 100-bp reads) to give the final junc-
tion burden. A linear regression was performed on the junc-
tion burden versus TMB across all TCGA tumor samples.

Splicing factor mutation analysis

Patient somatic mutation call files were downloaded from
the GDAC firehose (http://gdac.broadinstitute.org/) (30).
While we note the potential importance of mutations in
non-coding sequences, we confined our attention exclu-
sively to non-synonymous mutations. Patients were classi-
fied based on two different separation criteria: (i) a de novo
analysis of whether or not they had at least one mutation
in a gene that codes for a protein annotated as involved
in mRNA splicing, based on the UniProt protein annota-
tion database; and (ii) whether or not they had at least one
mutation in a gene previously identified as sQTL associated
(U2AF1, SF3B1, TADA1, PPP2R1A and/or IDH1) in the
TCGA cohort by the TCGA splicing paper (15). For each
cancer type, and each stratification method, the number of
cancer-specific junctions per patient was compared for pa-
tients with and without at least one mutation in the defined
set (Supplementary Figure S1F and S1G). Differences in
the number of novel junctions across cancer types and strat-
ification groups were assessed via two-way ANOVA with a
Benjamini–Hochberg P-value correction.

In addition to comparing the levels of cancer-specific
junctions between patients with and without splicing-
associated mutations, we also compared junction shared-
ness based on the same two stratification criteria used ear-
lier. For each cancer type, all junctions identified in two
or more patients were selected. For each, the number of
junction occurrences in patients with mutations in splicing-
associated genes was calculated and compared to the overall
number of occurrences in the corresponding cancer cohort,
using a Fisher’s exact test (Supplementary Figure S1H and
S1I).

Survival analysis for ovarian cancer patients with target an-
tisense MSLN junction

All TCGA ovarian patients with data in our TCGA phe-
notype file in columns ‘xml days to last followup’ or ‘gdc
cases.diagnoses.days to death’ were included in the survival
analysis. The survival curve was plotted for the second col-
umn, with dropout patients with no days-to-death data cen-
sored at days to last follow-up.

RESULTS

Cancers harbor many novel shared exon–exon junctions not
present in adult non-cancer tissues or cells

While cancer-specific exon–exon junctions identified using
tissue-matched normal samples have the potential to give
rise to neoantigens (15), we reasoned that they could be ex-
pressed in other normal tissues due to variability in pat-
terns of transcription and alternative splicing among dif-
ferent tissues (35). In such cases, these junctions might not
yield bona fide neoantigens due to the prior tolerogenic ed-
ucation of the immune system. We therefore re-evaluated

the incidence of cancer-specific junctions using RNA-seq
data from TCGA and the large compendium of adult tissues
from GTEx. We found that on average, across cancer types,
80.6% of junctions potentially thought to be cancer-specific
based on comparison only with tissue-matched samples (σ
= 13.0%) are in fact present in other adult non-cancer tis-
sue and cell types throughout the body. Across cancer types,
an average of 90.2% of all junctions found in cancer sam-
ples (σ = 9.1%) are also present in one or more adult nor-
mal samples from GTEx or TCGA (‘core normals’, Fig-
ure 1A). The overall number of these novel junctions varies
both within and across different cancer types, with ovar-
ian carcinoma and uveal melanoma having the highest and
lowest average number of junctions per sample, respectively
(Figure 1B, Supplementary Table S1), and is independent
of TMB (Supplementary Figure S1A). The set of junctions
defined as ‘novel’ is highly sensitive to the filtering crite-
ria used (see Supplementary Figure S1B, Supplementary
Table S2 and ‘Selection of cancer-specific junction filters’
section). We are interested in junctions that are widely ex-
pressed across samples, and for this analysis we sought to
optimize sensitivity and specificity to detect shared cancer-
specific junctions. High prevalence across a cancer type co-
hort provides strong support for the existence of junctions,
despite low coverage of these junctions within any individ-
ual sample; we require a minimum of two reads across all
studies, but do not set a lower bound on sample coverage.
Going forward, we use strict lack of occurrence of a junc-
tion in core normals as our baseline definition of cancer
specificity, where even a single read in the target ‘normal’ set
eliminates a junction from the cancer-specific designation
(see ‘Selection of cancer-specific junction filters’ section).

We next assessed the extent to which a given junction
not found in core normals might be shared among multi-
ple samples of the same cancer type. We observed that over
half (52.8%) of these junctions are confined to individual
samples, although a small but significant subset (0.41%) is
shared across at least 5% of samples in at least one can-
cer type cohort (Supplementary Figure S1C). We also noted
that 40.6% of novel junctions are shared between multiple
cancer types, with a total of 1609 junctions present in at
least 5% of samples each across two or more TCGA can-
cer cohorts (Supplementary Figure S1D). Sharedness was
significantly higher among junctions that were also present
in normal tissues (Figure 1C, Supplementary Figure S1E).
We observed that the number of junctions not found in
core normals per patient was comparable for patients with
and without splicing factor-associated mutations across all
cancer types, with the exception of breast adenocarcinoma
(Supplementary Figure S1F and S1G). We also observed
that splicing-associated mutations had minimal effect on
the sharedness within a cancer type cohort of junctions
not found in core normals (Supplementary Figure S1H and
S1I).

We finally assessed whether these junctions were also
shared among independent cancer cohorts, using publicly
available RNA-seq data in the Sequence Read Archive
(SRA) (36). Many TCGA cancer junctions not found in
core normals were found to occur in cancer type-matched
SRA samples: 11 of 14 cancer types had more than 50 junc-
tions in common between the matched cohorts. Moreover,

http://gdac.broadinstitute.org/
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Figure 1. Distribution of exon–exon junctions across and within TCGA cancer cohorts. (A) Log-scale bar charts describing the percentage of all junctions
of a given cancer type cohort present in three subcohorts. Blue (left) bars give the percentage of cohort junctions found in GTEx or TCGA tissue-matched
normal samples (Supplementary Table S1), green (center) bars give the percentage of the remaining junctions that are found in other core normals and
yellow (right) bars give the percentage of cohort junctions not found in any core normals; cancer types are ordered by relative abundance of junctions
in this last set. Cancer types with no blue (left) bar have no tissue-matched normal samples (Supplementary Table S1). (B) Log-scale sorted strip plots
representing the number of non-core normal junctions per sample for each of 33 TCGA cancer types. Each point represents a single TCGA tumor sample
and the width of each strip is proportional to the size of the cancer type cohort (15). Supplementary Figure S1B shows analogous data with additional
filters applied. (C) Log-scale box plots representing the prevalences within each cancer type cohort of junctions occurring in at least 1% of cancer type
samples, summarized across all TCGA cancer types. Junction prevalences are shown in blue (left) for those found in GTEx or TCGA tissue-matched
normal samples (Supplementary Table S1), junctions not present in tissue-matched normals but found in other core normals are shown in green (center)
and junctions not found in any core normals are shown in yellow (right). Note that any junction found in multiple cancer types is represented by multiple
data points, one for each cancer type in which it is found. A detailed breakdown by TCGA cancer type is available in Supplementary Figure S1E.
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Figure 2. Clustering by cohort prevalence of shared novel junctions not found in core normal samples. (A) Heatmap showing junction prevalences across
every TCGA cohort for each cancer type’s top 200 shared junctions that are at least 1% prevalent in that cancer type and are not found in any core normal
samples. (B) Heatmap showing shared junction prevalences across selected TCGA cancer types and their assigned histological subtypes for each subtype’s
top 200 shared junctions that are at least 1% prevalent in that subtype and are not found in any core normal samples. See Supplementary Table S1 for
TCGA subtype abbreviations. (C) Heatmap showing shared junction prevalences across selected TCGA cancer types and a set of their matched SRA tissue
and cell types of origin, for each cancer type’s top 200 shared junctions that are at least 1% prevalent in that cancer cohort and are not found in any core
normal samples.
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we found that junctions also present in matched SRA can-
cer cohorts were associated with significantly higher levels
of sharedness in the TCGA cohort (H statistic = 3.85–2803
and P = <0.0001–0.0495; Supplementary Figure S1J).

Shared novel junctions in cancer distinguish cancer identity
and subtype

We hypothesized that a high level of exon–exon junction
sharedness across samples is likely to be reflective of un-
derlying conserved biological processes (e.g. among nor-
mal tissues). We therefore investigated the sharedness of
novel junctions present in different cancer types. Interest-
ingly, these novel junctions can readily distinguish disparate
cancer types and show similarities among cancer types with
shared biology, such as cutaneous and uveal melanomas
(Figure 2A). These novel junctions also reflect shared bi-
ology among additional cancer types with similar anatomic
origins: colon and rectal adenocarcinoma, clear cell, chro-
mophobe and papillary renal cell carcinomas, low- and
high-grade gliomas, and stomach and esophageal adenocar-
cinomas (Figure 2A). Shared junctions from several cancer
types also demonstrate similarities by histological subtype
despite their differing anatomical origins, for instance squa-
mous cell carcinomas of the lung, cervix, and head and neck
(Figure 2A, Supplementary Figure S2A), consistent with
previously published work (37). Moreover, shared novel
junctions are readily able to distinguish distinct histologi-
cal subtypes of sarcoma and cervical cancer, among other
diseases (Figure 2B). Using non-cancer cell types from the
SRA, we found that ‘novel’ junctions from cancers aris-
ing from cell and tissue types poorly represented in GTEx
normal tissue samples (e.g. melanocytes), or not present in
GTEx at all (e.g. thymus tissue), can be found in many sam-
ples of the corresponding cell or tissue types of origin (Fig-
ure 2C, Supplementary Table S1). Sample-to-sample com-
parisons of all junctions from these rare-cell type cancers
also show more similarity with cell type-matched normal
samples from the SRA than with bulk tissue from GTEx
(Supplementary Figure S2B).

Novel junctions in cancer are found among developmental and
known cancer-related pathways

As many cancers are thought to recapitulate normal devel-
opmental pathways (38–40), we further hypothesized that a
subset of cancer-specific junctions may reflect embryologi-
cal and developmental splicing patterns. We therefore com-
pared cancer junctions not found in core normals with those
from SRA samples pertaining to zygotic, placental, embry-
ological and fetal developmental processes: on average, per
cancer type, 15.4% of these cancer junctions (σ = 2.4%)
occur in SRA developmental cell or tissue samples. We
also considered samples from SRA normal stem cell sam-
ples and from selected SRA normal adult tissue and cell
types: on average, per cancer type, 2.7% (σ = 1.4%) and
26.5% (σ = 3.3%) of cancer junctions not found in core
normals occur in stem cell and selected adult tissues, re-
spectively (Figure 3A, Supplementary Figure S3A). Fur-
thermore, many of the junctions found in SRA developmen-
tal, stem cell and selected adult tissues are highly prevalent

shared junctions (Supplementary Figure S2A). The remain-
ing significant majority of these cancer junctions not found
in core normals were also not found in any non-cancer SRA
tissue or cell type studied [64.9% on average per cancer
type cohort (σ = 4.0%), Figure 3A, Supplementary Figure
S3A]. Many of these novel ‘unexplained’ junctions still ex-
hibit high levels of sharedness both within (Supplementary
Figure S3B and S3C) and between (Supplementary Figure
S3D) different cancer types. At the upper end, 16 of these
shared junctions were found in more than 10% of samples
in each of two or more cancer types (Supplementary Table
S4).

We note that the liberal set inclusion criterion we em-
ployed may reduce our ability to identify robust cancer-
specific biology among unexplained junctions. For instance,
the well-described deletion causing a splicing of exons
1 and 8 (EGFRvIII) occurs in 29.4% of TCGA patients
with glioblastoma multiforme (GBM) and in non-core nor-
mals, but is also present in a single read from a single
human epithelial cell line sample on SRA, and therefore
is classified not as an unexplained cancer-specific junc-
tion but as ‘adult non-cancer’. However, this set inclu-
sion condition does allow for the identification of some
cancer-specific biology of interest. For instance, rarer al-
ternative EGFR splicing events were detected in the un-
explained set, such as EGFRvIII with an alternate exon
1 joined to exon 8 (chr7:55161631–55172981), detected in
two patients with GBM and one patient with low-grade
glioma, the same alternate exon 1 joined with two alternate
exon 16s (chr7:55161631–55168521 and chr7:55161631–
55170305, detected in one and two GBM patients, respec-
tively) and the same alternate exon 1 joined with exon 20
(chr7:55161631–55191717) in two GBM patients. An alter-
native filtering approach that instead requires two samples
per SRA category to define junction set membership yields
a greater number of unexplained junctions (Supplementary
Table S2, Figure S3E and S3F).

We observed a number of unexplained junctions shared
by unusually large proportions of ovarian cancer sam-
ples in TCGA, including one cancer-specific junction
(chr16:766903–768491 on the minus strand) present in the
highest proportion of samples in any TCGA cohort (81.3%,
or 350 of 430 ovarian cancer samples). This junction oc-
curs in an antisense transcript of MSLN, which codes for
a protein known to bind to the well-known ovarian cancer
biomarker MUC16 (CA125) (41,42). The functional con-
sequence of this junction is unknown, but it does not ap-
pear to affect overall survival (Supplementary Figure S3G).
Another unexplained junction (chr19:8865972–8876532 on
the minus strand) is in the MUC16 region itself and is
present in 42.8%, or 184 of 430 ovarian cancer samples.
In all, we identified 34 cancer-specific junctions present in
>40% of ovarian cancer samples. We further identified sev-
eral novel pan-cancer splice variants (chr16:11851406 with
chr16:11820297, chr16:11821755 and chr16:11828391, each
present across up to eight different cancers) in RSL1D1 and
its neighboring BCAR4, a long non-coding RNA known to
promote breast cancer progression (43,44).

Among all otherwise unexplained junctions, an average
of 4.78% (σ = 0.48%) across cancer types are associated
with known cancer-predisposing or cancer-relevant loci.
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Figure 3. Junction set assignments and antisense junction prevalence in additional normal tissue and cell type categories from the SRA, across cancers. (A)
Upset-style plot with bar plots showing junction abundances across major sets (left) and set overlaps (top) across 33 cancers (error bars). Shown junctions
are absent from all core normals. Unexplained junctions (red highlights) comprise junctions not present in any set categories studied (see also expanded set
assignments in Supplementary Figure S3A). The developmental set comprises human development-related junctions not present in the category placenta.
Scale is log10 of percent of junctions not found in core normals, calculated for each cancer. (B) Box plots showing, for each TCGA cancer type, the percent
of junctions that are antisense for (green) junctions found in core normals, (aqua) junctions not found in core normals but found in other selected non-
cancer adult tissue and cell samples from the SRA, (lavender) junctions not found in core normals or SRA non-cancer adult samples but found in selected
developmental samples on the SRA, (apricot) junctions not found in core normals or SRA non-cancer adult samples but found in selected stem cell samples
on the SRA and (red) junctions not found in core normals or selected non-cancer adult, developmental or stem cell samples from the SRA. Each point
represents the percent of junctions from one cancer type in the given category (e.g. developmental) that are antisense. The table shows the median and
interquartile range of the number of junctions in that category across all TCGA cancer types.

Further, an elevated proportion of otherwise unexplained
junctions (on average, 40.9%, σ = 3.8%) occur in likely
antisense transcripts and may therefore be of reduced in-
terest as candidate neoantigens, but sustained interest in
terms of cancer biology (Figure 3B, Supplementary Table
S5). Finally, we show that 20 genes not previously known
to be cancer-associated each contain at least 25 novel, un-
explained junctions present in at least 5% of samples of at
least one cancer type (Supplementary Table S6).

DISCUSSION

Previous studies have established the importance of alter-
native and aberrant splicing in cancer prognosis (6–11) and
have begun to explore its potential relevance in cancer im-
munotherapy (15,23,45). In this study, we explore ‘novel’
exon–exon junctions used among cancers with respect to a
broad collection of normal tissue and cell types. This is the
largest such study to date integrating RNA-seq data from
10 549 tumor samples across 33 TCGA cancer types, 788
paired normal samples across 25 TCGA cancer types, 9555
normal samples across 30 GTEx tissue types and 12 231 hu-
man samples from the SRA (10 827 samples from 33 nor-
mal tissue and cell types and 1404 samples from 14 can-
cer types) (Supplementary Tables S1 and S3). To the best
of our knowledge, this is also the first study to examine
the novelty of cancer junctions from the perspective of im-
mune tolerance, considering all adult normal tissue types as

potential sources of tolerogenic peptides rather than only
the closest matched normal tissues. Moreover, this is the
first study to quantitatively interrogate the sharedness of
novel exon–exon junctions both within and across cancer
types, demonstrating that these junctions can distinguish
some cancers and their subtypes. We finally demonstrate
that there is no one-size-fits-all definition of ‘novel’ splic-
ing, noting that purportedly cancer-specific junctions may
in fact be present among, and perhaps biologically consis-
tent with, a repertoire of embryological, developmentally
associated and other cell types.

This study also has several limitations. We focus on the
importance of exon–exon junctions as the predominant
metric of alternative splicing, in particular on their pres-
ence or absence among different samples, but do not explore
the potential for differences in gene dosage to drive differ-
ences in biology. Moreover, there are other sources of RNA
variation (e.g. intron retention events (13) and RNA edit-
ing) that we do not explicitly study here, but which could
be equally good sources of novel, cancer-specific protein
sequence for immunotherapeutic and other applications.
Importantly, there is substantial variability among analyti-
cal methods for identifying these exon–exon junctions. We
note significant discordance between results of analyses of
the same data using different junction filtering methods.
While the same phenomena and general results appear to
hold true independent of analytical technique, the identity
and relative novelty of individual ‘cancer-specific’ junctions
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vary between our results and those previously published
(15). We also acknowledge that GTEx and the SRA com-
bined do not account for all sources of normal tissue(s) in
the human body, and further acknowledge that the sam-
ple metadata used to search the SRA may be an imper-
fect surrogate for actual tissue/sample identities. Our as-
sessment of embryological and developmentally associated
junctions is also limited by a relatively small number of rel-
evant RNA-seq samples available on the SRA. Our splicing
factor mutation analysis was also limited by sample size and
was confined exclusively to non-synonymous mutations. Fi-
nally, due to the short-read nature of these RNA-seq data,
we make no attempt to predict putative neoepitopes from
cancer-specific junctions as we cannot confidently recapitu-
late reading frame or broader sequence context from iso-
lated exon–exon junctions, particularly without access to
the biological specimens to perform junction-level experi-
mental validation.

While cancer-specific exon–exon junctions may indeed
be a source of neoepitopes, their sharedness across indi-
viduals and occurrence in cancer-relevant loci (e.g. EGFR,
MUC16) are suggestive of underlying but as-of-yet unex-
plored biology. This sharedness does not appear to be re-
lated to variants in splicing factor or splicing-associated
proteins, and is not wholly explained by recapitulation of
embryological/developmental transcriptional profiles. As
such, we see this work as opening a broad area of future
research into the role and relevance of these novel recurring
exon–exon junctions.
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