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Geometric compatibility constraints dictate the mechanical response of soft systems
that can be utilized for the design of mechanical metamaterials such as the negative
Poisson’s ratio Miura-ori origami crease pattern. Here, we develop a formalism for linear
compatibility that enables explicit investigation of the interplay between geometric
symmetries and functionality in origami crease patterns. We apply this formalism to a
particular class of periodic crease patterns with unit cells composed of four arbitrary
parallelogram faces and establish that their mechanical response is characterized by
an anticommuting symmetry. In particular, we show that the modes are eigenstates
of this symmetry operator and that these modes are simultaneously diagonalizable
with the symmetric strain operator and the antisymmetric curvature operator. This
feature reveals that the anticommuting symmetry defines an equivalence class of crease
pattern geometries that possess equal and opposite in-plane and out-of-plane Poisson’s
ratios. Finally, we show that such Poisson’s ratios generically change sign as the crease
pattern rigidly folds between degenerate ground states and we determine subfamilies
that possess strictly negative in-plane or out-of-plane Poisson’s ratios throughout all
configurations.
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Discrete symmetries characterize the properties of physical systems (1, 2) ranging from
topological insulators and superconductors (3–6) to frustrated magnets (7) and me-
chanical metamaterials (8). Such symmetries can dictate the rigid deformations of
periodic mechanical networks (9), including the generation of negative Poisson’s ratio
(auxetic) modes (10, 11). Such auxetic mechanical metamaterials are characterized by
either dilational strain or synclastic (dome-like) curvature and are desirable for a variety
of applications in engineering that may not be achieved with conventional materials
(12–15). While this dilational in-plane behavior of auxetic materials typically couples to
synclastic out-of-plane behavior (16), a family of highly symmetric origami crease patterns
exhibits equal and opposite in-plane and out-of-plane Poisson’s ratios (17–20).

Origami structures and assemblies are composed of thin sheets whose low-energy
mechanical response is dictated by the geometry of their crease patterns (21–24) via
compatibility conditions that restrict deformations to isometries that transform the sheets
without stretching their faces (25, 26). Modern fabrication and actuation techniques can
be used to self-fold such structures at the macroscale (27–29) as well as at the nano- and
microscales (30–38) for applications in engineering (39, 40) and soft robotics (41–44).
These isometric configurations can be considered as degenerate ground states that rely
on symmetries of the crease pattern to rigidly fold (45–49); however, interplay between
these symmetries and the functionality of origami as mechanical metamaterials (50) with
negative Poisson’s ratios (17–20) or high stiffness-to-weight ratios (51) has not been
explored explicitly.

The linear isometries of an infinitesimally thin origami sheet are conventionally
modeled via the rigid deformations of its triangulation (52, 53), where “virtual” creases
are introduced to accommodate bending (without stretching) of the faces. Such rigid
deformations can be specified either via vertex displacements that do not stretch any
physical or virtual creases (54) (as commonly applied to mechanical networks composed
of point masses and central-force springs) or via folding about the creases that does not
rotate elements of the sheet relative to themselves (55, 56). This latter approach has been
applied to the Morph family of parallelogram-based crease patterns (20), expanding upon
previous investigations of the Miura-ori (17, 18) and eggbox (19) crease patterns, thereby
showing both analytically and numerically the existence of equal and opposite in-plane
and out-of-plane Poisson’s ratios. While it is straightforward to show numerically that
this result holds for the crease patterns with more generic parallelogram faces discussed
herein, analytical solutions become intractable in the absence of multiple symmetries that
obfuscate the underlying physical principle.
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Fig. 1. (A) An example four-parallelogram origami tessellation and its unit cell characterized by the four edge vectors (specified up to overall scaling), r1, r2, r3,
and r4, that specify the two generically nonorthogonal lattice vectors, �1 = r1 + r3 and �2 = r2 + r4. (B) Degenerate ground states of the four-parallel origami
shown in A where the color indicates the angle between the lattice vectors. (C and D) Local notation for edges at the (C) vertex and (D) face specified by the
superscript, where the subscript specifies the local edge index that increases cyclically in counterclockwise order. (E) Labeling of the vertices in the unit cell
under various two-cycle permutations, Ph, Pv , and Pd , each satisfying P2 = 1.

In this work, we introduce an alternative model for the lin-
ear isometries of parallelogram-based origami that yields elegant
analytic formulas for the in-plane and out-of-plane Poisson’s
ratios and elucidates their equal and opposite relationship, for the
unexplored periodic crease patterns with unit cells composed of
four arbitrary parallelogram faces. We first introduce this family
of four-parallelogram origami that generalizes the Miura-ori (17,
18), the eggbox (19), and the Morph crease patterns (20). We then
derive compatibility constraints for the linear isometries and show
that they possess an anticommuting symmetry that constrains
the linear isometries at both the intracellular and intercellular
scales. This leads us to our key result that the system has a
symmetric linear isometry with an in-plane Poisson’s ratio that
is equal and opposite to the out-of-plane Poisson’s ratio for the
system’s antisymmetric linear isometry, implying that one is always
negative. Finally, we explore how these Poisson’s ratios may change
sign as the crease pattern rigidly folds along its one-dimensional
configuration space of degenerate ground states. We close with
concluding remarks that address extension to future work and
experimental implementation.

Results and Discussion

Four-Parallelogram Origami. Investigations of origami sheets
typically rely on highly symmetric crease patterns, such as the
renowned Miura-ori, to simplify the analysis. Here, we introduce
the completely generic family of four-parallelogram origami
and discuss the sole symmetry that governs its members’ linear
response, including the special cases of the Miura-ori (17, 18),
the eggbox (19), and the Morph (20). We provide further details
on the design space of such crease patterns in SI Appendix,
section 1A.

Consider spatially periodic origami sheets composed of cells
with four arbitrary parallelogram faces such as that shown in Fig. 1
A, Inset. These cells are defined by the four unique edge vectors,
ri , and their vertices are generically nondevelopable, which means
that they cannot necessarily be folded from a single sheet of
material. Note that only the relative length of these edges matters
as the geometric mechanics studied herein are independent of
overall scale. In contrast to the aforementioned special cases, the
lattice vectors, �1 = r1 + r3 and �2 = r2 + r4, are generically
nonorthotropic, �1 · �2 �= 0; moreover, the lattice vectors stretch

and shear along the one-dimensional manifold of degenerate
ground states (SI Appendix, section 1B) such as those shown in
Fig. 1B. Since periodic origami composed of arbitrary quadrilat-
eral faces cannot be rigidly folded (57), these crease patterns must
possess a symmetry that renders its constraints redundant (49),
which can be characterized by introducing local notation for the
edges.

Because our analysis involves detailed examination of individ-
ual vertices, in addition to the globally defined edge vectors, ri ,
we now introduce the local edge vectors, va

i , of vertex a , where
i cyclically labels the edges in counterclockwise order as shown
in Fig. 1C. For either of the two pairs of nonadjacent vertices
in the unit cell, the same edges that emanate from one enter the
other. Consequently, the locally defined edges are antisymmetric
under the permutation operation Pd = PhPv = PvPh intro-
duced in Fig. 1E that swaps nonadjacent vertices:vPda

i =−va
i+2.

Note that these permutations are two cycles, P2 = 1, and are
isomorphic to the twofold rotoinversion spatial symmetry of the
crease pattern. In this way, the permutation symmetries that we
consider are analogous to conventional spatial symmetries, but
they are instead combinatorial, with less reliance on the spatial
configuration of the unit cell.

Similarly, let vA
i denote the edges bounding a face where A

labels the face and i cyclically labels the edge in counterclockwise
order as shown in Fig. 1D. Since the faces are all parallelograms,
every other edge is antiparallel, vA

i+2 =−vA
i . Consequently, the

interior (sector) angles of the face are supplementary at adjacent
vertices and identical at nonadjacent vertices. In contrast to the
vertex symmetry of the four-parallelogram, this feature holds for
crease patterns with arbitrary numbers of parallelogram faces,
which has implications for the isometries discussed in the next
section.

Linear Isometries and Compatibility Conditions. The low-
energy response of origami sheets is dominated by linear
isometries that rotate elements of the sheet without stretching
them. Such rotations include both folding at the creases and
bending of the faces, which are treated equivalently in previous
works (17–20). Here, we derive compatibility conditions that
distinguish between these two types of local isometries and
show that the linear isometries of parallelogram-based origami
are governed by a compatibility matrix that exclusively depends
on vertex folding.

2 of 9 https://doi.org/10.1073/pnas.2202777119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://doi.org/10.1073/pnas.2202777119


A B

D C

E F

Fig. 2. Compatibility conditions for linear isometries. (A) The loop integral
of the angular velocity must vanish over arbitrary closed paths. (B) Folding
about crease i in the vicinity of vertex a induces a rotation generated by φa

i v̂a
i

that accumulates along subsequent creases and must vanish over a closed
path as dictated by Eq. 4. (C) Applying a torsion along crease i on face A
induces a rotation generated by τA

i v̂A
i (indicated by the change in the normal

of the face in bottom right corner) as well as a displacement τA
i v̂A

i × vA
i+1

that accumulates along subsequent creases and must vanish over a closed
path as dictated by Eq. 5. (D) The vertex folds and face torsions couple via
compatibility in Eq. 6. (E and F) Schematic of (E) vertex folding and (F) face
bending along with the displacements these rotations generate.

The linear isometries are described by a spatially varying,
temporally static angular velocity field,ω(x1, x2), defined over the
continuous surface coordinates (x1, x2), that rotates infinitesimal
vectors of the sheet, dX, relative to one another. Since these
rotations must preserve the length of any closed loop on the
surface of the sheet (such as that shown in Fig. 2A), the angular
velocity is constrained by the compatibility condition∮

ω × dX= 0. [1]

Application of Stokes’ theorem to Eq. 1 over a single face shows
that the angular velocity gradients must lie in the plane of the
face to satisfy ∂1ω3 = ∂2ω3 = 0, where x3 is a coordinate locally
orthogonal to the surface, and hence must point along the edges at
the boundary to match with the adjacent faces. Thus, the interior
of the face can undergo any linear isometry of a plane provided
that the angular velocity is compatible between different corners
of the sheet.

Such corners, including those that the paths shown in
Fig. 2 A–D pass through, can be labeled by the vertex (denoted
via lowercase Latin indexes) and face (denoted via uppercase
Latin indexes) that they are adjacent to. Any two corners of
the origami sheet, (a,A) and (a ′,A′), are connected via a
sequence of paths across and along creases, such as a portion
of the closed loop in Fig. 2A. Since gradients in the angular
velocity must lie in the plane of each face, they must be parallel
to the edges near the intersection of two faces. Thus, the angular
velocity gradient between the corners of two edge-sharing faces,

ω(a,A′) − ω(a,A) =±φa
i v̂

a
i , corresponds to applying a fold, φ,

over the crease i (Fig. 2E) while similarly, the angular velocity
gradient between the corners of two vertices that share both a
face and an edge, ω(a′,A) − ω(a,A) =±τAi v̂A

i , corresponds to
applying a torsion, τ , along the crease i (Fig. 2F ). By convention,
the sign is positive (negative) when the crease is traversed along
(against) the ordering of the local edges in both cases.

The angular velocity gradients and the vertex displacements,
ui , that they generate accumulate along the path between the two
corners:

ω(a,A) − ω(a0,A0) =
∑
i′,a′

±φa′

i′ v̂
a′

i′ +
∑
i′,A′

±τA
′

i′ v̂A′

i′ , [2]

u(a,A) − u(a0,A0) =
∑

i′,a′,A′

ω(a′,A′) × va′

i′ . [3]

Note that since the vertex displacements contain a double sum-
mation in Eq. 3, they grow quadratically between cells, implying
that the angular velocity field generically induces some amount
of intercellular curvature. These folds and torsions must satisfy
the compatibility condition in Eq. 1 over any closed sequence of
corners. Such a sequence constrains the folds in the vicinity of a
vertex, as illustrated in Fig. 2B, and the torsions on the boundary
of a face, as illustrated in Fig. 2C, while the edges couple the folds
to the torsions as illustrated in Fig. 2D:∑

i′

φa
i′ v̂

a
i′ = 0, [4]

∑
i′

τAi′ v̂
A
i′ = 0, τAi v̂A

i × vA
i+1 = τAi−1v̂

A
i−1 × vA

i−2, [5]

φa
i + τAj − φa′

i+2 − τA
′

j+2 = 0. [6]

The vertex condition is the familiar result in the literature (55, 56),
which is the linearization of the Belcastro–Hull vertex condition
(26), but importantly, it holds to linear order even as the faces are
bending. Similarly, the face-bending condition is independent of
the folding about the adjacent vertices. However, these folding
and bending motions become coupled via the edge constraint,
which is now nontrivial because different changes in orientation
occur as one passes across the edge at two different vertices and
along it at two different faces. Importantly, the vertex and face
compatibility conditions in Eqs. 4 and 5 respectively admit one-
dimensional analytical solutions. Note that for triangular faces,
these face compatibility conditions admit only trivial solutions so
that the isometries are restricted to vertex folding.

Projecting the cross-product of the directions of any two edges
emanating from the vertex, v̂a

i × v̂a
j , onto Eq. 4 reveals that the

vertex folds are proportional to triple products of edge directions,
ζai ≡ v̂a

i+1 · v̂a
i+2 × v̂a

i+3, where ζi is defined modulo 4. For
parallelogram faces, vA

i =−vA
i+2, the torsions must be propor-

tional to their edge lengths to satisfy Eq. 5. These proportionality
factors are, respectively, the vertex amplitudes, Va , and the face
amplitudes, FA, that determine the local solutions:

φa
i = (−1)iVaζai , [7]

τAi = (−1)iFAvA
i . [8]

Note that while the vertex amplitudes have no units, the face
amplitudes must have units of inverse length to ensure that the
angular velocity is dimensionless. The physical significance of
these amplitudes is discussed in SI Appendix, section 2A.
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That the folding and torsions take the forms in Eqs. 7 and
8 is a necessary and sufficient condition that the deformation is
compatible in loops around vertices (Fig. 2B) and faces (Fig. 2C ),
respectively. Substitution of the local solutions from Eqs. 7 and 8
into the edge compatibility condition, Eq. 6, yields

Vaζai − Va′
ζa

′

i+2 + (FA −FA′
)va

i = 0. [9]

One consequence of this constraint is that there is always an
isometry consisting of uniform face deformations, FA = FA′

,
and vanishing vertex amplitudes VA = 0. Up to this isometry, the
solutions of Eq. 9 are equivalent to those formed by combining
the four edge constraints (divided by their respective edge lengths)
to arrive at a compatibility constraint associated with vertex i
expressed purely in terms of its amplitude and the amplitudes of
the four neighboring vertices:

∑
i′

(
ζai′

va
i′
Va −

ζa
′

i′+2

va′
i′+2

Va′

)
= 0. [10]

The amplitudes that satisfy Eq. 10 at every vertex are linear
isometries whose corresponding face amplitudes are determined
by inverting the edge compatibility condition in Eq. 9
(SI Appendix, section 1). These isometries are equivalent to those
modeled by a triangulation; hence, there are generically two
such modes in addition to the uniform face-bending mode
(57). These constraints can be concatenated to compose the
compatibility matrix, C, that maps the vertex amplitudes,
|V〉, to the constraint in Eq. 10 at every vertex so that the
linear isometries span the matrix’s nullspace C |V〉= 0. In this
notation, the “bra,” 〈V1|, and “ket,” |V2〉, have the inner product
〈V1|V2〉= V†

1 · V2, where † denotes complex conjugation,
and transform under matrix operators as 〈V|C= 〈CV| and
C |V〉= |CV〉, respectively.

The uniform face-bending mode, |V〉= 0, satisfying edge
compatibility in Eq. 9 with uniform face amplitudes is a nontrivial
linear isometry that exists for crease patterns with any number of
parallelogram faces; hence, the compatibility condition in Eq. 10
is also valid for any parallelogram-based origami crease pattern.
However, this is not true for generic quadrilateral faces because
the face torsions in Eq. 8 no longer satisfy the face compatibility
conditions in Eq. 5.

Vertex Permutation Symmetry in the Four-Parallelogram. The
spatial symmetry of four-parallelogram origami constrains the
linear isometries that satisfy the compatibility conditions in Eq.
10. While such modes generically vary between cells according
to Bloch’s theorem (54, 57), we show here that the remaining
two uniform folding isometries (in addition to the pure-face
isometry) are eigenstates of the permutation operator, Pd , with
opposite eigenvalues. Our analysis is simplified by our self-adjoint
compatibility matrix that anticommutes with the permutation
operator. This feature contrasts with previous work where the
compatibility matrix maps between vector spaces such as vertex
displacements to bond extensions (54) that transform differently
under symmetries of the sheet.

The antisymmetry of the local edge vectors, vPda =−va
i+2,

implies that the local folding coefficients are antisymmetric be-
tween nonadjacent vertices, ζPda

i =−ζai+2. Hence, the compat-
ibility matrix constructed from Eq. 10 anticommutes with the
permutation operator:

PdCPd =−C. [11]

The eigenbasis of this permutation is represented by the basis vec-
tors |±±〉, where the first (second) sign indicates the eigenvalue of
the basis vector under the horizontal (vertical) permutation Ph(v)

illustrated in Fig. 1E :

|++〉= 1

2
(+1 +1 +1 +1),

|−−〉= 1

2
(+1 −1 +1 −1),

|+−〉= 1

2
(+1 +1 −1 −1),

|−+〉= 1

2
(+1 −1 −1 +1).

[12]

Importantly, the basis states |++〉 and |−−〉 have eigenvalue
+1 under Pd while the basis states |+−〉 and |−+〉 have
eigenvalue −1 under Pd . Hence, the vertex amplitudes,
|V〉=

(
Va Vb Vc Vd

)
, are divided into sectors that are

(anti)symmetric under such permutations, Pd |V±〉=± |V±〉.
Substitution of the identity, 1= PdPd , into the inner product,
〈V±|C|V±〉= 〈±V±|PdCPd | ± V±〉, shows that this inner
product is equal to its own opposite and hence, it must
vanish. Thus, the (anti)symmetric modes automatically satisfy
(anti)symmetric constraints.

Indeed, the compatibility matrix constructed from Eq. 10
is off-block diagonal (SI Appendix, section 2) in the basis from
Eq. 12:

Csym =

⎛
⎜⎜⎝
0 0 0 0
0 0 χ−

24 χ−
13

0 χ−
24 0 0

0 χ−
13 0 0

⎞
⎟⎟⎠, [13]

χi ≡
r̂i+1 · r̂i+2 × r̂i+3

ri
≡ ri+1 · ri+2 × ri+3

R
, [14]

where theχi andχj are global folding coefficients,χ−
ij ≡ χj − χi

is their difference, and R ≡ r1r2r3r4 is the product of the four
unique edge lengths. In this form, the symmetric and antisym-
metric modes in the nullspace are apparent,

|V+〉= |++〉, [15]

|V−〉= χ−
13 |+−〉 − χ−

24 |−+〉, [16]

and the corresponding face amplitudes are determined explicitly
in SI Appendix, section 2B, and the mapping from these
amplitudes to the rigid folding of the triangulation is presented
in SI Appendix, section 2C. In fact, the symmetric mode in
Eq. 15 is the rigid folding motion that generates the degenerate
ground states shown in Fig. 1B. The modes in Eqs. 15 and
16 along with the pure face-bending mode with uniform face
amplitudes, |F〉= 1, and vanishing vertex amplitudes, |V〉= 0,
span the three-dimensional space of linear isometries for four-
parallelogram origami. The connection between these amplitudes
and the description of these modes via the rigid folding of a
triangulation of the origami sheet are discussed in SI Appendix,
section 2C.

Strain and Curvature. Linear isometries stretch and rotate the
lattice vectors that are respectively captured via the strain of the
cell and the curvature between cells. Here, we derive these quan-
tities for four-parallelogram origami as linear combinations of the
vertex amplitudes and show that they have opposite eigenvalues
under the permutation operator Pd . We then show that this
decouples the in-plane and out-of-plane modes and ensures that
the corresponding Poisson’s ratios are equal and opposite.

4 of 9 https://doi.org/10.1073/pnas.2202777119 pnas.org

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2202777119/-/DCSupplemental
https://doi.org/10.1073/pnas.2202777119


Fig. 3. An illustration of the slab-like behavior of corrugated origami sheets.
Bending motions extend/compress the lattice vectors, Δ · �, by different
amounts depending on which vertex, a, they are measured from so that the
radius of curvature induced by a linear isometry is proportional to gradients
in the lattice vectors stretches.

As measured at corner (a,A), the lattice vector deforms accord-
ing to Eq. 3 as Δ(a,A)

μ ≡ u(a,A)(nμ = 1)− u(a,A)(nμ = 0),
where μ= 1 or 2 labels the lattice direction and nμ labels the
cell index. The angular velocities are inherently linear in the
global folding coefficients, χi , and the change in length in-
troduces additional triple products of the edge vectors so that
it must be quadratic in the global folding coefficients. Conve-
niently, the torsion displaces the lattice vector along vA

i × vA′

i
and the additional folding between the corners of a single vertex
displaces the lattice vector along v̂a

i × �μ, which both vanish
when projected onto the original lattice vector, �μ = vA

i + vA′

i
(SI Appendix, section 3). Thus, the lattice vector stretches locally
depend only on the vertex amplitudes:

�1 ·Δ(a,A)
1 = χ2χ4R 〈a|Ph |V〉, [17]

�2 ·Δ(a,A)
2 =−χ1χ3R 〈a|Pv |V〉, [18]

where the bra 〈a| is the original basis vector, 〈a|V〉= Va , for the
vertex the stretch is measured at.

While origami are intrinsically sheets, their corrugation implies
that they deform as an elastic slab: upward bending extends the
bottom, contracts the top, and preserves lengths in the midplane as
illustrated in Fig. 3. This intuition explains the vertex dependence
on the lattice vector stretches in Eqs. 17 and 18 as an analog of
the height dependence on the strain of the slab. Thus, the strain
of the origami sheet can be specified via that of its midplane by
averaging the lattice vector stretches over its Nv = 4 vertices:

εμμ ≡
�μ ·

(∑
a′ Δ

a′

μ

)
Nv

≡ 〈εμμ|V〉. [19]

Note that these strains have units of area because the surface coor-
dinates are the dimensionless cell indexes and that the subscripts
denote the lattice directions without implied summation.

This same connection to elastic slabs suggests that the curvature
of the sheet can also be characterized by the vertex dependence
of the lattice vector stretches. The lattice vectors are rotated
between cells by the corner-independent lattice angular velocity,

Ωμ ≡ ω(a,A)(nμ = 1)− ω(a,A)(nμ = 0), which lies in the
plane of the sheet with normal vector N= �1 × �2 to satisfy
the compatibility condition in Eq. 1. Compatibility of the
vertex displacements in Eq. 3 shows that changes to the lattice
vectors vary between two corners, Δ(a,A)

μ −Δ(a′,A′)
μ , due

to the lattice rotation of the vector between the two vertices,
Ωμ × (ra′ − ra) (where ra denotes the position of vertex a),
and due to the rotation of the lattice vector by the angular velocity
gradient between the two corners, (ω(a′,A′) − ω(a,A))× �μ
(SI Appendix, section 3). The latter vanishes under projection
onto the initial lattice vector while the former rearranges to define
the curvature, κμμ =Ωμ × �μ ·N, via differences in the lattice
vector stretches:

κμμ =−
�μ ·

(
Δa′

μ −Δa
μ

)
(ra′ − ra) ·N

≡ 〈κμμ|V〉. [20]

Note that these curvatures are vertex independent and have units
of inverse length because the normal vector has units of area.

In this form, both the lattice strains and the lattice curvatures
depend explicitly on the locally computed lattice vector stretches.
However, these operators have opposite eigenvalues under permu-
tations of the nonadjacent vertices,

Pd |εμμ〉=+ |εμμ〉, [21]

Pd |κμμ〉=− |κμμ〉; [22]

hence, they couple to opposite sectors of linear isometries. In
fact, since each sector contains exactly one mode, the in-plane
strains are exclusively generated by the symmetric mode, |V+〉,
and the out-of-plane curvatures are exclusively generated by the
antisymmetric mode, |V−〉, which are orthogonal to one another.
Thus, the fundamental symmetries explain why these structures
have one mode that generates only in-plane strain and one mode
that generates only out-of-plane bending, as observed for the
planar and bend modes of previous work (17, 18, 20).

Finally, the relative strain and curvature in transverse lattice
directions define geometric Poisson’s ratios:

νin ≡−|�2|2
|�1|2

ε11
ε22

, [23]

νout ≡−|�2|2
|�1|2

κ11

κ22
. [24]

Such ratios depend entirely on the triple products entering the
lattice vector stretches with the exception that the antisymmetry
of the lattice curvature operators leads to opposite signs in the
numerator and denominator while the symmetry of the lattice
strain operators leads to the same signs. Thus, the Poisson’s ratios
are always equal and opposite:

νin =−νout =
|�2|2
|�1|2

χ2χ4

χ1χ3
. [25]

Note that this Poisson’s ratio is a purely geometric quantity and it
can increase and decrease without limit because the lattice is not
isotropic (58). Furthermore, recall that generic four-parallelogram
origami sheets are not orthotropic so that their Poisson’s ratios are
not necessarily equal and opposite as measured from orthogonal
directions. As shown in SI Appendix, section 3D, this recovers the
result for the Morph subfamily of four-parallelogram origami
from ref. 20.

The off-diagonal components of the strain and curvature are
defined and computed in SI Appendix, section 3 and exhibit two
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important features: 1) The lattice shears, ε12 = ε21 = 0, always
vanish because the inner product �1 · �2 depends only on the
length of the edges and the interior angles of the faces and 2)
the uniform face-bending mode exclusively generates twisting
characterized by nonvanishing lattice curvatures, κ12 = κ21, as
previously observed for the special case of the Miura-ori (17,
18, 54). Together with the diagonal components, these quantities
correspond to discrete analogs of the first and second fundamental
forms (59) as discussed in SI Appendix, section 4. Since these are
the only strains and curvatures permitted by linear isometries,
any other mode of deformation requires stretching of the panels
and, hence, requires significantly more energy. Consequently,
we predict that in an origami sheet undergoing a nonuniform
deformation due to loading conditions, any given unit cell would
display some combination of the modes identified here (60, 61).

Poisson’s Ratio Transitions. The Poisson’s ratios in Eq. 25 change
along the one-dimensional manifold of degenerate ground states;
in particular, the Poisson’s ratios can undergo transitions from
positive to negative and vice versa as identified in the Morph
family (20). Here, we show that such transitions occur whenever
two adjacent faces are coplanar and determine the relationship
between the intrinsic crease geometry and such ground states to
reveal two subsets of four-parallelogram origami that are strictly
in-plane auxetic and strictly out-of-plane auxetic.

The Poisson’s ratios change sign if and only if the ratio of
global folding coefficients, χi , in Eq. 25 changes sign, which
occurs when three of the edge vectors lie in the same plane. This
corresponds to a ground state where two adjacent faces either
lie flat to (Fig. 4 C, Inset) or lie on top of (Fig. 4 D, Inset) one
another, which are respectively quantified by the dihedral angles
between the faces: γi = π or γi = 0, 2π. The spatial symmetry of
the crease pattern implies that there are only four unique dihedral
angles, as shown in Fig. 4A, and that those on parallel edges are
complementary to one another, summing to 2π radians. Hence,
the condition for the Poisson’s ratios to change sign is determined
by the existence of ground states for a single vertex with exactly
one dihedral angle equal to an integer multiple of π.

The ground states of an origami vertex are the sets of dihedral
angles compatible with the fixed sector angles, αA (25, 26), la-
beled in Fig. 4A. The edges emanating from this vertex in a generic
ground state project onto the unit sphere (SI Appendix, Fig. S1C ),
thereby mapping to the vertices of the spherical quadrilateral
shown in Fig. 4B. This spherical quadrilateral has edges that
are segments of great circles (geodesics of the sphere) with ar-
clength equal to the corresponding sector angles and interior
angles that are equal to the corresponding dihedral angles. This
mapping can be used to parameterize the ground states of a
generic four-coordinated vertex via spherical trigonometry (25,
62) (SI Appendix, section 1B).

For the sake of determining the relationship between sec-
tor angles and Poisson’s ratio transitions in four-parallelogram
origami, it suffices to determine the conditions for the “opened”
configuration, γ1 = π, shown in Fig. 4C, and the “closed” con-
figuration, γ1 = 0, shown in Fig. 4D. In both cases, the spherical
quadrilateral flattens to a spherical triangle; hence, this dihedral
angle, γ1, can take the value of π or 0 only when the respective
spherical triangle inequalities are satisfied:

‖αA + αD‖ ≤ ‖αB + αC‖, [26]

‖αA − αD‖ ≥ ‖αB − αC‖, [27]
where the spherical norm, ‖x‖ ≡ min{x , 2π − x}, takes the
shortest of the two great circles connecting the vertices. Note that
when one of the inequalities in Eqs. 26 and 27 is not satisfied, the
corresponding inequality for γ3 is satisfied.

A

C D

B

Fig. 4. (A) A generic four-coordinated vertex whose geometry is character-
ized by the sector angles, α, between subsequent edges and its ground state
specified by the dihedral angles, γ, between adjacent faces. (B) The spherical
quadrilateral obtained by projecting the edges in A onto the unit sphere. (C
and D) “Opened” (C) (γ1 = π) and “closed” (D) (γ1 = 0) face configurations
whose sector angles respectively satisfy Eqs. 26 and 27.

Generic choices of sector angles satisfy either one or both of
the inequalities in Eqs. 26 and 27 for a particular crease. However,
the constraints on the dihedral angles always possess two solutions
(which are related by the inversion of the sheet γi → 2π − γi )
and these two cases correspond to different configuration space
topologies (63). In the former, the two branches connect to satisfy
the 2π periodicity of the constraints as shown in Fig. 5A. In the
latter the two branches are disconnected because each branch is
itself 2π periodic as shown in Fig. 5B. Note that this feature
is independent of flattened configurations (57, 64) or curvature
of the vertex (62). Nonetheless, both cases generically undergo
Poisson’s ratio transitions as shown in Fig. 5 A and B, where
it is important to note transitions at γi = 0, 2π require self-
intersection of the origami sheet and are hence nonphysical.

Special choices of sector angles that satisfy equality for both
spherical inequalities have ground states for which the dihedral
angles fold through 0 or π simultaneously. First, consider de-
velopable crease patterns,

∑
αA = 2π, satisfying the Kawasaki

condition for flat foldability (65), αA + αC = αB + αD , such
as that shown in Fig. 5C. In this case, every dihedral angle folds
through 0 or π simultaneously, thereby preventing the Poisson’s
ratio from changing sign. Second, consider crease patterns sat-
isfying the generalized flat-foldable condition identified in ref.
46, αA = αC , αB = αD , such as that shown in Fig. 5D. In this
case, nonadjacent dihedral angles fold through γi = γi+2 = 0 or
π simultaneously while the remaining two dihedral angles fold
through γi+1 = γi+3 = π or 0, respectively, thereby preventing
the Poisson’s ratio from changing sign. These two subsets of in-
plane and out-of-plane negative Poisson’s ratio origami metama-
terials respectively reduce to the Miura-ori (17, 18) and eggbox
(19) crease patterns.

Concluding Remarks

We have developed a framework for characterizing the low-energy
deformations of quadrilateral-based origami sheets that enables
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A B

C D

Fig. 5. (A–D) The Poisson’s ratios, ν, and one-dimensional manifolds of degenerate ground states, γi = γi(γ1), for four-parallelogram origami sheets with (A)
generic sector angles and connected solution branches, (B) generic sector angles and disconnected solution branches, (C) sector angles that ensure a strictly
negative in-plane Poisson’s ratio, and (D) sector angles that ensure a strictly positive in-plane Poisson’s ratio. The Poisson’s ratios change sign when exactly two
of the faces are coplanar as indicated by a single dihedral angle folding through 0 or π. Note that these results, including the magnitude of the Poisson’s ratios,
are entirely independent of the overall length scale of the sheet.

investigations of the interplay between discrete symmetries and
mechanical response. We have implemented this formalism for
periodic crease patterns with unit cells composed of four generic
parallelogram faces, thereby revealing that in such sheets the
infinitesimal strains are induced by a symmetric mode whereas
the infinitesimal curvatures are induced by an antisymmetric
mode. Moreover, we have showed that these quantities define
geometric Poisson’s ratios that are always equal and opposite
to one another, contrasting the relationship found in conven-
tional elasticity. Finally, we have discovered subsets within this
family of crease patterns that have strictly negative in-plane or

out-of-plane Poisson’s ratios that may be utilized as auxetic me-
chanical metamaterials.

The formalism developed herein extends to the analysis of
crease patterns beyond four-parallelogram origami. The compati-
bility conditions can be immediately applied to determine the lin-
ear isometries in parallelogram-based origami with larger unit cells
(66, 67) as well as Bloch-periodic modes (54, 57). Furthermore,
the symmetry analysis of these compatibility conditions could
be used to constrain the stiffness of parallel-based origami tubes
(51, 68). Finally, the compatibility conditions can also be used to
explore the role of discrete symmetries in crease patterns with more
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generic quadrilateral faces where the face amplitudes cannot be
integrated out of the linear constraints (45–49).

The experimental realization of these structures requires a num-
ber of important considerations. The work in the present article
considers only the uniform geometry of the origami sheets whereas
the elastic properties of physical materials can favor one mode of
deformation over the others (52, 53, 69) and imperfections can
significantly alter the mechanical response (70, 71). Moreover,
local actuation typically leads to nonuniform deformations (72–
74) and creases tend to exhibit temporal relaxation dynamics (75)
that give rise to plastic memory effects (76). Thus, it remains to
explore the ability to control the mechanical response of physical
origami via this geometric symmetry.

In conclusion, the symmetry analysis of linear isometries pro-
vides a systematic characterization of the large-scale deformations
in parallelogram-based origami. More generally, similar analysis
can be applied to systems where symmetries constrain both the
intracellular and intercellular properties, which may be insightful

for the design of metamaterials in mechanics (77–81) and beyond
(82, 83).

Data Availability. There are no data underlying this work.

Note Added in Proof. While this article was under review, calculations for the
in-plane Poisson’s ratio of the Morph subfamily were experimentally verified
in ref. 84 and the equal-and-opposite property of generic four-parallelogram
origami sheets was computed via an alternative calculation in ref. 85.
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