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The spatiotemporal dynamics of the neural mechanisms underlying endogenous (top-
down) and exogenous (bottom-up) attention, and how attention is controlled or allocated
in intersensory perception are not fully understood. We investigated these issues
using a biologically realistic large-scale neural network model of visual-auditory object
processing of short-term memory. We modeled and incorporated into our visual-auditory
object-processing model the temporally changing neuronal mechanisms for the control
of endogenous and exogenous attention. The model successfully performed various
bimodal working memory tasks, and produced simulated behavioral and neural results
that are consistent with experimental findings. Simulated fMRI data were generated that
constitute predictions that human experiments could test. Furthermore, in our visual-
auditory bimodality simulations, we found that increased working memory load in one
modality would reduce the distraction from the other modality, and a possible network
mediating this effect is proposed based on our model.

Keywords: working memory, computational modeling, neural network, auditory object processing, fMRI,
auditory-visual interaction

INTRODUCTION

Large-scale, biologically realistic neural modeling has become a critical tool in the effort to
determine the mechanisms by which neural activity results in high-level cognitive processing,
such as working memory. Our laboratory has investigated a number of working memory tasks
in humans using functional neuroimaging and large-scale neural modeling (LSNM) in both
the visual and auditory modalities. In this paper, we combine our visual and auditory models
through a node representing the anterior insula to investigate the spatiotemporal dynamics
of the neural mechanisms underlying endogenous (top-down) and exogenous (bottom-up)
attention, and how attention is controlled or allocated in intersensory perception during several
working memory tasks.

Attention is a crucial cognitive function enabling humans and other animals to select goal-
relevant information from among a vast number of sensory stimuli in the environment. On the
other hand, attention can also be captured by salient goal-irrelevant distractors. This mechanism,
allowing us to focus on behavioral goals while staying vigilant to environmental changes, is
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usually described as two separate types of attention:
endogenous (voluntary/goal-driven) attention and exogenous
(involuntary/stimulus-driven) attention (Hopfinger and West,
2006). Endogenous attention for object features is thought to
be controlled by a top-down process, starting from the frontal
lobe and connecting back to early sensory areas (Kastner and
Ungerleider, 2000; Koechlin et al., 2003; Bichot et al., 2015;
D’Esposito and Postle, 2015; Leavitt et al., 2017; Mendoza-
Halliday and Martinez-Trujillo, 2017). In contrast, exogenous
attention behaves primarily in a bottom-up manner, triggered by
stimuli that may be task irrelevant but salient in a given context
(Yantis and Jonides, 1990; Hopfinger and West, 2006; Clapp
et al., 2010; Bowling et al., 2020).

Working memory, the brain process by which selected
information is temporarily stored and manipulated, relies on
endogenous attention for protection from distractions (Berti and
Schroger, 2003; Lorenc et al., 2021). However, working memory
is not completely protected but is capable of handling unexpected
and salient distractions mediated by exogenous attention (Berti
et al., 2004). Early studies on the relationship between working
memory and attention focused mostly on the role of endogenous
attention in working memory encoding and maintenance
(Baddeley, 1986, 1996). Later, some functional neuroimaging and
behavioral studies showed that working memory can also control
exogenous attention and reduce distractions (Berti and Schroger,
2003; Berti et al., 2004; Spinks et al., 2004; SanMiguel et al., 2008;
Clapp et al., 2010). However, little is known about the brain
networks mediating such effects. The aim of the present study was
to investigate and propose a possible neural network mechanism
of how endogenous and exogenous attention interact with each
other, and how working memory controls exogenous attention
switching. We restricted our analysis to the storage component
of working memory (i.e., short-term memory).

We, among others, believe that computational modeling is
a powerful tool for helping determine the neural mechanisms
mediating cognitive functions (Horwitz et al., 1999, 2005; Deco
et al., 2008; Friston, 2010; Jirsa et al., 2010; Eliasmith et al., 2012;
Kriegeskorte and Diedrichsen, 2016; Bassett et al., 2018; Yang
et al., 2019; Ito et al., 2020; Pulvermuller et al., 2021). With
respect to working memory, Tagamets and Horwitz (1998) and
Horwitz and Tagamets (1999) developed a large-scale dynamic
neural model of visual object short-term memory. The model
consisted of elements representing the interconnected neuronal
populations comprising the cortical ventral pathway that
processes primarily the features of visual objects (Ungerleider and
Mishkin, 1982; Mishkin et al., 1983; Haxby et al., 1991). Later
an auditory object processing model was built that functioned
in an analogous fashion to the visual model (Husain et al.,
2004). The two LSNMs were each designed to perform a short-
term recognition memory delayed match-to-sample (DMS) task.
During each trial of the task, a stimulus S1 is presented for a
certain amount of time, followed by a delay period in which S1
must be kept in short-term memory. When a second stimulus
(S2) is presented, the model responds as to whether S2 matches
S1. Recently, the visual model was extended to be able to manage
distractors and multiple objects in short-term memory (Liu
et al., 2017). The extended visual model successfully performed

the DMS task with distractors and Sternberg’s recognition task
(Sternberg, 1969) where subjects are asked to remember a list of
items and indicate whether a probe is on the list.

Here we present a simulation study of intersensory (auditory
and visual) attention switching and the interaction between
endogenous and exogenous attention. The term intersensory
attention refers to the ability to attend to stimuli from one sensory
modality while ignoring stimuli from other modalities (Keil
et al., 2016). We first combine and extend the aforementioned
LSNMs to incorporate “exogenous attention” (the original
models already included one type of “endogenous attention”).
We add a pair of modules representing “exogenous attention”
for auditory and visual processing. These two modules compete
with each other based on the salience of auditory and
visual stimuli and assign the value of attention together with
endogenous attention. Endogenous attention is set according
to task specification before each simulation. Then we simulate
intersensory attention allocation and various bimodal (i.e.,
auditory and visual) short-term memory tasks. Simulations
presented below show the “working memory load effect,” i.e.,
higher working memory load in one modality reduces the
distraction from another modality, which has been reported in
a number of experimental studies (Berti and Schroger, 2003;
Spinks et al., 2004; SanMiguel et al., 2008). Furthermore, we
also show that higher working memory load can increase
distraction from the same modality. We propose the neural
mechanism that underlies intersensory attention switching and
how this mechanism results in working memory load modulating
attention allocation between different modalities.

MATERIALS AND METHODS

Large-scale neural network modeling aims at formulating and
testing hypotheses about how the brain can carry out a
specific function under investigation. Generally, the hypotheses
underlying the model are instantiated in a computational
framework and quantitative relationships are generated that
can be explicitly compared with experimental data (Horwitz
et al., 1999). Because the network paradigm now has become
central in cognitive neuroscience (and especially in human
studies), neural network modeling has emerged as an essential
tool for interpreting neuroimaging data, and as well, integrating
neuroimaging data with the other kinds of data employed by
cognitive neuroscientists (Horwitz et al., 2000; Bassett et al., 2018;
Kay, 2018; Naselaris et al., 2018; Pulvermuller et al., 2021).

A large assortment of neural network models has been
developed, with different types aimed at addressing different
questions. In two extensive reviews, Bassett and her colleagues
discussed some of the various kinds of neural network models
that have recently emerged (Bassett et al., 2018; Lynn and Bassett,
2019). A key distinction is made between model networks of
artificial neurons and model biophysical networks (Lynn and
Bassett, 2019). Deep learning networks (see LeCun et al., 2015;
Saxe et al., 2021 for reviews) and recurrent neural networks (Song
et al., 2016) illustrate the former, whereas a model of the ventral
visual object processing pathway (Ulloa and Horwitz, 2016) and a
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model of visual attention (Corchs and Deco, 2002) are examples
of the latter. However, this distinction is not a binary one since
there has been recent work, for instance, in using deep learning
models to understand the neural basis of cognition (Cichy
et al., 2016; Devereux et al., 2018), and in employing recurrent
network models to investigate information maintenance and
manipulation in working memory (Masse et al., 2019).

The combined auditory-visual large-scale neural network
model used in this paper is a biophysical cortical network
model. It consists of three types of sub-models: a structural
model representing the neuroanatomical relationships between
modules; a functional model indicating how each basic unit
of each module represents neural activity; and a hemodynamic
model indicating how neural activity is converted into BOLD
fMRI activity. The simulated visual inputs to the model
correspond to simple shapes, and the simulated auditory inputs
correspond to frequency-time patterns. The model’s outputs
consist of simulated neural activity, simulated regional fMRI
activity and simulated human behavior on 15 related short-
term memory tasks. Because the focus of this paper is on
the interaction between exogenous and endogenous attention,
the auditory and visual models are connected via a module
representing the anterior insula (see below, where details of the
combined model are provided).

The Large-Scale Neural Model Network
The structural network of the combined auditory and visual
model, representing the neuroanatomical relations between
network modules, is shown in Figure 1A. Both the visual
and auditory sub-models are organized as hierarchal networks,
based on empirical data obtained from nonhuman primates
and humans (Ungerleider and Mishkin, 1982; Ungerleider and
Haxby, 1994; Rauschecker, 1997; Kaas and Hackett, 1999;
Nourski, 2017).

As the basic units of our model, we use a variant of Wilson-
Cowan units (Wilson and Cowan, 1972), which consists of one
excitatory unit and one inhibitory unit (see Figure 1B). One basic
unit can be considered as a simplified representation of a cortical
column. Each module of the auditory subnetwork, originally
developed by Husain et al. (2004), is explained in detail below.
Submodules of A1 and A2 are organized as 1× 81 arrays of basic
units, and all the other modules are 9 × 9 arrays of basic units
(see details below). The structure of the visual model is similar
to the auditory model in many ways (one exception: the V1/V2
and V4 modules are 9 × 9 arrays of basic units); for the details
of the visual model (see Tagamets and Horwitz, 1998; Ulloa and
Horwitz, 2016; Liu et al., 2017). Figure 1C shows the visual and
auditory models embedded in the human structural connectome
provided by Hagmann et al. (2008). We used published empirical
findings to posit the hypothetical brain regions of interest (ROIs)
corresponding to each module in our computational model
and the corresponding nodes in Hagmann’s connectome. Then
we embedded our revised model of microcircuits and network
structure into the connectome (see Ulloa and Horwitz, 2016, for
details). We ran the simulations using our in-house simulator
in parallel with Hagmann’s connectome using The Virtual Brain

(TVB) software (Sanz Leon et al., 2013) (see below). Details about
our simulation framework are discussed in the Appendix.

Module A1
The auditory model of Husain et al. (2004) that we extended here
was designed to process one kind of auditory object. As pointed
out by Griffiths and Warren (2004), an individual auditory object
consists of sound source and sound event information (e.g., the
voice of a speaker and the word produced by the speaker). In
our model, the simulated auditory object of interest consists only
of the sound event component—the spectrotemporal pattern of
information (what we call a tonal contour; see Figure 2A). The
duration of these patterns is meant to represent sounds whose
duration is that of a single syllable word (∼200–300 ms).

In the model the early cortical auditory areas are combined
as A1, which is analogous to the V1/V2 module in the visual
model; all simulated auditory (visual) inputs enter the model via
the A1(V1/V2) module. A1 corresponds to the core/belt area
in monkeys (Rauschecker, 1998; Kaas and Hackett, 1999) and
the primary auditory area in the transverse temporal gyrus in
human (putative Brodmann Area 41; Talairach and Tournoux,
1988). Based on experimental evidence that the neurons in
early auditory areas are responsive to the direction of frequency
modulated sweeps (Mendelson and Cynader, 1985; Mendelson
et al., 1993; Shamma et al., 1993; Bieser, 1998; Tian and
Rauschecker, 2004; Godey et al., 2005; Kikuchi et al., 2010; Hsieh
et al., 2012), module A1 was designed to consist of two types
of neuronal units: upward-sweep selective and downward-sweep
selective units. The two submodules are organized as 1 × 81
arrays of basic units due to the fact that in auditory cortex
sounds are represented on a frequency-based, one-dimensional
(tonotopic) axis (Schreiner et al., 2000; Shamma, 2001).

Module A2
The A2 module is designed to be a continuation of A1 and
consists of three populations of units: upward sweep selective
units, downward sweep selective units and contour selective
units; the analogous module in the visual model is V4. The
upward sweep selective units and downward sweep selective units
have a longer spectrotemporal window of integration than those
in A1 so that they are selective for longer frequency sweeps. The
contour selective units are selective to changes in sweep direction,
which are analogous with the corner selective units in the visual
model. The A2 module represents the lateral belt/parabelt areas
of primate auditory cortex. In experiments, parabelt neurons are
found to be selective to band-pass noise stimuli and FM sounds
of a certain rate and direction (Rauschecker, 1997).

Module ST
The third processing module of the auditory model is ST,
which stands for superior temporal cortex, including superior
temporal gyrus and/or sulcus and the rostral supratemporal
plane. Functionally, ST is equivalent to the IT (inferior
temporal) module in the visual model, and acts as a feature
integrator, containing a distributed representation of the
presenting stimulus (Husain et al., 2004; Hackett, 2011).
This functional equivalency is supported by experimental
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FIGURE 1 | (A) The network diagram of the large-scale auditory-visual neural model. Arrows denote excitatory connections; lines ending in circles denote inhibitory
connections (excitatory connections to inhibitory interneurons in the receiving module). The anterior insula (aINS) acts as the exogenous attention module where
visual-auditory attention competition occurs. See text for details. (B) Structure of a Wilson-Cowan microcircuit, which can be considered as a simplified
representation of a cortical column. Each microcircuit consists of an excitatory and an inhibitory element with the excitatory element corresponding to the pyramidal
neuronal population in a column and the inhibitory element corresponding to the inhibitory interneurons. (C) Embedded model in Hagmann’s connectome (Hagmann
et al., 2008). We first found hypothetical locations for our model’s regions of interest (ROIs) and the connected nodes in the connectome (small dots connected to
ROIs). We embedded our model of microcircuits and network structure into the structural connectome of Hagmann et al. (2008). See Table 1 and Ulloa and Horwitz
(2016) for details. The yellow nodes correspond to the visual model nodes, the blue to the auditory model nodes, and the red to the anterior insula node. The lines
indicate direct connections between modeled nodes and nodes in Hagmann’s connectome.

studies that neurons in ST respond to complex features of
stimuli (Kikuchi et al., 2010; Leaver and Rauschecker, 2010)
and by the findings that a lesion of ST impairs auditory
delayed match-to-sample performance (Colombo et al., 1996;
Fritz et al., 2005).

Module MTL
The module MTL, a new module that we added to the
original auditory model of Husain et al. (2004), represents the
medial temporal lobe. It serves as a gate between ST and PFC
and is incorporated so as to avoid the short-term memory
representation of one stimulus being overwritten by later-arriving
stimuli. MTL is analogous to the EC (entorhinal cortex) module
in the visual model of Liu et al. (2017). Anatomical studies on
monkeys (Munoz et al., 2009) have revealed that medial temporal
lobe ablation disconnects the rostral superior temporal gyrus
from its downstream targets in thalamus and frontal lobe. In
our model, several groups of neurons in MTL are designed to
competitively inhibit one another so that only one group of
gating neurons will be activated when a stimulus comes in. Once
the item is stored in this working memory buffer, an inhibitory
feedback from PFC to MTL cortex will suppress the active
gating neurons and will release other gating neurons so that the
remaining gating neurons are ready for new stimuli. We assume
that each group of MTL gating neurons can be used only once
during a task trial.

Module PFC
The module PFC represents the prefrontal cortex in both the
visual and auditory models. In the visual model, neurons in
the PFC module can be delineated into four types based on
experimental data acquired during a delayed response task by
Funahashi et al. (1990). In our auditory model, the same four
types of neuronal populations are employed analogously (Husain
et al., 2004). Submodule FS contains cue-sensitive units that in
general reflect the activities in the ST (IT) module. D1 and D2
submodules form the short-term memory units that excite one
another during the delay period. Recently, we have built multiple
sets of D1 and D2 submodules into the visual model (Liu et al.,
2017) and successfully implemented tasks that hold more than
one item in short-term memory; in the present study we employ
the same extension in the auditory model. Submodule R serves
as a response module (output). It responds when a displayed
stimulus (probe) matches the cue stimulus that is being held
in short-term memory. Note that we assume that there are a
limited number of gating units and a similarly limited number
of D1-D2 units, since empirical studies indicate that only a
limited number of items can be simultaneously kept in short-
term memory[e.g., the so-called 7± 2 (Miller, 1956); others have
proposed a more limited capacity such as 3 or 4 (Cowan, 2001);
however, see Ma et al., 2014 for a somewhat alternative view]. For
computational simplicity, in this paper we will employ no more
than three items.
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Module aINS
The newly added aINS (anterior insula) module is represented
by a pair of mutually inhibited modules. The outputs of the
visual and auditory processing streams are taken as inputs for the
two modules respectively and are used to generate an exogenous
attention signal. The mutual inhibition between the two modules
is designed to reflect the competition between modalities in
salience computation. The insula area is known for its role in
accumulating sensory evidence in perceptual decision-making,
bottom-up saliency detection and attentional processes (Seeley
et al., 2007; Menon and Uddin, 2010; Ham et al., 2013; Uddin,
2015; Lamichhane et al., 2016). In the current study, aINS
processes the visual-auditory bimodality competition that leads
to involuntary attention switching.

In both the visual and auditory models, a task specification
module is used to provide low-level, diffuse incoming activity
that can be interpreted as an attention level to the respective D2
module in the prefrontal area. We located this module arbitrarily
in the superior frontal gyrus of the Virtual Brain model. The
attention level/task parameter can be modulated by the outputs
of the aINS module. When the attention level is low, the working
memory modules are not able to hold a stimulus throughout
the delay period.

The Talairach coordinates (Talairach and Tournoux, 1988)
and the closest node in Hagmann’s connectome (Hagmann et al.,
2008) for each of the modules discussed above (as well as for the
visual model) were identified (see Table 1) based on experimental
findings. As to the PFC module, which contains four submodules
(FS, D1, D2, R), we used the Talairach coordinates of the
prefrontal cortex in Haxby et al. (1995) for the D1 submodule
in the visual model and assigned the locations of adjacent nodes
for the other submodules (FS, D2, R) (see Table 1); similarly, for
the PFC module in the auditory model, we used the Talairach

TABLE 1 | Locations of nodes in TVB chosen to host our modules.

Modules Source Host connectome node
Talairach location

A1 Husain et al., 2004 (51 −24, 8)

A2 Husain et al., 2004 (61, −36, 12)

ST Husain et al., 2004 (59, −20, 1)

MTL Tanabe et al., 2005 (22, −30, −12)

V1/V2 Haxby et al., 1995 (14, −86, 7)

V4 Haxby et al., 1995 (30, −70, −7)

IT Haxby et al., 1995 (31, −39, −6)

EC Hagmann et al., 2008 (25, −12, −25)

FS Location selected for illustrative
purposes

(35, 19, 13), (47, 19, 9)

D1 Haxby et al., 1995; Husain et al., 2004 (51, 12, 10), (43, 29, 21)

D2 Location selected for illustrative
purposes

(32, 29, 8), (42, 39, 2)

aINS Gu et al., 2013 (48,12,4)

R Location selected for illustrative
purposes

(33, 13, 28), (29, 25, 40)

We embedded our model into The Virtual Brain connectome based on anatomical
sources listed in the table.

coordinates from Husain et al. (2004) for the auditory model
D1 units. This arrangement is due to the fact, as mentioned
above, that the four types of neuronal populations were based
on the experimental findings in monkey PFC during a visual
delayed response task (Funahashi et al., 1990) and we assume that
auditory working memory possesses the analogous mechanism
as visual working memory. It is not known if the four neuronal
types were found in separate anatomical locations in PFC or
were found in the same brain region, although recent findings
from Mendoza-Halliday and Martinez-Trujillo (2017) suggest
that visual perceptual and mnemonic coding neurons in PFC are
close (within millimeters) to one another.

See the Appendix for the mathematical aspects of the network
model. All the computer code for the combined auditory-
visual model can be found at https://github.com/NIDCD, as can
information about how our modeling software is integrated with
software for the Virtual Brain.

Simulated Experiments
We used the combined auditory-visual model to perform several
simulated experiments that included not only one stimulus, but
other stimuli as well, some of which could be considered to be
distractors. We created 10 “subjects” by varying interregional
structural connection weights slightly through a Gaussian
perturbation. For each experiment, 20 trials are implemented for
each “subject.” The complete set of simulated experiments is the
following:

Simulated Auditory Short-Term Memory Experiments:
a. Auditory delayed match-to-sample task. This experiment
implemented the original delayed match-to-sample (DMS) task
to demonstrate that the extended auditory model [with an
added module—the MTL (medial temporal lobe), and the linkage
between visual and auditory models via the aINS (anterior insula)
module] continues to perform the DMS task and gives essentially
the same results as the original model (Husain et al., 2004). One
typical DMS trial consists of the presentation of a stimulus, an
ensuing delay period, presentation of a probe (the same or a
new stimulus); the simulated subjects need to decide whether the
probe is the same as the first stimulus presented (see Figure 2B).
The attention/task parameter is set to high (0.3) during a trial.

b. Auditory delayed match-to-sample task with distractors.
These auditory short-term memory simulations are employed to
demonstrate that the extended auditory sub-model within the
combined auditory-visual model performs the analogous tasks
as the visual model of Liu et al. (2017). The simulated subjects
are presented with two distractors (visual or auditory) before the
probe stimulus is presented (see Figure 2C). The attention/task
parameter is set to high (0.3) at stimulus onset and decreases to
low (0.05) following the presentation of the distractors.

c. Auditory version of Sternberg’s recognition task. An
auditory variant of Sternberg’s recognition task (Sternberg, 1966,
1969) is used. On each trial of the simulation, three auditory
stimuli are presented sequentially, followed by a delay period
and then a probe. The subjects’ task is to decide whether the
probe is a match to any of the three stimuli presented earlier (see
Figure 2D). The Sternberg paradigm with visual/auditory objects
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FIGURE 2 | (A) Two examples of the auditory objects (tonal contours) we used as stimuli for the cognitive tasks. (B) The timeline for a single trial of the auditory
delayed match-to-sample (DMS) task. The simulated subjects’ task is to identify whether the probe is a match to the first stimulus. The value of the endogenous
attention parameter during each temporal epoch is shown as well. (C) The timeline (endogenous attention parameter value) for a single DMS trial with distractors.
The simulated subjects need to ignore the intervening distractors and only respond to the probe. (D) The timeline (and endogenous attention parameter value) for a
single trial of the auditory Sternberg’s recognition task. The simulated subjects need to remember a list of tonal contours and their task is to decide whether the
probe is a match to any stimulus in the list.

has been used in many studies, and thus allows us to compare our
simulated results with experimental results.

Simulated Visual-Auditory Bimodality Experiments
a. Bimodality DMS task with various exogenous attention settings
(see Figure 3A): A block of visual DMS trials and a block
of auditory DMS trials are implemented simultaneously. The
saliency of visual stimuli and auditory stimuli varies from trial
to trial. The attention/task parameter assigned to each modality
is determined based on the real-time output of the anterior
insula module (aINS). In general, higher saliency of one stimulus
will result in higher attention to the corresponding modality.
Essentially, this experiment is asking a subject to perform a DMS
task on the sensory modality that is more salient.

b. Bimodality distraction task with different working memory
loads (see Figure 3B). The simulated subjects are asked to
remember 1∼3 visual stimuli before an auditory distractor
occurs. The endogenous attention is set to attend to visual stimuli.

Simulated fMRI Experiments
Simulated fMRI signals can be calculated for each task discussed
above. The direct outputs are the electrical activity of simulated
neuronal units. Prior to generating fMRI BOLD time series,
we first calculate the integrated synaptic activity by spatially
integrating over each module and temporally over 50 ms
(Horwitz and Tagamets, 1999). Using the integrated synaptic
activity of select regions of interests (ROIs) as the input to the
fMRI BOLD balloon model of hemodynamic response (Stephan

et al., 2007; Ulloa and Horwitz, 2016), we calculate the simulated
fMRI signal time-series for all our ROIs and then down-sample
the time-series to correspond to a TR value of 1 s (for more
mathematical and other technical details, see the Appendix;
Ulloa and Horwitz, 2016).

In simulating an fMRI experiment for the aforementioned
cognitive tasks, we implemented two types of design schemes:
block design and event-related design. In an experiment with
block design, one stimulus is followed by a 1-s delay period, and
the model alternately performs a block of task trials (3 trials)
and a block of control trials (3 trials). The control trials use
passive perception of degraded shapes and random noises. With
an event-related design, the delay period following each stimulus
is extended to 20 s in order to show a more complete response
curve in the BOLD signal.

RESULTS

Auditory Short-Term Memory
Experiments
Our first simulated experiments test whether the combined
auditory-visual model can produce appropriate results (both
neurally and behaviorally) for simulated auditory stimuli. Our
results demonstrated that the model successfully performed
the auditory DMS task (with and without distractors) and
Sternberg’s recognition task with similar accuracy as the visual
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FIGURE 3 | (A) Bimodality delayed match-to-sample task: Auditory and visual stimuli of different saliency levels are presented simultaneously. Visual and auditory
endogenous attention are set to low (0.1) and exogenous attention values depend on the input saliency. The simulated subjects can choose to attend to auditory or
visual stimuli based on the saliency. (B) Bimodality distraction task with different working memory loads. The model is asked to remember one to three visual items
and decide if the final probe is a match of any stimulus in its working memory. An auditory distractor is presented before the probe.

tasks (Liu et al., 2017; Table 2). Figure 4A shows the electrical
activities of simulated neuronal units of the different modules
during a DMS task. The input stimuli, represented by medial
genigulate nucleus activity, are first processed by feature-selective
modules in A1 and A2. A2 neurons have longer spectrotemporal
windows of integration than A1 neurons and thus A2 is
responsive to longer frequency sweeps. The ST module contains
the distributed representation of the presenting stimulus and
feeds the presentation forward to the gating module MTL and
then to PFC. A working memory representation is held in the D1
and D2 modules through the delay period. The probe stimulus
for Figure 4A is a match with the presented stimulus so that the
R module responds.

The auditory model also can handle the DMS task with
distractors, for which the electrical activities are illustrated in
Figure 4B. The first stimulus is the target that the model
needs to remember, and it is followed by two distractors.
The endogenous attention/task-specification unit is set to only
remember the first item. The distractors also evoke some activity
in the working memory modules (D1, D2), but that activity is
not strong enough to overwrite the representation of the first
stimulus, so the model successfully holds its response until the
matched probe appears.

TABLE 2 | Model performance of the auditory tasks.

Tasks DMS (%) DMS
w/distractors (%)

Sternberg’s task
(%)

Accuracy 83.9 81.8 78.7

Standard deviation 5.71 6.73 6.05

The model can successfully perform DMS task, DMS with distractors and
Sternberg’s task with high accuracy. Values represent means and standard
deviations over all simulated subjects and trials.

In the visual model, we reported that we observed enhanced
activity in the IT module during the delay period which helped
short-term memory retention (Liu et al., 2017) and which was
consistent with experimental findings (Fuster et al., 1982). In the
current study, our modeling also displayed this type of neuronal
activity in ST, as can be seen in Figure 4, and this enhanced
activity has been reported in auditory experiments (Colombo
et al., 1996; Scott et al., 2014).

Figure 5 demonstrates how the model implements the
auditory version of Sternberg’s recognition task and handles
multiple auditory objects in short-term memory. The first three
items are held in short-term memory (D1, D2), which is shown in
Figure 5B, and when the probe matches any of the remembered
three items the R module is activated (Figure 5A). Different
groups of neurons in the gating module MTL responded to
each of the stimuli and prevented the representations in working
memory from overwriting one another.

Visual-Auditory Bimodality Competition
Experiments
Figure 6 shows the simulated intersensory attention switch
caused by input saliency changes. During the simulated
experiment, the attentional inputs into working memory module
D2 were both the endogenous attention and the exogenous
attention (output of module aINS). In the experiment shown
in Figure 6, five DMS trials were implemented. The model’s
endogenous attention was set to attend to auditory stimuli (the
auditory attention/task parameter is set to “high”) and not to
attend to visual stimuli. Thus, the model attended to auditory
stimuli and treated visual stimuli as distractors in the first three
DMS trials during which the saliency of auditory stimuli was
higher than that of the visual stimuli. When the saliency of
visual stimuli was enhanced above a certain threshold (0.8 in our
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FIGURE 4 | (A) Simulated neural activities of all the excitatory neurons in selected modules during a single auditory DMS trial (cf., Figure 2B); each neuron’s activity
is represented by a different color. The blue bars indicate the presentations of stimulus and probe. Because the probe in this trial is a match with the stimulus, the
Response module successfully fired during the probe presentation. (B) Simulated neural activities of the excitatory neurons in selected modules during a single
auditory DMS trial with two intervening distractors (cf., Figure 2C). The blue bars indicate the presentations of stimulus and probe. The light gray bars indicate the
presentations of distractors. The model properly avoided the distractors and responded when the probe was a match of the first stimulus.

modeling setting), the model started to attend to the visual stimuli
and attended less to the auditory stimuli, but the model still could
encode auditory stimuli into working memory.

Working Memory Load Reduces
Intersensory Distractions
When implementing a visual DMS task with more than one item
held in working memory during the delay period, the model
showed a smaller response to auditory distractions (Table 3
and Figure 7). As observed in Figure 7A, exogenous auditory
attention in response to auditory distractors decreases when
the visual working memory has more than one item. This was
demonstrated by calculating the average auditory attention values
during the presentations of auditory distractors with one, two,

and three items in visual working memory across 20 runs of
each subject. The distributions of average auditory attention
changes of 10 subjects due to more than one item in visual
working memory are shown in the boxplots of Figure 7A and
Table 3. The significance of auditory attention reductions with
2 and 3 items vs. with 1 item in visual working memory was
tested against zero (2 items: degree of freedom = 9, p = 0.0003,
t = 4.154; 3 items: degree of freedom = 9, p = 0.0008, t = 3.727).
Figure 7B shows ST neuronal activity for auditory distractors
is decreased as the visual working memory load is increased.
Similar to auditory attention, ST activity during the presentations
of auditory distractors with one, two, and three items in visual
working memory was averaged across 20 runs of each subject.
The distributions of average ST activity changes of 10 subjects
due to more than one item in visual working memory are shown
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FIGURE 5 | (A) The responses (average activity of the R units) of the model in three trials of the auditory version of Sternberg’s task. In the first trial (far left), none of
the three stimuli matched the probe stimulus, and the response units showed no significant activity. In the second and third trials shown, the response module made
proper responses as the probes were matches with one of the three remembered items. (B) Snapshots of combined working memory modules D2 during the first
trial of the three trials showed in (A). The snapshots are taken at the midpoint of delay interval between successive stimuli.

in the boxplots of Figure 7A and Table 3. The significance of ST
neuronal activity reductions with 2 and 3 items in visual working
memory was tested with one-tail t-tests against zero (2 items:
simulated subjects = 10, p = 0.0005, t = 3.894; 3 items: simulated
subjects = 10, p = 0.0003, t = 4.160). This phenomenon shows
that the working memory formed in the model is stable and is
also consistent with experimental findings that higher working
memory load in one modality reduces distraction from another
modality (SanMiguel et al., 2008).

However, little is known about the underlying neural
mechanism mediating these phenomena. Based on the structure
of our model, we propose two possible pathways (Figure 7D)
that can connect the increase in working memory load
in one modality to the increase of exogenous attention in
the corresponding modality, thus reducing distractions (i.e.,
exogenous attention) from the other competing modality: (1)
D2–IT/ST–Auditory-attention. When the working memory load
is high, working memory modules D1 and D2 will maintain
a high activity level. Due to feedback connections from D2 to
IT/ST, IT/ST and the downstream module (Auditory-attention)
will exhibit increased level of activity, i.e., the exogenous attention
in the corresponding modality will increase and the exogenous
attention in the competing modality will decrease. (2) D2—
V4/A2—IT/ST—Auditory-attention. Similar to pathway 1, the
feedback connection from D2 to V4/A2, although not as strong
as the connection from D2 to IT/ST, may also contribute to this
working memory load effect. When the feedback connections
from PFC to V4 and IT/ST in the model are removed,
we no longer observed this working memory load effect. In
summary, working memory load can affect intersensory neural
responses through top-down feedbacks that change intersensory
attention competition.

It is worth noting that the SanMiguel et al. (2008) findings
hold only for intersensory tasks (i.e., tasks in which the sensory
information streams are not linked). For cases where the two
sensory streams are integrated (i.e., crossmodal tasks), it has been
shown that increased working memory load leads to increased
distraction between modalities (Michail et al., 2021).

Simulated fMRI Experiments
The results of our simulations can be tested in humans using
functional neuroimaging methods. We will illustrate this using
fMRI. As discussed in section “Materials and Methods,” fMRI
BOLD time series are generated for select regions of interests
(ROIs) using integrated synaptic activity, and for each task we
implemented the experiment using either a block design or
an event-related design. The event-related scheme has longer
duration delay periods than experiments using a block design.
Thus, the event-related experiments can show a more complete
BOLD response curve for each incoming stimulus.

Figure 8 shows the simulated BOLD signal for a block-design
auditory DMS task, which successfully replicates the results from
Husain et al. (2004). In the simulated experiment, one block
of DMS trials is followed by a block of control trials in which
random noise patterns are used. Modules representing early
auditory areas A1 and A2 responded equally to DMS stimuli
and noises. Higher order modules such as MTL and PFC, on
the other hand, show much larger signal changes, as was shown
empirically by Husain et al. (2004) who employed tonal contours
and auditory noise patterns.

Figure 9 shows one event-related fMRI BOLD time-series
consisting of three visual DMS trials. The probes in all three trials
matched the first stimulus. During the second and the third trials,
simulated auditory distractors were presented during the delay
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FIGURE 6 | Neural activity for a series of bimodality DMS task trials with endogenous + exogenous attention. The exogenous attention assigned for visual and
auditory systems (referred to as visual attention and auditory attention in the figure) is the signal outputs of the aINS submodules. The endogenous/top-down task
signal is set to attend auditory stimuli and regard visual stimuli as distractors. (A) Neuronal activities of selected auditory modules. The auditory stimuli are stored in
working memory modules (D1/D2) successfully. (B) Neuronal activities of selected visual modules. As the saliency level of visual stimuli increases, the exogenous
attention for visual stimuli increases and the auditory attention decreases. Working memory modules D1/D2 become activated for visual distractors if they are salient
compared to auditory stimuli.

periods. Early auditory area A1 responded to auditory distractors
but did not cause large signal changes in auditory PFC regions
compared with visual PFC regions. The model finished all three
trials correctly, but the presence of auditory stimuli lowered the
BOLD activity in visual PFC modules.

One experiment of visual-auditory intersensory attention
allocation was also implemented. The BOLD signals of ROIs are
displayed in Figure 10. No task instructions were given prior to
the simulation, i.e., the endogenous attention was maintained at

TABLE 3 | Memory load reduces intersensory distractions.

Load in visual working memory 2 items vs. 1
item (%)

3 items vs. 1
item (%)

Auditory attention changes Mean −6.88 −9.48

SD 4.78 7.96

ST activity changes Mean −2.16 −2.46

SD 1.54 1.84

Visual working memory tasks with auditory distractors. With the increase of visual
working memory load, the auditory attention and the activity of ST neurons for
auditory distractors is reduced. Values represent means and standard deviations
over all simulated subjects and trials.

a low value. The model reacted to visual and auditory stimuli
purely based on exogenous attention capture. The model first
attended to visual stimuli as the BOLD signal for visual PFC
spiked (see Figure 10A) and then switched to attend to salient
auditory stimuli as the BOLD signal for auditory PFC module
increased (see Figure 10B). The aINS module controls the switch
by playing the role of exogenous attention.

DISCUSSION

In this paper we presented a large-scale biologically constrained
neural network model that combines visual and auditory object
processing streams. To construct this combined network model,
we extended a previously developed auditory LSNM so it could
handle distractors and added a module (aINS) that connected
this extended auditory model with a previously established visual
LSNM. The newly combined auditory-visual (AV) model can
perform with high performance accuracy a variety of short-
term memory tasks involving auditory and visual inputs that
can include auditory or visual distractor stimuli. Multiple items
can be retained in memory during a delay period. Our model,
embedded in a whole brain connectome framework, generated
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FIGURE 7 | Working memory load reduces intersensory distractions. Three visual DMS trials are implemented with 1, 2, and 3 input visual stimuli, respectively. One
auditory distractor is played before the final visual probe is presented. (A) Exogenous auditory attention in response to auditory distractors decreases when the visual
working memory has more than one item. The left panel shows the average auditory attention of one simulated subject. The right panel shows the distributions of
the average attention reductions of 10 simulated subjects with more visual items in working memory. One-tail t-tests were used to determine the significance of
attention reductions against zero (trial 2: simulated subjects = 10, p = 0.0003, t = 4.154; trial 3: simulated subjects = 10, p = 0.0008, t = 3.727). (B) ST neuronal
activity for auditory distractors also decreases as the visual working memory increases. The left panel shows the average ST neuronal activity of one simulated
subject. The right panel shows the distributions of the average ST activity reductions of 10 simulated subjects. One-tail t-tests were used to determine the
significance of activity reductions against zero (trial 2: simulated subjects = 10, p = 0.0005, t = 3.894; trial 3: simulated subjects = 10, p = 0.0003, t = 4.160).
(C) Exogenous visual attention responses for visual input do not change. (D) Neural circuits in our model that explain the working memory load effect. Working
memory loads increases exogenous visual attention via feedback connections to V4 and IT that in turn inhibit exogenous auditory attention to auditory distractors.

simulated dynamic neural activity and fMRI BOLD signals in
multiple brain regions.

This model was used to investigate the interaction between
exogenous and endogenous attention on short-term memory
performance. We simulated intersensory exogenous attention
capture by presenting salient auditory distractors in a visual DMS
task or salient visual distractors in an auditory task. Moreover, we
simulated involuntary attention switching by presenting visual
and auditory stimuli simultaneously with different saliency levels.
We also investigated how working memory load in one modality
could reduce exogenous attention capture by the other modality.

The AV network model used in this study was obtained by
combining previously constructed visual (Tagamets and Horwitz,
1998; Horwitz and Tagamets, 1999; Ulloa and Horwitz, 2016;
Liu et al., 2017) and auditory processing models (Husain et al.,
2004). In our visual model, we assigned the entorhinal cortex to
be the gating module between the inferior temporal area and PFC
based on a series of experimental results (see Liu et al., 2017 for
details). However, experimental evidence for the corresponding
brain region that implements the auditory gating function is less
conclusive. We based our MTL choice for the auditory gating
module on a study of Munoz et al. (2009) that showed that
ablation of MTL can result in disconnections between the rostral
superior temporal gyrus and its downstream targets in thalamus

and frontal lobe. Several cognitive tasks involving short-term
memory were successfully implemented with simulated auditory
stimuli. These short-term memory tasks can include auditory or
visual distractor stimuli or can require that multiple items be
retained in mind during a delay period. Simulated neural and
fMRI activity replicated the Husain et al. results (Husain et al.,
2004) when no distractors were present. The simulated neural
and fMRI activity in Husain et al. (2004) model themselves were
consistent with empirical data.

Neural network modeling now occupies a prominent place
in neuroscience research (see Bassett et al., 2018; Yang and
Wang, 2020; Pulvermuller et al., 2021 for reviews). Among
these network modeling efforts are many focusing on various
aspects of working memory (e.g., Tartaglia et al., 2015; Ulloa
and Horwitz, 2016; Masse et al., 2019; Orhan and Ma, 2019;
Mejias and Wang, 2022). Some of these employ relatively small
networks (Tartaglia et al., 2015; Masse et al., 2019; Orhan and
Ma, 2019), whereas others use anatomically constrained large-
scale networks (Ulloa and Horwitz, 2016; Mejias and Wang,
2022). Most of these models have targeted visual processing and
have attempted to infer the neural mechanisms supporting the
working memory tasks under study. The AV network model
used in the present study was of the anatomically constrained
large-scale type.
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FIGURE 8 | Simulated BOLD signal for a block-design auditory delayed
match-to-sample (DMS) task. Each dark gray band represents a block of 3
auditory DMS trials using tonal contours and each light gray band represents
a block of 3 control trials using random noise patterns. Modules representing
early auditory areas A1 and A2 responded equally to DMS stimuli and noise.
Higher order modules such as MTL and PFC showed larger signal changes
during the DMS trials.

Compared to visual processing tasks, there have been far fewer
neural network modeling efforts directed at neocortical auditory
processing of complex stimuli. Ulloa et al. (2008) extended the
Husain et al. (2004) model to handle long-duration auditory
objects (duration ∼ 1s to a few seconds; the original model
dealt with object duration of less than ∼300 ms). Kumar et al.
(2007) used Dynamic Causal Modeling (Friston et al., 2003) and
Bayesian model selection on fMRI data to determine the effective
connectivities among a network of brain regions mediating the
perception of sound spectral envelope (an important feature
of auditory objects). More recently, a deep learning network
analysis was employed by Kell et al. (2018) to optimize a multi-
layer, hierarchical network for speech and music recognition.
Following early shared processing, their best performing network
showed separate pathways for speech and music. Furthermore,
their model performed the tasks as well as humans, and predicted
fMRI voxel responses.

As noted in section “Materials and Methods,” the auditory
objects that are the input to the auditory network consist of
spectrotemporal patterns. However, many auditory empirical
studies utilize auditory objects that also contain sound source
information. For example, among the stimuli used by Leaver
and Rauschecker (2010) were human speech and musical
instrument sounds. Lowe et al. (2020) employed both MEG
and fMRI to study categorization of human, animal and object
sounds. Depending on the exact experimental design, sound
source information may require long-term memory. Our current
modeling framework does not implement long-term memory.
Indeed, the interaction between long-term and working memory
is an active area of current research (Ranganath and Blumenfeld,

2005; Eriksson et al., 2015; Beukers et al., 2021), and our future
research aims to address this issue.

Our modeling of the auditory Sternberg task used a
neurofunctional architecture analogous to the one used in our
visual model. This is consistent with the behavioral findings of
Visscher et al. (2007) who tested explicitly the similarities between
visual and auditory versions of the Sternberg task.

In the simulated experiments presented in this paper, we
used salience as a way to modulate exogenous attention. The
salience level of one stimulus is typically detected based on the
contrast between the stimulus and its surrounding environment.
However, the “contrast” can be defined on different metrics, for
example, the luminance of visual objects and the loudness of
auditory objects, which were used in our modeling. There are
other metrics based on sensory features to define a salient object,
such as bright colors, fast moving stimuli in a static background,
etc. An object can also be conceptually salient. A theory has
been proposed that schizophrenia may arise out of the aberrant
assignment of salience to external or internal objects (Kapur,
2003). In our simulation, stimuli that resulted in high working
memory load may also be considered as conceptually salient,
as the effect of high working memory load is similar to high
endogenous attention (Posner and Cohen, 1984).

A number of brain regions are thought to be involved in
the multisensory integration process (Quak et al., 2015). The
perirhinal cortex has been proposed based on monkey anatomical
studies (Suzuki and Amaral, 1994; Murray and Richmond, 2001;
Simmons and Barsalou, 2003), whereas the left posterior superior
temporal sulcus/middle temporal gyrus is suggested to be where
multisensory integration takes place based on some human
functional imaging findings (Calvert, 2001; Amedi et al., 2005;
Beauchamp, 2005; Gilbert et al., 2013). In our study, we focused
mainly on intersensory attention competition based on bottom-
up salience, as opposed to multisensory integration. The anterior
insula and the anterior cingulate are major components in a
network that integrates sensory information from different brain
regions for salience computation (Seeley et al., 2007; Sridharan
et al., 2008; Menon and Uddin, 2010; Uddin, 2015; Alexander
and Brown, 2019). Recent work (Ham et al., 2013; Lamichhane
et al., 2016) argues that the anterior insula accumulates sensory
evidence and drives anterior cingulate and salience network to
make proper responses (for a review, see Uddin, 2015). Therefore,
we assigned the anterior insula (aINS) as the module responsible
for the exogenous attention computation and visual-auditory
competition. In our model, aINS receives its inputs from IT in
the visual network and ST in the auditory network and assigns
values to the visual and auditory attention/task-specific unit. This
arrangement has some similarities with the conceptual model of
insula functioning proposed by Menon and Uddin (2010).

The model presented in this paper represents a first step in
developing a neurobiological model of multisensory processing.
In the present case, stimuli from the two sensory modalities
are not linked. Moreover, the visual and auditory stimuli we
simulated are not located in different parts of space, and thus
spatial attention is not required. Nor do these visual and auditory
objects correspond to well-known objects and thus do not
require a long-term semantic representation. Future work will
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FIGURE 9 | Simulated BOLD signal for an event-related visual DMS task with auditory distractors. Each of the three dark bands represent one visual DMS trial. Each
trial is 2 s and the interval between trials is 25 s. During the second and the third trials, auditory distractors were played during the delay periods. (A) shows the BOLD
signal for ROIs in the visual model and (B) for ROIs in the auditory model. Early auditory area A1 responded to auditory distractors but did not cause much signal
changes in auditory PFC regions compared with visual PFC regions. However, the presence of auditory stimuli lowered the BOLD activity in visual PFC modules.

FIGURE 10 | Simulated BOLD signals for an event-related visual-auditory intersensory attention allocation experiment. In the experiment, three visual DMS trials and
three auditory DMS trials were presented in parallel, represented by the dark gray bands. No task instructions were given prior to the simulation, i.e., the model
reacted to visual and auditory stimuli purely based on exogenous attention capture. In the first trial, the visual stimuli were more salient while in later trials auditory
stimuli were more salient. The saliency levels of visual and auditory stimuli are illustrated with different font sizes above the figure. The bigger font size indicates higher
saliency level. (A) Shows BOLD signal for ROIs in the visual model. The model attended to visual stimuli in the beginning of the test and the BOLD signal for visual
PFC spiked. (B) Shows BOLD signal for ROIs in the auditory model. The model, after attending to visual stimuli in the beginning, switched to attending to salient
auditory stimuli and the BOLD signal for the auditory PFC module increased. Endogenous attention was maintained at a low value throughout the experiment.

entail extending the model to incorporate long-term memory
representations so that cognitive tasks such as the paired-
associates task can be implemented (e.g., Smith et al., 2010;
Pillai et al., 2013).

In this paper, we used our LSNM to simulate fMRI data to
illustrate how our simulation model’s predictions could be tested
using human neuroimaging data. Our modeling framework
also can simulate EEG/MEG data. Banerjee et al. (2012a) used
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the visual model to simulate MEG data for a DMS task.
These simulated data were employed to test the validity of a
data analysis method called temporal microstructure of cortical
networks (Banerjee et al., 2008, 2012b). An important future
direction for our modeling effort is to enhance our framework
so that high temporal resolution data such as EEG/MEG can
be explored, especially in terms of frequency analysis of neural
oscillations. For example, multisensory processing has been
extensively investigated using such data (e.g., Keil and Senkowski,
2018).

Some caveats of our work include the following: we
hypothesized that the medial temporal lobe was responsible for a
gating mechanism in auditory processing, and thus the detailed
location and the gating mechanism need to be confirmed by
experiments. Also, the locations we chose for prefrontal nodes
(D1, D2, FS, R) in the Virtual Brain are somewhat arbitrary.

The structural connectome due to Hagmann et al. (2008)
that we employed here was utilized primarily so that we
could compare the extended auditory model with the extended
visual model of Liu et al. (2017). Its primary role was to
inject neural noise into our task-based auditory-visual networks
(see Ulloa and Horwitz, 2016). The Virtual Brain package
allows use of other structural models, including those with
higher imaging resolution (e.g., the Human Connectome Project
connectome; Van Essen et al., 2013), These can be employed
in future studies.

In this study, there are no explicit transmission time-delays
between our model’s nodes. Such delays have been shown to
play an important role in modeling resting state fMRI activity
(Deco et al., 2009), and in models investigating oscillatory
neural network behavior (Petkoski and Jirsa, 2019). Our models
show implicit delays between nodes because of the relative slow
increase of the sigmoidal activation functions. Our DMS tasks
also did not require explicit and detailed temporal attention
unlike other studies (e.g., Zalta et al., 2020). Transmission
time-delays may be needed in future studies depending on
the task design.

In summary, we have performed several auditory short-
term memory tasks using an auditory large-scale neural
network model, and we also simulated auditory-visual bimodality
competition and intersensory attention switching by combining

the auditory model with a parallel visual model. We modeled
short-term auditory memory with local microcircuits (D1,
D2) and a large-scale recurrent network (PFC, ST) that
produced neural behaviors that matched experimental findings.
For generating a brain-like environment, we embedded the
model into The Virtual Brain framework. In the future the
model can be extended to incorporate more brain regions and
functions, such as long-term memory. Our results indicate that
computational modeling can be a powerful tool for interpreting
and integrating nonhuman primate electrophysiological and
human neuroimaging data.
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APPENDIX

Model Formulation
We simulated the electrical activity and fMRI activity of the model while implementing the tasks discussed in the main text using the
large-scale neural modeling (LSNM) framework developed by Tagamets and Horwitz (1998), Horwitz and Tagamets (1999), Husain
et al. (2004), and Liu et al. (2017). Our modeling framework is based on several critical assumptions. First, the models are constructed
to perform specific tasks (e.g., the DMS task). Each submodel is designed to represent the visual/auditory object processing stream
running from primary sensory cortex to prefrontal cortex. The idea is to employ neural data obtained in primate experiments, when
available, to constrain the model parameters (e.g., the connection weights). For example, we used the fact that the spatial receptive field
of neurons increases as one moves along the pathway from posterior to anterior cortex in the visual model; likewise, the corresponding
assumption in the auditory model is that the spectrotemporal window of integration increases. The neural data generated by our model
can be used to simulate neuroimaging data that in turn can be directly compared to human fMRI or PET or MEG data.

The simulated electrical activity of each E and I element of the basic unit, a modified Wilson and Cowan (1972) configuration, is
determined by a sigmoidal function of the summed synaptic inputs that arrive at the unit, which corresponds to average spiking rates
from single-cell recordings. This electrical activity is given by the following equations:

dEi(t)
dt
= 1

(
1

1+ e−KE[wEEEi(t)+wIEIi(t)+iniE(t)−φE+N(t)]

)
− δEi(t)

and
dIi(t)
dt
= 1

(
1

1+ e−KI [wEIEi(t)+iniI(t)−φI+N(t)]

)
− δIi(t)

where, 1 is the rate of change, δ is the decay rate, KE, KI are gain constants, wEE, wIE, wEI are the connectivity weights within one
neuronal unit, φE, φI are the input thresholds, N(t) is the noise. iniE(t), iniI(t), are the incoming inputs from other nodes. iniE(t) is
given by:

iniE(t) =
∑
j

wE
jiEj(t)+

∑
j

wI
jiIj(t)+

∑
j

cjizcjiCj(t)

where, wE
ji and wI

ji are the weights for connections from the excitatory (E) and inhibitory (I) elements of jth LSNM unit to the excitatory
element of ith LSNM unit, Cj is the electrical activity of the connectome excitatory unit j connected to LSNM unit i, and zCji is the
connection weight. cji is a coupling term obtained by the Gaussian pseudo-random number generator of Python. iniI(t) is given by:

iniI(t) =
∑
k

wE
kiEk(t)+

∑
k

wI
kiIk(t)

where, wE
ki and wI

ki are the weights for connections from the excitatory (E) and inhibitory (I) elements of kth LSNM unit to the
excitatory element of ith LSNM unit. Each timestep corresponds to∼5 ms.

Ulloa and Horwitz (2016) embedded the visual LSNM into a whole-brain framework using The Virtual Brain (TVB) software
package (Sanz Leon et al., 2013). TVB is a simulator that combines (i) white matter structural connections among brain regions
to simulate long-range connections, (ii) a neuronal population model to simulate local brain activity, and (iii) forward models that
convert simulated neural activity into simulated functional neuroimaging data (i.e., fMRI or EEG/MEG). In the current study, TVB
neurons provide neural noise to the embedded LSNM. The structural connectome used is due to Hagmann et al. (2008), which is
composed of 998 nodes (regions of interest), and the simulated neuronal microcircuits at each TVB node are Wilson–Cowan units.
The integrated synaptic activity is computed prior to computing fMRI BOLD activity by spatially integrating over each LSNM module
and temporally integrating over 50 ms (Horwitz and Tagamets, 1999).

rSYN =
∑

INi(t)

where, INi(t) is the sum of absolute values of inputs to the excitatory and inhibitory elements of unit i, at time t:

INi(t) = wEEEi(t)+ wEIEi(t)+ |wIEIi(t)| +
∑
k,i

wkiEk(t)

The last term is the sum of synaptic connections from all other LSNM units and connectome nodes to the ith unit in LSNM.
Details concerning the connectivity and the connection weights in the previous versions of the model can be found in the Tagamets

and Horwitz, Husain et al., and Liu et al. papers. In brief, the connection weights are generally taken from previous papers. The
connections for the new modules are hand-wired as a proof-of-hypothesis study.
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Modeling the aINS
The anterior insula is modeled as two attention modules, one for vision and one for audition, competitively inhibiting each other.
The inhibition weights between the two modules are equally chosen in a way such that the two modules can be suppressed during the
resting-state when only visual and auditory noises are provided and can be excited by salient visual/auditory stimuli. The choice of a
specific value depends on the definition of salient stimuli.
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