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Multistability plays an important role in advanced engineering applications such as meta-
structures, deployable structures, and reconfigurable robotics. However, most existing
multistability design is based on the two-dimensional (2D)/3D series or parallel combi-
nations of bistable unit cells, which are derived from snap-through instability, nonrigid
foldable origami structures, and compliant mechanism, due to the lack of a generic multi-
stable unit cell. Here, we develop a tristable kirigami cuboid by creating a set of elastic
joints only effective in a specific motion range which integrates the elastic sheets and
switchable hinge axes inspired by the kinematic behaviors of a kirigami cuboid with thick
facets. The energy barriers between the stable states can be programmed by the geometric
design parameters and material properties of the elastic joints. Taking the tristable cuboid
as a unit cell, we construct a family of metastructures with multiple stable states. The
number of stable states, the combination of unit stable states, and their transform sequen-
ces can be programmed by the number of unit cells, unit design parameters, and loading
modes and loading sequences. We also apply this tristable cuboid to the design of fre-
quency reconfigurable antenna with three programmable working frequencies, which
demonstrates that such versatile multistability and structural diversity facilitate the devel-
opment of multifunctional materials and devices.

kirigami cuboid j multistability j metastructure j programmability

Multistability is a characteristic of structures with more than one stable equilibrium
configuration, which can realize the rapid structural reconfiguration to meet certain
functional requirements. Recently, multistable structures have been used to design
mechanical structural materials with shape reconfiguration (1–3) and negative stiffness
(4) for trapping elastic strain energy (5), energy absorption (6–8), and ternary logic
operation (9); robots (10–14) for simplifying actuators, reducing power consumption,
and improving the locomotion speed and motion integration; soft media (15) and
mechanical diodes (16, 17) for the propagation of mechanical signals; devices for
mechanical memory storage (18); deployable structures for self-locked configuration
(19, 20) and rapid deployment (21); and other potential applications (22).
However, most existing multistability is based on the two-dimensional (2D)/3D

series or parallel combinations of bistable unit cells, which are derived from snap-
through instability (1, 8, 17, 23–27), nonrigid foldable origami structures (28–32),
and compliant mechanisms including rigid origami (33–37). Among them, the snap-
through instable beam or structure is the most commonly used fundamental unit
in construction with planer motifs or spatial topologies to form 1D, 2D, and 3D mul-
tistable structures with unidirectional (1, 24), bidirectional, and multidirectional multi-
stability (2, 4, 6, 9), such as the multistable 1D cylindrical structures, 2D square
lattices, and 3D cubic/octahedral lattices (9). Recently, nonrigid origami structure is an
emerging resource for designing bistable units based on the elastic deformation of
origami facets, such as the Kresling pattern (11, 18, 20, 38) and the hypar pattern
(30, 39). Multiple Kresling units can be assembled in series to construct multistable
structures (18, 31), and multiple hypar-origami units can be tessellated in plane to be a
multistable metasurface (30). Meanwhile, compliant mechanisms derived from mecha-
nisms by introducing spring hinges with compliant segments (34, 36) or torsional
springs (40) to store energy have been used to propose bistable unit cells, such as four-
bar developable mechanisms (37), Sarrus linkages (41), twisting and rotational mecha-
nisms (42, 43), rotating polygon embedded magnets (44–46), the waterbomb unit
(34), and the Miura-ori unit (47, 48). The Miura-ori units have been stacked to be
multilayer multistable structures (16, 33, 47).
Besides few tristable units with nonzero energy stable states (32, 41), there is no

generic tristable or multistable structure which itself is a basic unit rather than con-
structing with bistable units. On the other hand, most of the bistable unit cells are
accompanied by large deformation on beams or facets, while few are derived from the
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design of joints. One such example is quadrastable overcon-
strained spatial Sarrus mechanisms with compliant joints (41),
whose stable states are also nonzero energy ones, except the ini-
tial fabrication state. Therefore, in this paper, we are aiming to
develop a generic tristable kirigami cuboid with a set of spe-
cially designed elastic joints based on its kinematic behaviors.
By combining the tristable kirigami cuboid in series, multi-
stable structures with programmable stable configurations,
transformation sequence, and stiffness are constructed. This
work paves the way to design multistable metastructures,
which facilitates the development of functional materials and
devices.

Results

The Kirigami-Inspired Foldable Cuboid. We start from a square
cuboid with eight vertices noted by A to H as shown in
Fig. 1A, ‹. Here, top facet ABCD and bottom facet EFGH
are identical squares of side length a, and four side facets are
rectangles of height 2b. The cuboid is a structure without
mobility, even though we regard the edges of the cuboid as
hinges. In order to make the cuboid foldable, first, we add four
horizontal creases, MN, NS, ST, and TM, to the middle of the
rectangular facets on the cuboid, which subsequently divide
each facet into two rectangles of dimension a × b, in which we

Fig. 1. Geometry and kinematics of the foldable kirigami cuboid. (A) Folding sequence of the left-handed kirigami cuboid with sizes b ¼ a (length ratio
μ = b/a = 1), where ‹ is the closed cuboid, › is the configuration with the maximum distance h between the top facet and bottom facet, fi is the configura-
tion with maximum dihedral angles φ2 and φ4, fl is an opened configuration with φ1 = φ5 = 180°, φ2 = φ4 = 90°, � is the configuration with maximum dihe-
dral angles φ1 = φ5 > 180° , and – is the flat configuration with φ1 = φ5 = 180° and φ2 = φ3 = φ4 = 0°. Here, the top view of fi shows the twist angle hω which
is measured from LH to JD along the positive direction of the z axis to show the rotation angle of the top facet relative to the bottom facet from ‹ to –. (B)
Folding sequence of the right-handed kirigami cuboid. (C–E) The dihedral angles of φi (I ¼ 1, 2, 4, 5), the twist angle hω and the height ratios of h/a vs. φ3,
where ‹–– corresponds to the configurations in A with μ = 1. (F–H) The geometry and kinematics of the kirigami cuboid with ratio μ = 0, 0.2, 0.388, 0.417,
0.5, 0.706, 1.5, and 2.
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define μ = b/a; second, we cut each of these rectangles along
the diagonal from top left to bottom right corners, which
makes the top and bottom facets of the cuboid connected by
four limbs, each composed with four triangle pieces jointed by
the creases; that is, one limb is �DAM2–�AM2N1–

�M2N1F–�N1FG, and there are five creases (joints), DA,
AM2, M2N1, N1F, and FG, to connect with two square facets
ABCD and EFGH (Fig. 1A, ›). In such a way, the cuboid is
transformed into a foldable kirigami cuboid whose folding
sequence is shown in Fig. 1A, ‹ to –, when we twist the
square ABCD counterclockwise from the top view, or the
deployable sequence from Fig. 1A, – to ‹, by twisting ABCD
clockwise. Hence, we call the foldable cuboid in Fig. 1A left-
handed. Alternatively, if we cut the eight rectangles along the
diagonal from top right to bottom left corners, a right-handed
foldable cuboid will be obtained (Fig. 1B and Movie S1).
No matter which chirality, the foldable cuboid is of multiple

degrees of freedom if we take facets as rigid links and take
creases as revolute joints. Here, we only consider the folding
process such that the top facet ABCD is always parallel to the
bottom one, EFGH, which kinematically requests that the four
limbs are kept in a rotational symmetry about the z axis of this
cuboid. Hence, the creases at the same position on the four
limbs are synchronized. With this extra constraint, we can find
the relationship among the dihedral angles along one limb, φi
(i = 1, 2, … , 5) as marked in Fig.1A, › (SI Appendix, section 1).
The relationships among the dihedral angles are

cos2φ2 � 1þ tan2φ1

� �
cosφ2

� sinφ2tanφ1 sinφ1tanφ1 � 2μþ cosφ1ð Þ þ tan2φ1

¼ 0, tan
φ3

2
cosφ2 � tanφ1 ¼ 0,φ4 ¼ φ2,φ5 ¼ φ1, [1]

which indicates that the folding process is of one degree of free-
dom with one input either one of the creases φi or the twist of
facet ABCD about the z axis, hω, marked on the top view of
Fig. 1A, fi. Alternatively, the folding and deployment of the
cuboid can be controlled by the distance between facets ABCD
and EFGH, which is defined as the height of the cuboid, h; see
Fig. 1A, fi. The dihedral angles φi, twist hω, and height h vs.
φ3 are plotted in Fig. 1 C–E. As demonstrated in Fig. 1A, there
are six typical configurations; that is, ‹ is the closed cuboid; ›
is the configuration with the maximum h; fi is the one with
maximum dihedral angles φ2 (= φ4); fl is an opened configura-
tion with φ1 = φ5 = 180°, φ2 = φ4 = 90° and φ3 =
2arctan(1/(1+ 2μ)); � is the one with maximum dihedral
angles φ1 = φ5 > 180°; and – is the flat configuration with
φ1 = φ5 = 180° and φ2 = φ3 = φ4 = 0° as the cuboid is fully
folded. Hence, as shown in Fig. 1C, among five creases along
one limb, only φ3 varies monotonically from 180° to 0° during
folding or vice versa during the deployment of the cuboid,
while the rest of dihedral angels increase first and then decrease
when the cuboid is folded into a flat configuration, so φ3 is
taken as the input angle. Fig. 1D shows the relationship of hω
vs. φ3 (SI Appendix, section 1), which increases monotonically
with φ3. Yet, h increases from ‹ to ›, then decreases to zero
when folded flat into – (Fig. 1E).
It should be noted that the curves in Fig. 1 C–E are plotted

with parameters a = b for the cuboid, that is, length ratio μ =
b/a = 1. When we take a different geometry, there is no funda-
mental difference in the curves of Fig. 1 F–H, where μ = 0,
0.2, 0.388, 0.417, 0.5, 0.706, 1.5, and 2 are specially selected.
We can tell that a large μ corresponds to a smaller φ3 at fl, a
large twist between ‹ and fl, although the total twist between

‹ and – is always 180°, and a large height (h = 2μa) in the
deployed cuboid ‹ while the height of fl is always a. Note
that the height of – is always zero if not considering the panel
thickness; thus, it is a great deployable structure with large
deployable ratio along the height direction. For the cuboid
with μ = 0 (SI Appendix, Fig. S6A) and 0.706, twist angle hω
from – to fl is 90° and 45°, respectively, which would have
the potential application for electromagnetic (EM) metamateri-
als. When μ = 0.5, ‹ and fl both have the same height as a.

Realization of Multistable Structures. No matter the selection
of cuboid geometry, besides ‹ (φ1 = φ5 = φ2 = φ4 = 90°)
and – (φ1 = φ5 = 180°, φ2 = φ4 = 0), fl is a rather remarkable
configuration with φ1 = φ5 = 180°, φ2 = φ4 = 90°, and h = a.
Hence, we want to make it a stable configuration during the fold-
ing, together with ‹ and – to form a tristable structure.

As ‹ and fl share φ2 = φ4 = 90°, we can replace creases 2
and 4 of the four limbs (eight hinges in total) with identical
torsional springs of stiffness K2,4 and set the rest angle of the
springs φ20 = φ40 = 90° to obtain the stable configurations ‹
and fl. The stored energy of each spring hinge is U = 1/2 K2,4

(φ2 � φ20)
2 (SI Appendix, section 2A), leading to a total energy

of U2,4 = 8U whose curve is plotted in Fig. 2A with two clear
energy valleys corresponding to stable configurations ‹ and fl
(Movie S2). Similarly, torsional springs (stiffness K1,5) with rest
angle φ10 = φ50 = 180° can also be used to replace creases 1
and 5 of the four limbs to attain the two stable configurations
fl and – corresponding to the energy valleys of curve U1,5

(Fig. 2B and Movie S2), because the two configurations both
have φ1 = φ5 = 180°. However, if these two sets of creases 1, 5
and 2, 4 are replaced by the above-mentioned torsional springs,
respectively and simultaneously, we will only obtain monosta-
ble configuration fl, because the total energy of the system
U1,5 + U2,4, has only one valley, as shown in Fig. 2C (Movie
S2), which is because the torsional springs at creases 1 and 5
are not at the 180° rest angle for configuration ‹, while the tor-
sional springs at creases 2 and 4 are also not at the 90° rest angle
for configuration –. Apparently, we cannot achieve a tristable
structure by utilizing such simple torsional springs with one rest
angle even if the ratio between K2,4 and K1,5 is tuned.

It is, however, possible to enable the cuboid to have three stable
configurations, ‹, fl, and –, as shown in Fig. 2D, if the torsional
springs at creases 2 and 4 are only activated between configurations
‹ and fl (i.e., U2,4 > 0 and U1,5 = 0) whereas torsional springs at
creases 1 and 5 are only triggered between fl and – (i.e., U2,4 = 0
and U1,5 > 0). This can be done by creating two special elastic
joints with elastic sheet materials as shown in Fig. 2E.

For crease 1 (and crease 5) in Fig. 2E, two adjacent facets,
Ptop and P1, are connected by a thin elastic sheet with negligi-
ble bending stiffness on one side of the facets with thickness t1.
Between configurations ‹ and fl, there is only bending for the
elastic joints 1 and 5 with φ1 ∈ (90°, 180°) about point 1 with-
out any stretching, so there is no energy needed for these two
joints. Between fl and –, facets P1 would continually rotate
around axis 1 with φ1 > 180° as shown in Fig. 2E. However,
the rotation is hindered by the thickness of the two adjacent
panels, which leads to P1 rotating about axis 10 instead of axis 1
by angle Δφ1 = φ1 � 180°. The film is therefore stretched by
Δx ¼ 2sin Δφ1=2

� � � t1, then adding to an energy consuming

Ue1,e5 ¼ 1
2
Ke1,e5 Δxð Þ2 ¼ 2Ke1,e5sin

2 Δφ1=2ð Þ � t 21 : [2]

Hence, this type of elastic joint is only activated between fl
and –, whose maximum energy is achieved at � where φ1
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and φ5 reach maximum to generate the largest stretch on
the elastic sheet at joints 1 and 5. A similar design is applied
to crease 2 (and crease 4); see Fig. 2E. Between fl and –,
φ2 < 90°, facet P1 rotates around axis 2 with respect to

P2, which makes no stretching at all in the elastic joint.
Between ‹ and fl, the film is stretched by Δy ¼
2

ffiffiffi
2

p
sin Δφ2=2ð Þ � t2, as the rotation of facet P1 is hindered by

the wedge shape of facets P1 and P2, which leads to P1 rotating

Fig. 2. The construction of the tristable structure and the programmability of the energy barriers. (A) The energy U2,4 of the system when installing tor-
sional springs with rest angles φ20 = φ40 = 90° and stiffness K2,4 at hinges 2 and 4 in all limbs to form a bistable structure with stable states ‹ and fl. (B) The
energy U1,5 of the system when installing torsional springs with rest angles φ10 = φ50 = 180° and stiffness K1,5 = K2,4 to hinges 1 and 5 in all limbs to form a
bistable structure with stable states fl and –. (C) The energy of the system when installing the above two types of torsional springs to the corresponding
hinges with only one stable state fl under K1,5/K2,4 = 5, 1, 0.2. Here, A–C, Insets are corresponding prototypes. (D) The total energy of two types of torsional
springs in all limbs (U1,5 + U2,4), where torsional springs with stiffness K2,4 are valid from the stable state ‹ to state fl (i.e., U2,4 > 0 and U1,5 = 0), and the tor-
sional springs with stiffness K1,5 (K1,5/K2,4 = 10) are valid from the stable state fl to state – (i.e., U2,4 = 0 and U1,5 > 0), which leads to the tristable structure
with three stable states ‹, fl, and –. (E) The elastic joints with different working functions at joints 1/5, 2/4, and 3 for different states. (F) The three stable
states ‹, fl, and – of the tristable wood structure with elastic joints. (G) The energy of the tristable structure based on elastic joints is tuned by varying the
ratio Ke1,e5/Ke2,e4 and thickness of the panels. (H and I) The variations of dihedral angles and the height of the tristable structure constructed with elastic
joints proposed in E. (J and K) The energy of tristable structures US3 and US5 in states fi and �, respectively, and the relationship between the energy barriers
and the length ratio μ, thickness of panels. (L) The angles φ3 of states ‹, ›, fi, and fl under different μ and thickness of panels, which indicates state › is
between ‹ and fi with μ > 0.388 and between fi and fl with μ < 0.388; when μ = 0.388, state › and state fi are coincident, when the panel thickness is 5
mm. Here, constants Ks0 = 3.21 N.mm/rad, Ke0 = Kep0.3a

3 = 0.1037 × 803 = 53,094 N.mm, where Kep0.3 (the per length [in millimeters] stiffness of the elastic
sheet with thickness 0.3 mm) is derived from an experiment (SI Appendix, section 3).
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about axis 20 by angle Δφ2 = φ2 – 90°, then causes energy con-
suming

Ue2,e4 ¼ 1
2
Ke2,e4 Δyð Þ2 ¼ 4Ke2,e4 sin

2 Δφ2=2ð Þ � t 22 : [3]

Hence, this elastic joint is only triggered between ‹ and fl
with maximum energy at fi where φ2 and φ4 reach maximum
to generate the largest stretch on the elastic sheet at joints 2
and 4.
Now we have two types of elastic joints that function in dif-

ferent ranges for the two sets of creases 1, 5 and 2, 4, when the
kirigami cuboid moves. At the same time, we can use the same
elastic joint on crease 3 by attaching to the inner sides of facets,
which will never be triggered, as φ3 ∈ (0°, 180°) with no
energy request on the joint. Based on this, a prototype made
from 3-mm-thick wood panels and elastic latex film of 0.09-
mm thickness demonstrates that there are indeed three stable
configurations; see Fig. 2F and Movie S3, whose total joints’
energy Ue vs. φ3 is plotted as the red curve in Fig. 2G (SI
Appendix, section 2B) with two energy barriers among ‹, fl,
and – to form a tristable structure. The energy barrier between
fl and – (at �) is rather low compared with the one between
‹ and fl (at fi), because Δφ1 = φ1 � 180° between fl and –
is much smaller than Δφ2 = φ2 – 90° between ‹ and fl, as
shown in Fig. 1C. In order to increase the energy between ‹
and fl, we can increase the ratio Ke1,e5/Ke2,e4 as the dashed
blue curve in Fig. 2G. The stiffness of the two types of elastic
joints can be designed independently by using different sizes of
the elastic sheet or different stiffnesses of the sheet material. We
also can increase both energy barriers by increasing the facet
thickness according to Eqs. 2 and 3; see the black curve in Fig.
2G. In fact, the thickness of every facet on the cuboid can also
be selected independently, which will make the cuboid have
uneven outside surfaces. Note that, in the cuboid with elastic
joints on the facets with thickness, the rotation axes of the
hinges change from 1, 2 to 10, 20 when the elastic joints are
active. The corresponding kinematic behaviors have been ana-
lyzed in SI Appendix, section 4, which is different from kine-
matic behaviors of the zero-thickness cuboid as we derived in
Eq. 1. However, the kinematic curves considered the facet
thickness (Fig. 2 H and I and SI Appendix, section 4) are more
or less the same as those zero-thickness ones in Fig. 1 C and E
if the thicknesses t1 and t2 are small, which will vary more with
the increase of thickness. It should be noted that the thickness
of the top and bottom panels is not taken into consideration
for the height of the structure when plotting Fig. 2I.
The energy barriers between states ‹, fl, and US3 at state 3,

and between states fl, –, and US5 at state 5, can be pro-
grammed by length ratio μ and the thickness of the panels (Fig.
2 J and K and SI Appendix, section 5). Both rise with the panel
thickness, while US3 increases with μ and US5 decreases with μ.
It should be pointed out that state ›, the configuration with
the maximum h, and state fi, the one with maximum dihedral
angles φ2 (= φ4) which corresponds to the maximum energy
state, do not always appear in order, as shown in Fig. 2L. Based
on the derivation in SI Appendix, section 6, we can tell that
state › is between ‹ and fi with μ > 0.388 and between fi
and fl with μ < 0.388; especially, when μ = 0.388, state ›
and state fi are coincident, when the panel thickness is 5 mm.

The Transformation among Three Stable States. Generally, as
long as the energy input to the system is larger than the energy
barriers, we can easily transform it among the stable states. As
analyzed above, the folding and deployment of the cuboid can

be controlled by rotating φ3 on four limbs simultaneously; it is,
in fact, not easy to realize such synchronized control because
both links of φ3 are not fixed. Alternatively, we can twist the
facet ABCD relative to EFGH about the z axis as hω increases
monotonically from ‹ to –, as demonstrated in Fig. 1 D and
G. The relationship of the system energy vs. twist hω under dif-
ferent μ (SI Appendix, section 2B) is shown in Fig. 3A, where
there are always three valleys for stable configurations ‹, fl,
and – and two peaks for configurations fi and �. Hence, we
can fix the bottom facet and apply a counterclockwise twist
with a positive torque (Fig. 3B) on the top facet to realize the
transformation of the left-handed structure from configuration
‹ to fl and then to –. Here, the applied torques should over-
come the energy barriers of US3 and US5 referring to the corre-
sponding maximum torques T1–3 and T4–5 (Fig. 3 B and C
and SI Appendix, section 7A), respectively. However, when we
apply a clockwise twist on the top facet to reverse the transfor-
mation process from configuration – to fl and then to ‹, an
initial tension has to also be applied at configuration –, as it is
a locked point with all facets coplanar for a clockwise twist
noted by dotted straight lines shown in Fig. 3C. All the trans-
formation paths starting from states ‹, fl, and – under spe-
cific torques are noted by solid lines, dashed lines, and dotted
lines respectively in Fig. 3C under counterclockwise or clock-
wise twist. Apparently, when the cuboid is right-handed, the
twist and torque will be in opposite directions in order to real-
ize the same transform among the three stable states.

Meanwhile, we can apply the tension to realize the transfor-
mation among three stable configurations, as the folding and
deployment of the cuboid can be controlled by the height of
the cuboid (Fig. 1 E and H) no matter its chirality. The rela-
tionship of energy vs. h can be obtained (SI Appendix, section
2B) and is plotted in Fig. 3D for μ = 1, 0.706, 0.388, and 0.2.
There are obviously three valleys for stable configurations ‹,
fl, and – and two peaks for configurations fi and �.
Therefore, we have to overcome the maximum energy at con-
figurations fi and � by applying the tension to input energy
(Fig. 3E and SI Appendix, section 7B).

Yet, as discussed in Fig. 2L, we have to notice that the con-
figuration › with the maximum h allocates on different posi-
tions in respect to configuration fi for different geometry μ.
First, when μ > 0.388, › is located between ‹ and fi. When
tension is applied on the top facet (blue arrow in Fig. 3D with
μ = 1 and 0.706) from ‹, the structure moves to ›. As the
energy of › is lower than peak fi, the structure will move back
to ‹, instead of fl, when the force is released, so the tension
force will not transform the structure from ‹ to fl (solid lines
in Fig. 3F with μ = 1 and 0.706). Conversely, when we apply
tension on the top facet of fl (red arrow in Fig. 3D with μ = 1
and 0.706), the structure will overcome the peak fi and reach
›, then release this tension, and it will move to ‹ automati-
cally for a stable configuration with zero energy (dashed lines in
Fig. 3F with μ = 1 and 0.706). Second, when μ < 0.388, › is
located between fi and fl. Tension applied on the top facet
(blue arrow in Fig. 3D with μ = 0.2) will make the structure
move from ‹ to › to overcome the peak fi; then, releasing
this tension, it will move to fl, for a stable configuration (solid
line in Fig. 3F with μ = 0.2). For the reverse motion, when we
apply tension on the top facet of fl (red arrow in Fig. 3D with
μ = 0.2), the structure will reach › first. As the energy of › is
lower than peak fi, the structure will move back to fl, instead
of to ‹, so the tension force will not transform the structure
from fl to ‹ (dashed line in Fig. 3F with μ = 0.2). Third, the
most interesting case happens at μ = 0.388, where φ2/φ4 (also
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Fig. 3. Transformation among the stable states under z-axial rotation or tension. (A) The energy vs. hω of the tristable structures with μ = 1, 0.706, 0.388,
and 0.2. (B) The normalized torques vs. hω of the tristable structures with μ = 1, 0.706, 0.388, and 0.2, and the relationships between the stable states. (C)
The regions of normalized torques for the transformation among three stable states (solid line starts from state ‹, dashed line starts from state fl, and dot-
ted line starts from state –), where zigzag arrow lines represent the successful transformation paths, while the straight vertical lines indicate no state trans-
formation. (D) The energy vs. h/a of the tristable structures with μ = 1, 0.706, 0.388, and 0.2, where the blue and red arrows represent the transformation
between adjacent states. (E) The curves of normalized forces vs. h/a about the tristable structure with μ = 1, 0.706, 0.388, and 0.2. (F) The regions of normal-
ized forces for the transformation among three stable states. (G) The experiment of structure with μ = 0.706 under tension transforming from – to ‹, whose
force–displacement curves are shown in E.
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the energy) and h reach the maximum at the same time; that is,
configurations › and fi are concurrent (Fig. 3D with μ =
0.388). Hence, starting from ‹, the tension (blue arrow in
Fig. 3D with μ = 0.388) will drive the structure to reach ›,
which is also the energy peak fi; then, releasing the tension
will make it move to fl, due to dynamic inertia (solid line in
Fig. 3F with μ = 0.388). Similarly, the tension will also do the
reverse transformation (red arrow in Fig. 3D and dashed line in
Fig. 3F with μ = 0.388); see Movie S3.
No matter the value of μ, the transformation between fl and

– is rather straightforward, as the height changes monotoni-
cally between these two stable configurations. Hence, the com-
pression is applied from fl to –, and tension is applied for
reverse motion.
For the structure with μ = 0.706, horizontal tensile tests (SI

Appendix, section 8 A and B) and simulation (SI Appendix,
section 9) with velocity 0.2 mm/s from configuration – were
carried out. Fig. 3E with μ = 0.706 shows the force–
displacement curves, which indicate the trends of the theoreti-
cal, experimental, and simulation results are consistent with
three stable configurations ‹, fl, and – and the limit position
›. From the folded configuration –, tension is introduced to
realize the transformation of three configurations from – to ‹
through fl (Fig. 3G and Movie S4). Here, we can define two
critical forces, F5–6 and F3–4, as the maximum forces requested
to overcome the energy barriers of US5 and US3, respectively.
Hence, when the tension is less than F5–6, the structure will
stay at state –; when the tension is between F5–6, and F3–4, the
structure will be at state fl; and, when the tension is larger
than F3–4, the structure will reach state ‹.

The Tessellation of Tristable Units into Metastructure with
Programmable Multistable States. By now, we have demon-
strated that the transformation of three stable states on the tri-
stable cuboid can be programmed by the geometric ratio μ,
elastic joint stiffness, and thickness of panels. Regarding a unit,
this cuboid can be tessellated in series to obtain a metastructure
with multiple stable states.
Start from a simple assembly consisting of two left-handed

units Ut1 and Ut2, both with μ = 0.706, connected by sharing
the right facet of Ut1 and the left facet of Ut2 (Fig. 4A). If the
corresponding stiffness of elastic joints in units Ut1 and Ut2 are
equal, stable states must be from ‹– to –– via. fl– , similar
to a single unit. In order to obtain more stable states, the stiffness
of elastic joints is set as K Ut1

e1,e5=K
Ut2
e1,e5 ¼ K Ut1

e2,e4=K
Ut2
e2,e4 ¼ 2. There-

fore, the corresponding transforming torque can be calculated for
each unit (Fig. 4A and SI Appendix, section 7A), which shows
that T 1

3�4 < T 2
3�4 < 0 < T 2

4�5 < T 1
4�5 < T 2

1�3 < T 1
1�3 (Fig. 4B).

Hence, as demonstrated in Fig. 4C, gradually applying a counter-
clockwise twist at the right end of this assembly at state ‹–

will move it to state ‹- when torque is released after reaching
the range between T 2

1�3 and T 1
1�3 with the twist angle between

90° and 135° (Fig. 3A). Next, another small torque larger than
T 2
4�5 will make the Ut2 transform to , and the assembly would

be in state ‹– . By increasing the input torque to the region
larger than T 1

1�3, Ut1 will reach fl, and the whole assembly will
be in state fl– after releasing the torque when the twist angle is
between 90° and 135°. Again, a further twist larger than T 1

4�5
will drive the assembly into state –– (Fig. 4C). The whole pro-
cess shows the transformation from ‹– to –– via ‹– ,
‹– , and fl– (Movie S5; the simulation is in SI Appendix,
section 9).
When Ut2 (left-handed, μ = 0.706) is replaced by Ut3

(right-handed, μ = 0.706) with identical stiffness of hinges

(K Ut1
e1,e5=K

Ut3
e1,e5 ¼ K Ut1

e2,e4=K
Ut3
e2,e4 ¼ 2), a left-hand–right-hand

(LH-RH) assembly is constructed (Fig. 4D). As Ut3 is right-
handed, the clockwise torque will transform it from state to

via . The torque–twist curve is shown in Fig. 4D (SI
Appendix, section 7A), and the corresponding transform path is
shown Fig. 4E for both units. When the assembly is at state
‹– , the counterclockwise twist can only activate Ut1, and the
clockwise one activates Ut3. Thus, when counterclockwise and
clockwise twists are applied to the LH-RH assembly in different
sequences, we will get different transformation paths; that is,
when first counterclockwise and then clockwise twists are
applied successively to the LH-RH assembly, the transformation
path ‹– , fl– , –– , –– , and –– is realized, as shown
in Fig. 4F (Movie S5; the simulation is in SI Appendix, section
9), while, in the opposite twist order, the transformation path is
path ‹– , ‹– , ‹– , fl– , and –– according to Fig.
4E, which is different from that in Fig. 4F. Comparing the
transformation paths in Fig. 4 C and F, the two multistable
structures have the same start and end stable states, while the
intermediate states are totally different. Hence, the twist load
sequence and the chirality of the unit can be used to program
the transformation paths.

When tension and compression forces are applied to trans-
form stable states, the chirality of the assembly will not make
any difference. Hence, we take the identical assembly in Fig.
4D to discuss the stable-state transformation under tension/
compression. Its schematic diagram and curves of forces vs. h/a
are shown in Fig. 4G (SI Appendix, section 7B), which indicates
F 3
5�6 < F 1

5�6 < F 3
3�4 < F 1

3�4, and the relationships between the
stable states and the ranges of tension forces for the transforma-
tions among stable states are shown in Fig. 4H. As the two-
layer assembly cannot be twisted from stable state –– to
other states due to the self-locking of panels, the transformation
from stable states –– is analyzed with tension. Because of
the different stiffnesses on elastic joints of Ut1 and Ut3, the
transformation path is in the order of states –– , –– ,
fl– , fl– , and ‹– (Fig. 4I and Movie S6; the simulation
is in SI Appendix, section 9). Here, by applying tension, the sta-
ble state fl– is obtained, which is not available for the torque
loading mode.

The examples in Fig. 4 are all taken from the identical set
of design parameters in length ratio μ, elastic joint stiffness,
and panel thickness to demonstrate the effect of cuboid chi-
rality, loading modes, and sequence on the programming of
stable states. It is well expected that the combination of the
design parameters and loading conditions will bring in much
enhanced multistable behaviors. One such example is shown
in SI Appendix, section 10A. Certainly, the number of stable
states increases exponentially with the number of units in
the series tessellation. One such example is shown in Fig. 5,
where assembly of three units with carefully selected parame-
ters and loading modes exhibits 12 programmed stable states
(SI Appendix, section 10B and Movie S7).

The Application Demonstration Case of Tristable Metastructure
for the Frequency Reconfigurable Antenna. To explore the pos-
sible application of the proposed tristable metastructure, a fre-
quency reconfigurable antenna is designed using top surfaces of
a tristable kirigami cuboid with three stable states, that is, state
‹, state fl, and state –. The antenna is printed on the FR4
substrate with dimension parameters of a, b, c, and d under the
constraint condition of b/a = μ, c/b = 0.541, and d/b = 0.442,
and the antenna is fed through coaxial cable to the feeding
point as shown in Fig. 6A (SI Appendix, section 11). For the
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fixed top square with side length a = 58 mm, when the
antenna is configurated to state ‹, the operation band of
the reconfigurable antenna is centered at 4.84 GHz with reflec-
tion coefficient in decibels better than �10 dB. With the
increase of μ, the corresponding antenna operation frequency
decreases as the antenna length increases. For state fl and state
–, the operation frequency of state – is always lower than that
of state fl, as shown in Fig. 6B. For the 5G triple-band
communication application, that is, 2.5- to 2.66-GHz, 3.3- to
3.6-GHz, and 4.8- to 5-GHz bands, we use full-wave EM sim-
ulation tools to design and achieve the optimized dimensions

of μ = 0.417, that is, a = 58 mm, b = 24.2 mm, c = 13.1
mm, and d = 10.7 mm. As shown in Fig. 6C, for the three
stable states ‹, fl, and –, the antenna operation frequency is
centered at 4.84, 3.48, and 2.58 GHz, respectively. We did
the prototype fabrication and experiments of our reconfig-
urable antenna. The experiment results agreed well with the
simulation results, demonstrating that the proposed tristable
metastructure can be used to design a high-performance recon-
figurable antenna. By changing the dimensions, the antenna
can be used for other triband wireless applications apart from
the 5G case.

Fig. 4. The tessellation of tristable units to program the multiple stable states controlled by input rotations or tensions. (A) The assembly of tristable struc-
tures left-handed Ut1 and Ut2 with μ = 0.706 and KUt1

e1,e5=K
Ut2
e1,e5 ¼ KUt1

e2,e4=K
Ut2
e2,e4 ¼ 2, where the torques T1 and T2 are measured from the end of Ut1 and Ut2, and

the corresponding curves of torques T1 or T2 vs. hω of the assembly. (B) The relationships between the stable states and the regions of normalized torques
during the transformation from an arbitrary stable state in the assembly. (C) The experiment on the transformation of stable states from ‹– for the
assembly of Ut1 and Ut2. (D–F) The same as in A–C but for the assembly of Ut1 (left-handed, μ = 0.706) and Ut3 (right-handed, μ = 0.706) with KUt1

e1,e5=K
Ut3
e1,e5 ¼

KUt1
e2,e4=K

Ut3
e2,e4 ¼ 2 under torques. (G–I) The same as in D–F but for the same assembly under tension.
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Discussion

To conclude, we have presented a generic tristable kirigami
cuboid with specially designed elastic joints, and constructed
metastructures with an exponentially increased number of
stable states. First, a kirigami cuboid is proposed and analyzed, to
study its kinematic behaviors, which has an excellent folding/
extension property, but three degrees of freedom, among
which only the symmetric motion path is applicable. Second, to
achieve multiple stable states, elastic joints effective in specific

motion ranges have been designed by integrating the elastic sheets
and kinematically switchable hinge axes when the thick panels are
introduced to the kirigami cuboid. By installing such elastic joints
as certain joints on the kirigami cuboid with thick facets, the
resultant structure has three stable states with two energy peaks
between them. Furthermore, the transformation among three sta-
ble states under uniaxial displacement and force (tension and com-
pression) and/or twist and torque (clockwise and counterclock-
wise) has been discussed, and the programmability with length
ratio, facet thickness, and stiffness of elastic joints has been

Fig. 5. An assembly of three tristable units with multiple stable states programmed by the geometric parameters and stiffness of the elastic joints as well
as loading modes. (A) The assembly of tristable structures left-handed Ut4, right-handed Ut5, both with μ = 0.706, and right-handed Ut6 with μ = 1. (B) The
relationships between the stable states and the regions of normalized forces/torques during the transformation from an arbitrary stable state in the assem-
bly. (C) The transformation path of 12 stable states driven by tension and twists.
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explored. Third, by assembling tristable unit cells in series, multi-
ple stable systems are constructed, which could be further pro-
grammed by loading mode, loading sequence, and chirality of the
unit. Finally, we have demonstrated that the tristable cuboid can
be applied as the base structure for a frequency reconfigurable
antenna.
The kirigami cuboid with μ > 0.388 can be easily

deployed and folded at the stable states, which offers an ideal
deployable unit for the design of structures with large
deployable ratios. The chirality in the unit cell makes it a
potential candidate to design chiral structures. Meanwhile,
the multistability transformation is always accompanied by a
programmable stiffness, which could be applied for mechani-
cal metamaterials (SI Appendix, section 12). Similar to the
cuboid with a square section discussed in the paper, other
kirigami prisms with polyhedral sections can be further stud-
ied to find new multistable metastructures. Moreover, their
advanced engineering applications in multifunctional mate-
rials and devices, such as tunable metamaterials, deployable
structures, and reconfigurable robotics, should be explored
extensively.

Materials and Methods

The Bistable Unit. The faces of the model in Fig. 2A were created from an
acrylic panel (thickness is 3 mm) cut by a laser cutter (Trotec Speedy 300
25W; power: 98%; speed: 0.5%; Hz: 1,000). Hinges were 1-inch copper
hinges, and the spring hinges were assembled with a torsional spring
(65Mn Spring Steel; wire diameter: 1 mm; mean spring diameter: 3.5
mm; number of coils: 5) whose spring constant is supposed to be 3.21
N.mm/rad. The spring hinges’ supporters are made of acrylic panels and
stick to the faces with 502 superglue.

The Tristable Structures. The faces of models in Fig. 2F were created from
plywood sheets 3 mm in thickness and length a ¼ 50 mm, which were cut
by a laser cutter (VLS4.60 CO2 Laser 60W; power: 100%; speed: 10%; Hz:
500). The spring hinges were made of natural rubber latex films (thickness
0.09 mm). Those films were adhered to plywood sheets with superglue. The
faces of models in Figs. 3G and 4 were created by acrylonitrile-butadiene-
styrene from a 3D printer (Dimension Elite) with 5-mm thickness and length
a ¼ 80 mm. The faces are connected by polyethylene wires and Tyvek
paper, and the elastic joints were made of natural rubber latex films (the
per length [in millimeters] stiffness of natural rubber latex films with the
thickness 0.3 mm is Kep0.3 ¼ 0.1037N/mm2 from the stiffness experiment).

Fig. 6. Frequency reconfigurable antenna. (A) The design of an antenna corresponding to three stable states with dimension parameters a, b, c, and d, in
which b/a = μ, c/b = 0.541, and d/b = 0.442. (B) The simulation results and the measurement results of the proposed reconfigurable antenna under three
stable states with corresponding dimensions of μ = 0, 0.2, 0.417, 0.5, 0.706, 1.0, 1.5, and 2.0, and a = 58 mm. (C) The experiment prototype and the simula-
tion/measurement results of the proposed reconfigurable antenna under three stable states with corresponding dimensions of μ = 0.417 and a = 58 mm.
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The wires, papers, and films are adhered to sheets with LOCTTLF 401 glue.
Details are provided in SI Appendix, section 8A.

Data Availability. All study data are included in the article and/or supporting
information.
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