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ABSTRACT

T he development of DNA microarray technology a
decade ago led to the establishment of functional
genomics as one of the most active and successful

scientific disciplines today. With the ongoing development of
immunomic microarray technology—a spatially addressable,
large-scale technology for measurement of specific
immunological response—the new challenge of functional
immunomics is emerging, which bears similarities to but is
also significantly different from functional genomics.
Immunonic data has been successfully used to identify
biological markers involved in autoimmune diseases,
allergies, viral infections such as human immunodeficiency
virus (HIV), influenza, diabetes, and responses to cancer
vaccines. This review intends to provide a coherent vision of
this nascent scientific field, and speculate on future research
directions. We discuss at some length issues such as epitope
prediction, immunomic microarray technology and its
applications, and computation and statistical challenges
related to functional immunomics. Based on the recent
discovery of regulation mechanisms in T cell responses, we
envision the use of immunomic microarrays as a tool for
advances in systems biology of cellular immune responses, by
means of immunomic regulatory network models.

Introduction

During the past decade, the highly successful field of
functional genomics experienced huge growth as a result of
the development of DNA microarray technology [1–4], which
made it possible for the first time to measure the RNA
expression of thousands of genes in parallel, in a single assay.
Immune responses are complex phenomena that supervene
on genomics, that is, immune responses ultimately depend on
the expression of genes inside a variety of cells, but
explaining the function of the immune system only in terms
of gene expression in those cells would constitute a
reductionist approach. While studying the immune system in
terms of genomics is an important goal [5,6], the function of
the immune system, from antigen processing to epitope-
specific immune responses, may be better understood
through an integrated approach that takes into account
properties of the immune system as a whole.

We quote from [7], ‘‘The immunome is the detailed map of
immune reactions of a given host interacting with a foreign
antigen, and immunomics is the study of immunomes.’’
Whereas functional genomics strives to identify the role of
genes in cellular processes via the paradigm of hybridization
of mRNA to complementary DNA, functional immunomics

aims to identify the roles of chemical/biological targets
involved in immunological processes via the paradigm of
specific cellular and humoral immune responses elicited by
antigens presented to the immune system [8–11]. This is an
effort that promises great rewards, both in terms of our basic
understanding of the immune system and in terms of disease
diagnosis/prognosis [12] and the design of vaccines [13–15] to
combat a variety of human infirmities ranging from
pathogenic infections to allergies and cancer.
Enabling technologies. Functional genomics was made

possible by the significant advances that had previously
been made in sequential genomics, including not only the
massive efforts required to identify genome-wide DNA
sequences [16], but also the computational methods used to
parse and align those sequences [17]. Sequential genomic data
are deposited in large public-access databanks such as
GenBank [18], and researchers or companies who make DNA
microarrays use the sequences in these databases as probes. In
a similar fashion, the field of functional immunomics has now
come of age as a result of advances in sequential
immunomics, which consists of methods to catalogue the
chemical/biological targets capable of eliciting an immune
response, also known as epitopes. Computational and statistical
methods are now available for automated large-scale epitope
prediction (please see the next subsection), in addition to
classical immunoassays such as ELISPOT [19] and tetramer
staining by flow cytometry [20] that together enable high
throughput identification of epitopes. Recently, a
coordinated effort has been initiated by the National
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Institute of Allergy and Infectious Disease at the US National
Institutes of Health, under the auspices of the Large-Scale
Antibody and T Cell Epitope Discovery Program (in which
the authors of this paper participate), to create an integrated
immunome database and resources such as a toolbox of
epitope prediction methods. This initiative is designed to
identify immune epitopes from selected infectious agents; the
information will be made freely available to scientists
worldwide through the Immune Epitope Database and
Analysis Resource (IEDB) [7,21,22] (http://www.
immuneepitope.org). The sequencing information produced
by this and other epitope mapping efforts being carried out
will be essential for the construction of immunomic
microarrays (discussed in detail below), leading to an
experimental paradigm similar to that employed in
functional genomics.

Computational epitope prediction methods. The immune
system recognizes antigen via binding of antibody (humoral
response) or T cell receptors (cellular response) to self or
foreign proteins. B cell epitopes correspond in general to the
3-D features on the surface of antigen where recognition by
the immune system occurs; a continuous or linear epitope is a
sequential fragment from the protein sequence, while a
discontinuous or conformational epitope is composed of
several fragments scattered along the protein sequence and
brought together in spatial proximity when the protein is
folded [23]. Humoral response is targeted mainly at
conformational epitopes, which may represent up to 90% of
the total B cell responses. This makes prediction of B cell
epitopes a hard problem [24], even more so because B cell
responses are virtually only restricted by immunoglobulin
access to the epitope, B cell receptor activation, and self
versus no-self discrimination rules of the immune system.
Ideally B cell prediction systems would use 3-D surface
models of the protein antigens and measure surface energy
interactions of variable regions of the immunoglobulins that
correlate with B cell activation. However, so far B cell
prediction systems make estimations of the probability of a
primary peptide sequence being present at the surface of a
protein based on hydrophilicity and secondary structures
[25]. Cellular responses, on the other hand, are restricted
through the binding of T cell receptors to short linear
peptides, which are bound by a specific groove in two main
classes of major histocompatibility complex (MHC)
molecules, and presented on the surface of cells to the T cell
receptors of CD4þ and CD8þ cells [26]. Binding affinity
between the peptide and the MHC molecule is therefore a
necessary requirement for effective cellular immune
response. A complicating factor is the highly polymorphic
nature of the MHC molecule, which displays large variability
in human populations. Using experimental affinity data
deposited in public databases as training data, researchers
have developed statistical methods to predict the MHC
affinity of a given unknown peptide [27–42]. Typically, such
computational epitope prediction methods scan the full
length of pathogen or self-immunogenic protein sequences
by taking consecutive overlapping peptides. In addition, such
methods can predict ‘‘promiscuous’’ epitopes, that is, the
ones that bind to a large class of different MHC alleles, know
as supertypes [43]. Computational MHC-binding prediction
methods have become essential for the systematic search for
epitopes, in situations where techniques such as ELISPOT

and flow cytometry are effectively impractical due to the
large number of peptides to be assayed.
Early MHC-binding studies identified characteristic

amphipathic chemical patterns on the binding peptides [44],
and enhanced versions of these systems continue in use in
association with other methods [41,44,45]. Today, the most
basic MHC-binding prediction methods are based on the
identification of specific amino acids commonly found at
particular positions, called binding motifs, within peptides
that bind to a specific MHC molecule. However, all the amino
acids of a peptide bound to an MHC groove (normally 8–10
amino acids for MHC I and 8–14 amino acids for MHC II) can
potentially play a positive or negative role in binding, and
more complex methods assign positive or negative values for
each amino acid at each position of a peptide and combine
these values to define scores that predict binding; these
‘‘quantitative-matrix’’ approaches have been very successful.
One of the limitations of the ‘‘quantitative-matrix’’ approach
is that it does not take into consideration the influences of
interactions between amino acids at different peptide
positions of the epitope. The value of these interactions are
difficult to measure and have been explored only in a limited
fashion by combining pair-wise interactions between two
peptide positions [46]. The combination of independent
binding calculated by quantitative matrices with coefficients
derived from the pair-wise interaction provided better
predictions. Moreover, quantitative-matrix scores have been
generated for several HLA alleles, and studies using HLA
sequence homology have allowed the development of virtual
quantitative matrices to be applicable to many more HLA
alleles [28,39]. General methods for MHC-binding prediction
systems, such as artificial neural networks, and statistical
models such as Hidden Markov, can incorporate nonlinear
complex interactions between the MHC molecule and the
peptide epitope, and can evolve as more data is included in
the training set. These general methods have shown to be
potentially superior to the previous ones [27,37]. The greatest
challenge, however, of the general methods is that, to be
reliable, they require a larger amount of peptide-binding
data. Strategies using query-by-committee approaches to
compare predictions from different training sets have been
used to identify the most informative peptide-binding data to
be determined in the biochemical binding assays in order to
more efficiently build a representative training dataset [40].
Recently a collection of more than 48,000 peptide binding
affinities of class I molecules were made public [47]. The
development of prediction models will be greatly accelerated
by this community resource benchmark. We remark that
epitope recognition by the immune system involves more
than a receptor–ligand problem between the MHC molecule
and a peptide, as other biological processes are involved in
preparation of the peptide for loading into the MHC
molecule. Epitope prediction systems continue to evolve, and
many steps in antigen processing and presentation required
for development of cognate immune responses are being
modeled and combined into rational prediction systems. The
greatest current challenge is the development of models
incorporating the rules of B cell and T cell receptor
engagement and their possible outcomes.
The growth ‘‘boom’’ of immunomics. While the growth

boom in genomics took place in the 1990s and this field has
now begun to enter a mature stage of development, a similar
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growth boom in immunomics is likely to take place over the
remaining years of the current decade. We recently searched
the PubMed database (with Sente 2.3) using the following
query: ‘‘immunomics OR immunomic OR immunome OR
(antigen AND microarray AND functional) OR (epitope AND
microarray).’’ After removing nine irrelevant articles from
the output list and adding five articles for the new journal
Immunome Research, we obtained a list of 71 articles covering
the years from 1999 to the present (please see Figure 1). It is
clear that interest in this field has accelerated, supporting the
expectation of a continuing boom in growth. It is expected
that the number of publications will increase at an
exponential pace as immunomic microarrays became
commercially available for research use. As immunomic array
technology evolves, we expect that immunomic arrays with a
small number of features will eventually be designed for
specific clinical diagnostic purposes and used regularly in
medical practice. However, these clinical applications might
still be in the distant future.

Immunomic Microarray Technologies

The basic functioning principle behind all microarray
technology is the binding, and subsequent measurement, of

target biological specimens of interest to complementary
probes arrayed in a spatially addressable fashion. Typically, a
planar surface, such as a glass slide, is used to support an
array of spots containing the probes. As a consequence of
using spatially addressable probes, a large number of
different targets can be measured in a single experiment. For
example, in the case of DNA microarray technology, which
provides the basic enabling technology for functional
genomics, the targets are fluorescent mRNA molecules
(indicators of genomic expression) that are hybridized to
gene-specific DNA probes immobilized on a planar surface.
In a similar fashion, the enabling technology for functional
immunomics is the immunomic microarray. The basic
technologies for immunomic microarrays that we consider in
detail in this paper are antibody, peptide, and peptide–MHC
microarrays (see Table 1 for a summary of these
technologies). Other functional immunomic approaches
include dissociable antibody microarrays [48], cell
microarrays [49,50], serum microarrays [51], peptide libraries
[52,53], and serological analysis of cDNA expression libraries
(SEREX) [54–58]. There are significant technological
challenges inherent in fabricating immunomic microarrays,
including the identification of a workable surface coating for
the glass, appropriate probe concentration and target
incubation times, and suitable spot size and interdistance
[59–64].
Antibody microarrays consist of antibody probes and antigen

targets; thus, they can be used to measure concentrations of
antigens for which the antibody probes are specific [65,66]. As
such, antibody microarrays are quite useful in proteomic
applications, such as in the proteomic profiling of cancer
antigens [67–69]. Antibody microarrays have also been
proposed for post-translational functional genomics [70]. The
rationale for directly measuring protein concentration,
rather than using a traditional DNA microarray format, is the
existence of evidence of poor correlation between
concentrations of mRNA and its corresponding protein,
which reflects post-translational modification of the protein
[71]. Given the possibility of measuring antigens or proteins
associated with ‘‘foreign agents,’’ antibody microarrays can be
employed in functional immunomics applications [72,73]
(The application in [73] actually used cells, which display the
target protein markers on their surfaces.) As a general rule,
however, using antibody microarrays in data-driven
functional immunomic applications may be problematic.

DOI: 10.1371/journal.pcbi.0020081.g001

Figure 1. Estimation of Growth Curve for Immunomics Based on a

PubMed Search

See text for the search criteria used. (Illustration: Russell Howson)

Table 1. Summary of Basic Immunomic Microarray Technologies

Technology Principle Advantages Limitations Applications References

Antibody Probe ¼ Antibody, Target ¼ Antigen Measurement of

proteomic profile

Requires production of

specific antibody for

each antigen target

Proteomic profiling of cancer

antigens [65–67]

[63–71]

Peptide Probe ¼ Antigen, Target ¼ Antibody High-throughput ‘‘ELISA,’’

B cell epitope mapping

Not suitable for T cell

epitope mapping

Autoimmune disease [10,73–77],

allergy [78–83], B cell epitope

mapping [13,84–86], vaccine studies

[87,88], serum diagnostics [12]

[10,12,13,

57–62,72–92,94–96]

Peptide–MHC Probe ¼ peptide þ MHC þ
co-stimulatory antibody,

Target ¼ T cells þ secreted cytokine

High-throughput ‘‘ELISPOT,’’

T cell epitope mapping

Technology still in its

infancy

Vaccination against cancer [97,102] [9,11,97, 98,102]

DOI: 10.1371/journal.pcbi.0020081.t001
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One of the main reasons is that this approach requires the
production of specific antibody sets for use in defining each
of the antigen targets, and the development of large numbers
of interrogative features (antibody sets) is a tremendous
challenge, since humoral responses are much broader than
MHC-restricted T cell responses, are highly conformationally
dependent, and can be developed against a great variety of
chemical/biological elements present in biological fluids,
including small molecules.

Peptide microarrays use the opposite technical approach; that
is, they use antigen peptides as fixed probes and serum
antibodies as targets [74]. This format is promising for
functional immunomic applications. Published studies using
peptide microarrays include applications to autoimmune
disease [10,75–79], allergy [80–85], B cell epitope mapping
[13,86–88], vaccine studies [89,90], detection assays [91,92],
serum diagnostics [12], characterization of weak protein
interactions [93], and analysis of antibody specificity [94].
Peptide microarrays essentially correspond to high-
throughput parallelized ELISA assays [12,95–98] and thus can
reveal the repertoire status of antigen-specific B cell antibody
responses. However, B cell responses are highly dependent on
CD4þ T cell immune responses, and thus peptide microarrays
should ideally be used in parallel with extensive analysis of T
cell responses (e.g., by using peptide–MHC microarrays; see
below). One of the pioneer studies that best depict the
usefulness of peptide immunomic technology was performed
using an array of 87 protein antigens to search for specific
antibody reactivity patterns in the serum of 20 normal health
volunteers; these were compared to the patterns of 20 type-1
diabetes mellitus patients, and simple classifiers were
designed to discriminate between healthy and diabetic
patients, with an overall sensitivity of 95% and specificity of
90% [78]. In a subsequent study, the 87-feature array was able
to identify prognostic signatures that could predict the
susceptibility of healthy animals to develop diabetes [10].
Another important report describes the use of a panel of 225
selected peptides of several protein antigens known to be
recognized by autoimmune disease patients [79]. The
autoimmune peptide array was used to study the profile of
the autoantibody reactivity pattern of rheumatoid arthritis
(RA) patients. The RA study used serum from 18 RA patients,
38 healthy controls, and 58 recently diagnosed RA patients,
and found early clinical prognostic markers able to predict
which patients are more likely to develop severe RA, and also
markers to identify the group of patients with the milder
form of the disease [77]. Moreover, an array developed from a
panel of 213 peptides derived from allergenic peanut
proteins established that patients responding to a greater
diversity of peptide peanut epitopes had the worst allergic
reactions [80]. The importance of the breadth of antibody
response against the simian–human immunodeficiency virus
(SHIV), a experimental nonhuman primate model for human
immunodeficiency virus (HIV), was demonstrated through
studies performed with an array of 430 peptides derived from
simian immunodeficiency virus (SIV) and HIV amino acid
sequences [90]. This study indicated that the reduction of the
repertoire of the antibody response was associated with
development of acquired immunodeficiency syndrome
(AIDS). These examples underscore the great potential of
peptide microarrays to identify several valuable clinical
markers.

The most recent technology to be proposed is the peptide–
MHC microarray or artificial antigen–presenting chip [9,11,99];
in this case, recombinant peptide–MHC complexes and co-
stimulatory molecules are immobilized on a surface, and
populations of T cells are incubated with the microarrays,
whose spots effectively act as artificial antigen–presenting
cells [100] containing a defined MHC-restricted peptide.
Different methods have been proposed for detecting T cells
expressing receptors with affinity for specific peptide–MHC
complexes on the microarray; these can include simple
inspection of T cell clusters bound to a spot [9] or
identification of activated cells secreting specific cytokines
with cytokine-specific capture antibodies [11,99]. Peptide–
MHC microarrays correspond to high-throughput
parallelized ELISPOT assays [19], particularly when low
enough densities of cells are used, in which case a direct
counting of activated cells is possible [11]. Quantitation can
involve cell counts alone, detected cytokine intensities alone,
or a combination of both, as in [99], which used a cell-count
score adjusted by an intensity score. The benefit of using
peptide–MHC microarrays is that it can map MHC-restricted
T cell epitopes, which are involved in several helper and
regulatory functions of the immune system, and can be used
in conjunction with peptide-based B cell epitope microarrays
to study the adaptive system as whole.
Figure 2 illustrates the functioning of peptide–MHC

microarrays. In Figure 2a, a peptide–MHC microarray is
depicted, with an inset showing the probe molecules that are
deposited on a microarray spot. Figure 2b depicts T cells that
bind to, and are activated by, specific peptide–MHC
complexes, with the help of co-stimulatory antibodies; these T
cells secrete cytokines that are captured by specific detection
antibodies. Finally, as depicted in Figure 2c, the T cells and
excess cytokine are washed away, and the bound cytokine is
revealed by fluorescent antibody (other methods can be
employed to reveal the cytokine [11]). Therefore, a peptide–
MHC spot is designed taking into account two elements: a
peptide–MHC complex, and the detection antibody specific
to the particular cytokine one wants to measure. A third
element can be the kind of T cell population (e.g., T helper or
CTL) that is used as a target (i.e., incubated with the
microarray). The choice among these three different
elements will lead to a vast number of immunomic responses
that can be measured.
An exciting feature that distinguishes immunomic from

DNA microarray data is the possibility of measuring two or
more signals simultaneously, determined by a single feature,
the epitope. In the case of DNA microarrays, one response
value is obtained for each gene per sample, namely the
concentration of mRNA produced by the gene (note that two-
dye experiments use mRNA from two different samples). In
the case of peptide–MHC chips, a single epitope can generate
different response values corresponding to different
cytokines or different target T cell populations, or even
different antibody isotypes, in the case of peptide
microarrays. In other words, in the case of genomic
microarrays, one parameter is measured, namely the level of
transcription of each individual gene, whereas in the case of
immunomic microarrays, it is possible to measure several
parameters regarding immune responses against a single
epitope. For instance, a single B cell epitope can be
recognized by different isotypes of immunoglobulins, such as
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IgE or IgG1. Therefore, in this case it is not only the intensity
of the antibody response that can be measured, but also the
quality of the antibody response. This aspect can be very
relevant since a high IgE titer in relation to IgG1 may be
associated with allergy, whereas the opposite, a high IgG1
titer in relation to IgE to the same epitope, is not. This
situation is even more significant in the case of the peptide–
MHC array, where the same peptide–MHC epitope can
induce several different cytokine responses. These
‘‘multicolor’’ peptide–MHC microarrays have a counterpart
in the multicolor ELISPOT assays currently in use [101]. It is
known that the combined effect of multiple cytokines is
essential to the control of immune responses; this is described

by the suggestive term ‘‘cytokine chord’’ in [102]. Thus, given
a family of epitopes, one may want to simultaneously measure
both inflammatory (effector) and anti-inflammatory
(regulatory) T cell responses, which are known to be
associated with the concentrations of IFN-c and IL-10,
respectively [103]. In this case one would have more than one
spot on the microarray containing the same epitope
(peptide–MHC complex) but use distinct cytokine antibodies
for detection (see Figure 3). The result of this analysis is not a
real-valued profile, as is obtained from functional genomics
microarrays, but rather a vector-valued profile. Such profiles
are sometimes called ‘‘multispectral’’ profiles (see the section
on data analysis below). We will, however, adopt the term
‘‘multicolor’’ when referring to immunomic data, due to the
fact that this term is already used in the similar setting of
ELISPOT assays.
The technological challenges mentioned previously in

connection with antibody and peptide microarrays are much
more complex in the case of peptide–MHC microarrays,
which in fact involve elements of the two previous
technologies, namely presentation of peptide and antibody
detection of secreted cytokine. The technology of peptide–
MHC microarrays, though still in its infancy, is viewed as a
simple and economical method for screening the T cell
repertoire of a host [99], and thus holds great potential. The
first clinical research application of peptide–MHC
microarray technology was the study of the correlates of
protection regarding the effects of an experimental
therapeutic cancer vaccine [104]. Ten patients with
melanoma were immunized with a peptide vaccine, and their
immune responses were examined with a peptide–MHC
microarray, which contained seven types of peptide–MHC
epitopes and probed for 26 secreted factors. This peptide–
MHC array was shown to have the sensitivity to detect one
peptide–MHC specific T cell in 10,000, and 106 CD8þ cells
were incubated with the array (so, in theory, this peptide–
MHC array could detect up to 100 distinct reactive features
that have reached minimum frequency of 1:10,000). Analysis
of the peptide–MHC microarray response patterns
demonstrated that patients who presented both IFN-c and
TNF-a secretory responses against a specific epitope
remained free of melanoma.

Computational and Statistical Challenges

The complexity of the statistical analysis with regard to
immunomic microarray data is on a whole different level
than that of genomic microarray data. The total number of
genes in humans is estimated to be ;30,000; in comparison,
the total number of different T cell receptors in humans,
generated by somatic recombination, which recognize
peptides within the context of a major histocompatibility
molecule, is estimated to be on the order of 107 to 1015, and
the number of B cell clonotypes, generated by somatic
recombination of V(D)J genes, is estimated to be on the order
of 1012. DNA is based on a four-letter ‘‘alphabet,’’ consisting
of the four nucleotide bases A,G,C,T, whereas peptide
epitopes are based on a 20-letter alphabet, consisting of the
amino acids known to be involved in life processes. Clearly,
the combinatorial complexity in the case of functional
immunomics is several orders of magnitude higher than that
of functional genomics.

DOI: 10.1371/journal.pcbi.0020081.g002

Figure 2. Peptide–MHC Immunomic Microarray Technology

(a) Diagram of a peptide–MHC microarray, with an inset displaying a
peptide–MHC spot, which includes co-stimulatory antibody needed to
enhance T cell activation, as well as capture antibody to bind secreted
cytokine.
(b) Binding and activation of T cells on a specific peptide–MHC spot,
which acts as an artificial antigen–presenting cell.
(c) After washing, captured cytokine is revealed by the use of fluorescent
antibodies, leading to a measurement of specific immunological
response to the peptide–MHC complex. (Illusrtation: Russell Howson)
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In addition, for functional genomics the number of
interrogative features that need to be built on microarrays is
on the order of 104 to 105. In functional immunomics, the
total number of interrogative features included in microarray
analysis can be much larger and may be estimated as follows,
in the case of peptide–MHC microarrays: analysis of MHC
peptide–binding motifs [26] suggests that a core of nine
amino acids within a peptide is sufficient for characterization
of a T cell epitope. The total number of interrogative features
would thus correspond to the number of possible nine-letter
words based on a 20-letter alphabet, which is 209 ’ 1011;
fortunately, only ,1% of these are able to bind to MHC
molecules, which makes the number of interrogative features
more manageable. In addition, B cells and T cells go through
a process of clonal selection, where leukocytes that either do
not react or react too strongly are eliminated, and dangerous
clones that react with self antigens are deleted or anergized as
part of the process of immune tolerance. The number of
features is still very large, however, and methods to further
reduce this number are essential; such methods include the
prediction methods and immunomic databases mentioned
previously in connection with epitope mapping, as well as the
selection of peptides from specific genomes of pathogens,
allergens, and self-antigens involved in human infirmities,
such as tumor antigens, diabetes, and autoimmune diseases.

One additional procedure that we and other groups have
used after screening the genomes of pathogens for putative
binding peptides is to compare those candidate epitopes with
known host protein sequences, and in some cases we have
found peptides that are identical to host peptides. This is very
important because several critical diseases are caused by
pathogen molecular mimicry, that is, some diseases, such as
diabetes, dengue hemorrhagic fever, and Guillian Barret
syndrome, are hypothesized to be the result of infections that
induce self-reactive pathogenic immune responses.
It is important to state that the goal of the immunomic

array is not to test all possible naı̈ve T cell or B cell clones that
can be generated by the somatic, VJ, or V(D)J recombinations
against all possible combination of peptides—there simply
would not be enough patient blood to do that, even if it were
considered to be a relevant pursuit. The goal of the
immunomic array is to identify primed cells that have
reached a reasonable level of precursor frequency and are
thus expected to have biological relevance. If the frequency of
a circulating T cell in the peripheral blood is less than
1:100,000 we can expect that the biological relevance of it is
small in contrast to a T cell that has a frequency of 1:1,000. In
addition, a T cell has a binding affinity for the peptide–MHC
that the T cell is specific for, and it should not bind to the
ones with which it has no affinity. The current reported limit

DOI: 10.1371/journal.pcbi.0020081.g003

Figure 3. Genomic Profiling with DNA Microarrays Consists of One Signal (mRNA) Per Sample, while Immunomic Profiling with Peptide–MHC

Microarrays Can Involve Multiple Signals per Sample

For a given T cell population, one could measure for each epitope on the microarray the associated IFN-c and IL-10 secretion, which corresponds
respectively to inflammatory and anti-inflammatory activity, producing multispectral profiles. (Illustration: Russell Howson)
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of detection of the peptide–MHC immunomic array is
1:10,000 cells when using 106 CD8þ cells. So, in theory, a
peptide–MHC array incubated with 106 purified CD8þ cells
(;10 ml blood) could detect up to 100 distinct reactive
features that have reached minimum frequency of 1:10,000.
However, if we expect to be able to detect rare clones, with
very low frequencies, more cells would be needed. This
requirement may be overcome with larger amounts of blood,
and it is not unreasonable to collect 100 ml blood, or by
adding a T cell expansion step to grow the cell population ex
vivo before it is incubated with the array. This technique of T
cell clonal amplification is commonly used to detect rare
populations of cells by flow cytometry or by ELISPOT and
may as well be applied in immunomic studies.

Normally, 250,000 human PBMCs are used in an ELISPOT
assay with one peptide, and the limit of detection is estimated
to be 4-fold to 5-fold more sensitive than flow cytometry.
However, ELISPOT is quite distinct experimentally from
immunomic microarrays. In ELISPOT, T cells and APCs are
present in the same mixture, and for a T cell to be activated,
it has to be in close contact with its APC. In the peptide–MHC
array the spot surface is equivalent to a very large defined
APC, completely loaded with one specific peptide epitope, for
which a reactive T cell has a binding affinity, so that it adheres
to its specific peptide–MHC spot and not to the other spots.
In [104], the authors used 106 cells and compared the limit of
detection of the array with flow cytometry. It turned out that
both had similar limits of sensitivity, approximately 1:10,000
cells or 0.01%. It is possible that in the future the peptide–
MHC spot surface can be improved and the sensitivity of the
peptide–MHC array may become even greater than the
current ELISPOT assay.

Another great challenge is the polymorphism of HLA
genes, in particular HLA class II, and the several
combinations of different alpha and beta chains. Some
approaches may be useful to limit the number of features,
such as the selection of specific alleles most frequently found
in a population to be used in broad screening arrays. A
second such approach could be the use of supertype
prototype HLA molecules compatible with a set of several

HLA alleles. A third approach would be through
customization of the arrays, by having many different arrays
of single alleles and combining them according to the HLA
types of the individuals being tested.
An issue that sets immunomic microarray data apart is the

availability of vector-valued response profiles (in the case of
peptide–MHC microarrays). The statistical challenge here is
reminiscent of the data analysis problem in the engineering
field of remote sensing [105], where different materials have
characteristic vector responses, called spectral signatures. In
the case of immunomic data, the analogous notion to the
spectral signature is the cytokine profile associated with a
given epitope and T cell population; see Figure 4 for an
illustration. One simple technique to address the data analysis
problem for multicolor immunomic data is to combine the
responses into one long feature vector, by juxtaposing the
individual cytokine response profiles for each epitope, with
the caveat that there may be systematic correlation among
the features in the resulting feature vector.
The large number of features that can be measured

simultaneously with microarray technology also presents a
challenge. On one hand, it is likely that a large number of
irrelevant features will be present; on the other hand, the
scientist would like to work with a small number of strong,
relevant features that can be used for diagnostic/prognostic
panels, or as the basis for further biochemical validation
studies of the mechanisms involved. This problem of feature
selection also arises due to a fundamental limitation in
statistics, sometimes called the ‘‘curse of dimensionality’’,
according to which the existence of a large number of
features necessitates an even larger (exponentially larger)
number of samples to achieve consistent and accurate results.
As the number of patients in microarray-based studies is
severely restricted by factors such as the cost of the
technology and difficulties in patient enrollment, it is almost
always the case that only a small number of samples are
available. Thus, only a small number of features at a time can
be considered. The recommended approach to feature
selection is to consider combinations of m features at a time,

DOI: 10.1371/journal.pcbi.0020081.g004

Figure 4. Spectral Signatures for Different Epitopes Associated with a

Given T Cell Population Sample

These are simply the measured secretion of different cytokines on
microarray spots associated with the same specified epitope. (Illustration:
Russell Howson)

DOI: 10.1371/journal.pcbi.0020081.g005

Figure 5. Example of a Linear Classifier

The response to epitopes X and Y discriminates the patients protected
by immunization from the control patients. (Illustration: Russell Howson)
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do classifier design based on the feature set under
consideration, and use an estimate of its probability of error
as the performance score. Application of this type of analysis
to immunomic microarray data would allow the
identification of sets of epitope-specific immune responses,
associated for example with distinct disease states. However,
feature selection presents an explosive combinatorial
problem. For example, in an exhaustive selection of sets of
three features among 1,000 initial features, the total number
of feature sets to be assessed is equal to 166,167,000. If an
initial set of 10,000 features is used instead, the number of
feature sets of size three to be searched is larger than 1011.
The complexity of feature selection is especially crucial in
functional immunomics applications, since in this case the
number of initial features to be considered is huge. The use of
high-performance computing architectures, such as large
computer clusters, is almost mandatory.

Given that a set of features has been selected, one should be
able to design a classifier that takes as input microarray data
for an unknown sample and generates as output a predicted
class label (e.g., clinical outcome, kind of infection, or other
conditions). Figure 5 illustrates this approach in a
hypothetical functional immunomics application. In this case,
there are two class labels, corresponding to control and
protected patients, in a situation in which protection is
achieved by immunization with an attenuated-virus vaccine
for a given infectious disease. The objective is to identify the
epitopes that show a discriminatory response between the
two groups and are therefore prime targets for rational
epitope-based vaccine design. A set of two features,
corresponding to epitopes X and Y, have been identified via
feature selection among the thousands of microarray probes.
For instance, we can imagine a situation in which the
protected individuals presented a higher TNF-a response to
epitope X, as well as a higher IFN-c response to epitope Y.
Based on the response values observed for each patient (note
that a patient corresponds to a point in the plane), a linear
classifier is designed. This classifier corresponds simply to two
decision regions separated by a line. If a future unknown
patient has response values that fall in the upper decision
region, he/she is likely to be a protected patient, provided
that the classifier has a small probability of error. In this case,
the responses to epitopes X and Y (in terms of the TNF-a and
IFN-c cytokines) characterize immunological memory
induced by the attenuated-virus vaccine: large response
values to both epitopes X and Y indicate protected patients
(note that the response of neither epitope X nor epitope Y by
itself is a good discriminator in this example, indicating the
need to consider the multivariate, combined effect of both
responses). Note, in Figure 5, that the apparent error rate
(i.e., the number of misclassified sample divided by the total
number of samples) is 2 4 20¼ 10%; the actual probability of
classification error on future data typically exceeds the
apparent error rate [106].

Systems Biology and Computational Knowledge
Discovery: Immunomic Regulatory Networks

Systems biology makes use of mathematical modeling in
order to provide a theoretical core for biology, analogous to
the way that mathematical theories provided that core for
physics in the 20th century. The success of engineering and

computational methodology in the physical realm is due to
the predictive capability of mathematical modeling. We quote
from [107]: ‘‘Predictive mathematical models are necessary to
move biology in the direction of a predictive science. They
are also necessary to the application of engineering methods
to translate biological knowledge into therapies with a
mathematical and computational basis.’’ The large
complexity of biological systems, in comparison with most
physical systems, makes even more urgent the application of
mathematical and computational modeling techniques to
them. Dynamical systems provide ‘‘the natural language
needed to describe the ‘integrated behavior’ of systems
coordinating the actions of many elements’’ [108], and are
also capable of displaying emerging self-order from massively
disorganized complexity, which is believed to be a
fundamental feature of life. In what follows, we will describe
the notion of immunomic regulatory networks, a dynamical
system model for immune regulation.
An important recent development in immunology has been

the discovery of regulatory T cells [103,109–111]. These T
cells suppress immune responses, helping to stem runaway
inflammatory processes and to avoid autoimmune disease. It
is thought that this beneficial suppression activity can turn
deleterious when it is taken advantage of by pathogens,
leading to chronic and abnormal infectious processes. It has
been observed that some regulatory T cells are not antigen-
specific; these are called natural regulatory T cells [103]. In
addition, there exist regulatory T cells, both CD4þ and CD8þ,
that are antigen-specific and thus epitope-driven [103]. Given
the suppressive action of epitope-driven regulatory T cells in
conjunction with the promoting activity of epitope-driven
helper T cells, it follows that the immunological response to a
given epitope may be suppressed or promoted by the
immunological response to other epitopes. Thus the notion
of regulatory networks arises as a fundamental concept in
understanding the functioning of the immune system. In fact,
most human diseases are the result of an unbalance in
immune system homeostasis.
In functional genomics, DNA microarray data is used to

infer genomic regulatory networks [112]. For biological and
efficiency reasons, gene expression is often quantized to two
levels: on and off [113]. The multivariate methods of
classification and feature selection discussed in the previous
section have proved to be essential in the inference of such
Boolean (binary) regulatory networks. By the same token,
immunomic microarray data can be used to infer immunomic
regulatory networks. As is true for gene expression, one may
quantize each epitope response measured with an
immunomic microarray at one of two levels—on
(immunogenic/responder) and off (nonimmunogenic/
nonresponder)—leading to the inference of Boolean
immunomic regulatory networks.
In the general case, each node of an immunomic regulatory

network represents a combination of the epitope, the cytokine
response measured, and the T cell population used as the
target; in most cases, each node is in a one-to-one relationship
with a single physical spot on an immunomic microarray
experiment with a given T cell population. The edges between
nodes represent putative regulatory relationships between the
cells that respond to the respective epitopes. Figure 6 depicts a
simple example with quantized Boolean responses, where
peptide–MHCmicroarrays are used in conjunction with three
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kinds of T cell targets: CD4þ helper T cells, CD4þ regulatory T
cells, and CD8þ cytotoxic T cells. Epitope A is specific to the
CD4þ helper T cells that promote the response to epitope C,
which is specific to the CD8þ effector T cells that produce the
actual protective mechanism. In addition, there is an epitope
B that activates the CD4þ regulatory T cells that suppress the
effector response to epitope C, thereby producing an anti-
inflammatory response. In practice, such a model would be
derived from microarray data by automatic epitope (feature)
selection and determination of predictive relationships
(classifier design). In this example, the effector response is
activated only in the presence of both help from epitope A and
an absence of regulatory response to epitope B. The
suppressing response to epitope B is itself promoted by the
presence of a response to epitope C, providing a negative
feedback mechanism. These relationships can be represented
by a wiring diagram and transition rules, depicted in Figure 6a.

Since the responses have been quantized to two values, on
and off, and there are three epitopes, the total number of
possible states of the system is 23 ¼ 8. Figure 6b depicts the

state transition table obtained from the transition rules in
Figure 6a. Using this table, one can determine the attractors
of the system, which are the states or sets of states in which
the system stays in the long run in the absence of external
disruptions. For each attractor, there is associated a basin of
attraction, containing attractors and transient states, which
are the sets of states that lead to the attractor [108]. In the
context of biological systems, attractors are a mathematical
model for homeostasis. In our minimalist example, we see
that there are two different behaviors, corresponding to the
two distinct basins of attraction in Figure 6c; the respective
attractors are indicated by dashed rectangles. As can be seen,
which of the two behaviors the system is in depends only
upon the state of the response to epitope A. If it is off (there
is no help), then the system may pass through some irrelevant
transient states but it will always tend toward the resting
single-state 000 attractor and thus an absence of activity; see
the diagram on the left in Figure 6c. If the response to
epitope A is on (there is help), then the activity of the system
corresponds to that of a cyclic attractor, with the effector

DOI: 10.1371/journal.pcbi.0020081.g006

Figure 6. Example of a Simple Immunomic Network, Consisting of Three Epitopes

Epitope A is a promoter (A is specific to CD4þ helper T cells), epitope B is a suppressor (B is specific to CD4þ regulatory T cells), while epitope C produces
the effector response (C is specific to CD8þ cytotoxic T cells), while also promoting the suppressing response of epitope B (negative feedback).
(a) Network wiring diagram and transition rules.
(b) State transition table.
(c) Basins of attraction in state-space, with attractors indicated by dashed rectangles. (Illustration: Russell Howson)
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response being turned on and off cyclically; see the diagram
on the right in Figure 6c. This situation corresponds to
modulation of the effector response and regulation of the
inflammatory response by means of a negative feedback
mechanism. Note that when there ceases to be a response to
epitope A, the system jumps to the other basin of attraction,
and tends to the resting 000 state. The immune response to
epitope A in this example determines the behavior of the
system, and thus it functions as the master of the overall
immunological response, with the individual immune
responses to epitopes B and C being slave to it. The concept
of master–slave regulatory units is quite important for the
understanding of complex regulatory systems and has in fact
been considered as a mechanism for genomic regulation
(Michael Bittner, unpublished data).

Inference of immunomic regulatory networks from
immunomic microarray data constitutes, after proper
validation, computational knowledge discovery. There are
subtle epistemological issues involved in using data-driven,
computer-based methodology to obtain scientific knowledge.
As Karl Popper explained in his classic book The Logic of
Scientific Discovery [114], every scientific theory consists of an
initial irrational act of creativity (induction) followed by
rigorous logical consequences (deduction) and testing of the
initial hypothesis. Where is the initial act of creativity, in
other words the scientific hypothesis, in computational
knowledge discovery? Computers are clearly not capable of
irrational creativity. Can this be considered science? We
maintain that the answer is yes [115]. In fact, the initial
irrational act of creativity is there; it is involved in all the
steps of experiment design, selection of patients/samples, and
choice of statistical methodology. Once these are settled, the
actual data analysis is purely logic deduction via the
machinery of mathematical operations, as prescribed by
Popper. In this deductive stage the computer plays a critical
role, as it facilitates the application of very complex
computational methods. Therefore, scientist (and statistician)
bias here is in fact unavoidable, as it is in all scientific
disciplines. In particular, the term data-driven is really a
misnomer in describing computational knowledge discovery.

Conclusion

Functional immunomics promises great rewards, both in
terms of our basic understanding of the immune system and
in disease diagnosis/prognosis and rational epitope-driven
vaccine design. Research into the basic biology and statistical
methods associated with functional immunomic experiments
will lead to the advancement of medical science and public
health. Functional immunomics is however still at an early
stage of development. In this review we have attempted to
provide a coherent vision of this nascent field, and have
speculated on future research directions for this technology.

In our discussion we have often compared and contrasted
immunomics with genomics. Immunomics supervenes on
genomics, in the epistemological sense, since immunology
ultimately depends on the functioning of genes inside cells,
but immunomics has its own independent character and
properties. In the same manner that each cell has its own
pattern of gene expression that defines its unique cellular
properties, each reaction of the cognate immune system to an
antigen has its own pattern of epitope-specific responses that
define its final outcome.

There exists a large collection of mathematical models to
describe the immune system [116]. Here, we have proposed
Boolean immunomic regulatory networks as a new
mathematical model for immune system regulation. This is a
dynamical system model, with parameters that can be
estimated from immunomic microarray data. A somewhat
similar concept was suggested in [102,117], where a network
model for cytokine action was proposed, albeit without
explicit reference to large-scale immunomic technology or
regulatory T cell response. In addition, immune system
regulatory networks have been previously discussed in the
context of genomics [118]. The immunomic regulatory
network model may be useful for computational knowledge
discovery and simulation of regulatory mechanisms of the
immune system in health and disease, which may lead to
advances in practical applications (e.g., vaccine design) as well
as in the basic scientific understanding of the immune
system. “
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53. Nino-Vasquez JJ, Allicotti G, Borràs E, Wilson DB, Valmori D, et al. (2004)
A powerful combination: The use of positional scanning libraries and
biometrical analysis to identify cross-reactive T cell epitopes. Mol
Immunol 40: 1063–1074.

54. Sahin U, Tureci O, Pfreundschuh M (1997) Serological identification of
human tumor antigens. Curr Opin Immunol 9: 709–716.

55. Lee SY, Williamson B, Caballero OL, Chen YT, Scanlan MJ, et al. (2004)
Identification of the gonad-specific anion transporter SLCO6A1 as a
cancer/testis (CT) antigen expressed in human lung cancer. Cancer
Immunity 4: 13.

56. Vaughn HA, St Clair F, Scanlan MJ, Chen E, Maraskovsky A, et al. (2004)
The humoral immune response to head and neck cancer antigens as
defined by the serological analysis of tumor antigens by recombinant
cDNA expression cloning. Cancer Immunity 4: 5.

57. Lee S-Y, Obata Y, Yoshida M, Stockert E, Williamson B, et al. (2003)
Immunomic analysis of human sarcoma. Proc Natl Acad Sci U S A 100:
2651–2656.

58. Old LJ, Chen YT (1998) New paths in human cancer serology. J Exp Med
187: 1163–1167.

59. Angenendt P, Glokler J, Murphy D, Lehrach H, Cahill DJ (2002) Toward
optimized antibody microarrays: A comparison of current microarray
support materials. Anal Biochem 309: 253–260.

60. Kusnezow W, Hoheisel JD (2003) Solid supports for microarray
immunoassays. J Mol Recognit 16: 165–176.

61. Delehanty JB (2004) Printing functional protein microarrays using
piezoelectric capillaries. Methods Mol Biol 264: 135–143.

62. Olle EW, Sreekumar A, Warner RL, McClintock SD, Chinnaiyan AM, et al.
(2005) Development of an internally controlled antibody microarray. Mol
Cell Proteomics 4: 1664–1672.

63. Oh SW, Moon JD, Lim HJ, Park SY, Kim T, et al. (2005) Calixarene
derivative as a tool for highly sensitive detection and oriented
immobilization of proteins in a microarray format through noncovalent
molecular interaction. FASEB J 19: 1335–1337.

64. Weng S, Gu K, Hammond PW, Lohse P, Rise C, et al. (2002) Generating
addressable protein microarrays with PROfusion covalent mRNA-protein
fusion technology. Proteomics 2: 48–57.

65. Kusnezow W, Hoheisel JD (2002) Antibody microarrays: Promises and
problems. BioTechniques 33: S14–S23.

66. Pavlickova P, Knappik A, Kambhampati D, Ortigao F, Hug H (2003)
Microarray of recombinant antibodies using a streptavidin sensor surface
self-assembled onto a gold layer. BioTechniques 34: 124–130.

67. Knezevic V, Leethanakul C, Bichsel VE, Worth JM, Prabhu VV, et al. (2001)
Proteomic profiling of the cancer microenvironment by antibody arrays.
Proteomics 1: 1271–1278.

68. GaoWM, Kuick R, Orchekowski RP, Misek DE, Qiu J, et al. (2005) Distinctive
serum protein profiles involving abundant proteins in lung cancer patients
based upon antibody microarray analysis. BMC Cancer 5: 110.

69. Bartling B, Hofmann HS, Boettger T, Hansen G, Burdach S, et al. (2005)
Comparative application of antibody and gene array for expression
profiling inhuman squamous cell lung carcinoma.LungCancer 49: 145–154.

70. Klysik J (2001) Concept of immunomics: A new frontier in the battle for
gene function? Acta Biotheor 49: 191–202.

71. Anderson L, Seilhamer J (1997) A comparison of selected mRNA and
protein abundances in human liver. Electrophoresis 18: 533–537.

72. Haab BB, Geierstanger BH, Michailidis G, Vitzthum F, Forrester S (2005)
Immunoassay and antibody microarray analysis of the HUPO Plasma
Proteome Project reference specimens: Systematic variation between
sample types and calibration of mass spectrometry data. Proteomics 5:
3278–3291.

73. Belov L, Huang P, Chrisp JS, Mulligan SP, Christopherson RI (2005)
Screening microarrays of novel monoclonal antibodies for binding to T-,
B- and myeloid leukaemia cells. J Immunol Methods 305: 10–19.

74. Haab BB, Maitreya J, Dunham J, Brown PO (2001) Protein microarrays for

PLoS Computational Biology | www.ploscompbiol.org July 2006 | Volume 2 | Issue 7 | e810661



highly parallel detection and quantitation of specific proteins and
antibodies in complex solutions. Genome Biol 2: 0004.1–0004.13.

75. Robinson WH, DiGennaro C, Hueber W, Haab BB, Kamachi M, et al.
(2002) Autoantigen microarrays for multiplex characterization of
autoantibody responses. Nat Med 8: 295–301.

76. Feng Y, Ke X, Ma R, Chen Y, Hu G, et al. (2004) Parallel detection of
autoantibodies with microarrays in rheumatoid diseases. Clin Chem 50:
416–422.

77. Hueber W, Kidd BA, Tomooka BH, Lee BJ, Bruce B, et al. (2005) Antigen
microarray profiling of autoantibodies in rheumatoid arthritis. Arthritis
Rheum 52: 2645–2655.

78. Quintana FJ, Getz G, Hed G, Domany E, Cohen IR (2003) Cluster analysis
of human autoantibody reactivities in health and in type 1 diabetes
mellitus: A bio-informatic approach to immune complexity. J Autoimmun
21: 65–75.

79. Balboni I, Chan SM, Kattah M, Tenenbaum JD, Butte AJ, et al. (2006)
Multiplexed protein array platforms for analysis of autoimmune diseases.
Annu Rev Immunol 24: 391–418.

80. Shreffler WG, Beyer K, Chu TH, Burks AW, Sampson HA (2004)
Microarray immunoassay: Association of clinical history, in vitro IgE
function, and heterogeneity of allergenic peanut epitopes. J Allergy Clin
Immunol 113: 776–782.

81. Schroeder CM, Ott H, Merk HF, Baron JM (2004) Aachen atopy array: A
novel allergen chip technique for the analysis of serum IgE antibodies to
recombinant latex allergens. J Allergy Clin Immunol 113: S329.

82. Sampson HA (2005) Food allergy—Accurately identifying clinical
reactivity. Allergy 60: 19–24.

83. Shreffler WG, Lencer DA, Bardina L, Sampson HA (2005) IgE and IgG(4)
epitope mapping by microarray immunoassay reveals the diversity of
immune response to the peanut allergen, Ara h 2. J Allergy Clin Immunol
116: 893–899.

84. Alcocer MJC, Murtagh GJ, Wilson PB, Progias P, Lin J, et al. (2004) The
major human structural IgE epitope of the Brazil nut allergen Ber e 1: A
chimaeric and protein microarray approach. J Mol Biol 343: 759–769.

85. Deinhofer K, Sevcik H, Balic N, Harwanegg C, Hiller R, et al. (2004)
Microarrayed allergens for IgE profiling. Methods 32: 249–254.

86. Reineke U, Ivascu C, Schlief M, Landgraf C, Gericke S, et al. (2002)
Identification of distinct antibody epitopes and mimotopes from a
peptide array of 5520 randomly generated sequences. J Immunol Methods
267: 37–51.

87. Chiari M, Cretich M, Corti A, Damin F, Pirri G, et al. (2005) Peptide
microarrays for the characterization of antigenic regions of human
chromogranin A. Proteomics 5: 3600–3603.

88. Chen Z, Pei D, Jiang L, Song Y, Wang J, et al. (2004) Antigenicity analysis of
different regions of the severe acute respiratory syndrome coronavirus
nucleocapsid protein. J Clin Chem 50: 988–995.

89. Davies DH, McCausland MM, Valdez C, Huynh D, Hernandez JE, et al.
(2005) Vaccinia virus H3L envelope protein is a major target of
neutralizing antibodies in humans and elicits protection against lethal
challenge in mice. J Virol 79: 11724–11733.

90. Neuman de Vegvar HE, Amara RR, Steinman L, Utz PJ, Robinson HL, et al.
(2003) Microarray profiling of antibody responses against simian-human
immunodeficiency virus: postchallenge convergence of reactivities
independent of host histocompatibility type and vaccine regimen. J Virol
77: 11125–11138.

91. Du H, Lu Y, Yang W, Wu M, Wang J, et al. (2004) Preparation of steroid
antibodies and parallel detection of multianabolic steroid abuse with
conjugated hapten microarray. Anal Chem 76: 6166–6171.

92. Knecht BG, Strasser A, Dietrich R, Märtlbauer E, Niessner R, et al. (2004)
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