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Human histone deacetylase 2 (HDAC2) has been identified as being associated with Alzheimer’s disease (AD), a neuropathic
degenerative disease. In this study, we screen the world’s largest Traditional Chinese Medicine (TCM) database for natural
compounds that may be useful as lead compounds in the search for inhibitors of HDAC2 function. The technique of molecular
docking was employed to select the ten top TCM candidates. We used three prediction models, multiple linear regression (MLR),
support vector machine (SVM), and the Bayes network toolbox (BNT), to predict the bioactivity of the TCM candidates. Molecular
dynamics simulation provides the protein-ligand interactions of compounds. The bioactivity predictions of pIC50 values suggest
that the TCM candidatesm, (−)-Bontl ferulate, monomethylcurcumin, and ningposides C, have a greater effect on HDAC2
inhibition.The structure variation caused by the hydrogen bonds and hydrophobic interactions between protein-ligand interactions
indicates that these compounds have an inhibitory effect on the protein.

1. Introduction

Alzheimer’s disease (AD) is a neuropathic degenerative dis-
ease in which patients will gradually suffer a loss of memory,
language, intellect, motor action, and even life. In 2010, it
was reported that about 36million people worldwide suffered
fromAD [1].Themedical cost of this conditionwas predicted
to be approximately 604 billion USD in 2010 [2]. This huge
medical expense becomes a great social burden to an aging
society.

Recently, it has been found that Tau protein [3], amyloid-
𝛽 peptides [4], and human histone deacetylase (HDAC) are
major factors in the causation of AD [5]. Human histone
deacetylase 2 (HDAC2) is the protein expressed by HDAC2

gene. Some reports have pointed out that HDAC2 is over
expressed in AD patients and that this gene negatively regu-
lates memory [6–10]. There are also some references indicat-
ing that blocking the HDAC2 gene could be a treatment for
AD; furthermore, it has been shown to decrease amyloid-𝛽
peptides inmice [5, 11, 12]. HDACs catalyze the acetyl moiety,
removing it from the lysine residues of proteins and regu-
lating the level of protein acetylation [13]. The inhibition of
HDAC2 has been identified as a mechanism for treating can-
cer and developing histone deacetylase inhibitors (HDACi)
[14]. As shown above, this inhibition mechanism could also
be a model for the treatment of AD [6].

Some HDACi studies have indicated a role for chromatin
remodeling increasing histone acetylation and enhancing
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Figure 1: Relation of observed activity (pIC50) and predict activity (pIC50). (a) MLR, (b) SVM, and (c) BNT.

synaptic plasticity and learning behaviors [15–17].The clinical
application of nonselective HDACi in cancer has shown a
range of side effects [18, 19]. Suberoylanilide hydroxamic acid
(SAHA or vorinostat) is a potent HDACi. SAHA binds to the
active site of HDAC where it acts as a chelator for Zinc [13].
SAHA could cross the blood-brain barrier and decrease amy-
loid 𝛽 peptides and treat AD and Huntington’s disease (HD)
by changes in histone acetylation in the brain [20–22].

Computer-aided drug design (CADD) is an in silico sim-
ulation technique for screening novel drug-candidate com-
pounds by structure and prediction of biological activity.

The two major application areas of CADD are structure-
based drug design and ligand-based drug design. In compar-
ison with traditional drug design, CADD has the advantages
of both greater speed and lower cost. We used CADD for
molecular simulation based on structure-based drug design,
ligand-based drug design, and molecular dynamics [23–28].

Recently, an understanding of personalizedmedicine and
biomedicine has been attracting more and more attention
[29]; this department of knowledge could analyze regional
diseases [30], clinical diagnosis cases, and disease associated
mutations [31]. Traditional Chinese Medicine (TCM) plays
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Figure 2: The 2D structure of control and candidate TCM compounds. (a) Control-saha, (b) (−)-Bontl ferulate, (c) monomethylcurcumin,
and (d) ningposides C.
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Figure 3:The docking poses of HDAC2. (a) HDAC2, (b) control-saha (c) (−)-Bontl ferulate, (d) monomethylcurcumin, and (e) ningposides
C.

an important role in Asia, especially in China, Taiwan, Korea,
and Japan. The TCMDatabase@Taiwan (http://tcm.cmu.edu
.tw/) [32] is the largest Traditional ChineseMedicine database
in the world. This database contains 2D chemical structures,
3D chemical structures, bioactivity, and molecular infor-
mation of 61,000 compounds used in Traditional Chinese

Medicine. Since 2011, there have been successful discoveries
in novel lead compounds from the TCM Database@Taiwan
[33–35], including compounds for the putative treatment of
AD [36], Parkinson’s Disease [37], insomnia [38], pigmentary
disorders [39], and even antivirals [40–44]. Due to the
application system of the website [45] and cloud computing
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Figure 4: Ligplot illustrates the hydrophobic interactions. (a) Control-saha, (b) (−)-Bontl ferulate, (c) monomethylcurcumin, and (d)
ningposides C.
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Figure 5: Measures of the MD trajectories. (a) Complex RMSD, (b) ligand RMSD focus on complex, (c) ligand RMSD focus on ligand, and
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Figure 6: Torsion angles during MD. Torsion angle measure is designated by the number which corresponds to the radar chart. The red,
green, and blue lines in the radar chart indicate the angle during docking, 0 ns, and the period of MD.

platforms [46], the TCM Database@Taiwan is exceptionally
helpful for TCM applications and drug design.

In this study, we screen a possible lead compound against
HDAC2 from the TCM Database@Taiwan. We use the
computational techniques of docking, screening, and ligand-
based methods to predict the bioactivity of the selected lig-
ands. Finally, we apply molecular dynamics (MD) simulation
to investigate variation from the protein-ligand interactions

that may contribute to the evaluation of the effect of HDAC2
inhibition.

2. Materials and Methods

2.1. Data Set. Because the disorder protein plays an impor-
tant role in drug design, the protein sequence should be sub-
mitted to the Database of Protein Disorder (DisProt,
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Figure 7: Clustering of RMSD. (a) Control-saha, (b) (−)-Bontl ferulate, (c) monomethylcurcumin, and (d) ningposides C. In each upper
triangle, the color shows the RMSD difference between times on both the 𝑥-axis and 𝑦-axis. In the lower triangle, the red triangle shows the
same groups based on similar RMSD.

http://www.disprot.org/) for disorder prediction [47]. The
result of prediction could help define the character of docking
site and the efficacy of drug interaction.

A total of 61,000 TCM compounds were downloaded
from the TCM database (http://tcm.cmu.edu.tw/). The
HDAC2 (PDB ID: 3MAX) crystal structure was obtained
from RCSB protein data bank. Based on the research, the

SAHA was used as a control [48]. Accelrys Discovery Studio
2.5 (DS 2.5) was used to perform the molecular simulations.

2.2. Molecular Docking. LigandFit is a receptor-rigid docking
algorithm program in Discovery Studio 2.5 (DS 2.5). The
docking simulation was performed using LigandFit [49]
module to dock SAHA and TCM compounds to HDAC2
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Figure 8: The DSSP of the protein component. DSSP shows the composition variation of the protein structure during MD.
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Figure 9:The disorder region prediction and RMSF detection.The disorder region could define the efficacy of docking based on the character
of docking site and important region. For these RMSF curve is the calculation of the RMSD average for the whole MD focus on each residue.

in the force field of CHARMm [50]. The compounds down-
loaded from the TCM Database were docked into the SAHA
binding site of HDAC2, which was identified from previous
research [48].

2.3. Ligand-Based Prediction. We used the SVM, MLR, and
BNT approaches as activity prediction models to predict the
bioactivity of the TCM compounds. The SVM model, which
utilized a nonlinear mapping technique, was built using Lib-
SVM [51]. The MLR, using linear evaluation, was established
by MATLAB. The BNT is a directed graphical model based
on the study of Bayes probability and network cluster in
MATLAB. Fifty compounds [52] were divided randomly into
the predictive models as a training set of ten compounds
and test set for the other compounds. These compounds
were drawn by ChemBioOffice and modified using the
prepare ligand module in DS 2.5. The bioactivity (IC50) data
of the compoundswere converted to pIC50 by theQSARpro-
gram and their molecular descriptors were evaluated by cal-
culate molecular properties from 552 different descriptors in
Discovery Studio 2.5. The genetic function approximation
(GFA) algorithm is based on a genetic algorithm to search all
possible QSAR models and use a square correlation coef-
ficient (𝑅2) to estimate the best representative molecular
descriptors [53]. After the above processes, the bioactivity of
TCM de novo compounds can be predicted through MLR,
SVM, and BNT model by MATLAB and LibSVM.

2.4. Molecular Dynamics Simulation. The ligands must be
reprepared by using SwissParam (http://swissparam.ch/) [54]
before applying MD simulation based on the reference force
field [55] of GROMACS 4.5.5 [56]. The HDAC protein com-
bines with ligands as the complex in the buffer (or solution)
simulation box.This cubic box provided aminimumdistance
of 1.2 Å from the complex and was solvated with the TIP3P
water model in which sodium and chloride ions were added
to neutralize complex charges. The complex was minimized
with the steepest descent method for 5,000 steps. The last
structure of minimization was transferred for MD simula-
tion.The calculations for electrostatic interactionswere based
on the particle-mesh Ewald (PME) method [57]. In the PME
method, each time step was 2 fs and there were 20,000,000
iterations. Equilibration under the 10 ps constant temperature
(NVT ensemble) was based on the Berendsen weak thermal
coupling method. The total simulation time for the MD
was 40 ns. MD trajectories, RMSD, energy variations of the
complex, and the secondary structure database (DSSP) were
analyzed using a series of protocols in GROMACS.

3. Result and Discussion

3.1. Molecular Docking. The results of molecular docking are
ranked according to the docking score. We selected the pdb
data of these docking poses and removed the data that lacked
any of the important amino-acids of HDAC2, such as
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Figure 10: HDAC2 structure variation by ligand iteration. (a) Control-saha, (b) (−)-Bontl ferulate, (c) monomethylcurcumin, and
(d) ningposides C.
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Table 1

Name Dock score SVM MLR BNT
Ningposides C 30.26 6.62067 6.88967 5.657169
Monomethylcurcumin 27.295 7.59112 6.106833 6.471242
(−)-Bontl ferulate 21.203 7.51855 7.773727 5.627211
Yakuchinone B 19.121 7.42844 5.443937 5.297163
Spinacetin 15.077 6.82774 5.493229 5.369466
SAHA∗ 3.51 6.61107 4.949132 4.500999
∗Control.

Tyr29,Met35, Phe114, Leu144, Gly154, Phe155, Asp181, His183,
Phe210, Asp269, and Leu276, which were identified by [48].
His142 was identified as the active site in HDAC2 based on
Uniprot (http://www.uniprot.org/) data. The top twenty lig-
ands were ranked according to the docking score and used
for ligand-based predictions of their bioactivity.

3.2. Ligand-Based Prediction. The three prediction models
were established from the relations of the test set and training
set through MLR, SVM, and BNT (Figure 1). The square cor-
relation coefficients (𝑅2) of these three models were 0.7773,

0.851, and 0.8439,which indicates confidence in thesemodels.
The ligands which achieved the top three docking scores
from the compounds, having higher bioactivity than the
control, were selected and identified as candidate compounds
(Table 1).

The ligand structure (Figure 2) and the docking poses
(Figure 3) of these candidate compounds were prepared for
MD. From the above description, the docking poses of the
candidate compounds indicated that the ligands had interac-
tions with different important amino-acids in the protein.We
determined the ligand interactions with the amino-acids by
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Figure 12: The pathway determination and HDAC2 structure variation with (−)-Bontl ferulate iteration. (a) Pathway and (b) structure
variation.

ligplot v.2.2.25 [58] (Figure 4). From this figure, we found
that all the ligands can interact with Gly154, His183, and
Phe210 ofHDAC2. Phe155 and Leu276 are effected by selected
ligands (do not have control). This indicates that the docking
site could have interactions with important amino-acids and
simulate the compound’s target in HDAC2.

3.3. Molecular Dynamics Simulation. After 40 ns MD, the
total energy and RMSD of the whole complex were recorded,
with these data being drawn by OriginPro 8.5 (Figure 5). The
amplitude of energy, as illustrated by the total energy of
these complexes, tended to the region of −672000∼
−674000 kcal/mol. The RMSD of the whole complex pre-
sented by these protein and ligand interactions will tend to
balance ningposides C. From Figure 5, it can be seen that
ligand RMSD1 focused on ligand structure variation during
the MD process, and ligand RMSD2 described the ligand
variation of the whole complex. We analyzed the ligand
based on the comparison between ligand RMSD1 and ligand
RMSD2.

The amplitude of monomethylcurcumin in the ligand
RMSD1 was the greatest, between 0.1 and 0.2, while the
amplitude in the ligandRMSD2was smooth. From this result,
monomethylcurcuminhad a strong interactionwithHDAC2,
but the complex was stable. Ningposides C had the greatest
amplitude in ligand RMSD2, and this impossible variation
suggested that it was not only the protein and ligand inter-
action, but the complex might be separated.

The site was closed to the H-bond produced site and will
be twisted in torsion analysis, as seen in Figures 6(a)-(1),
6(b)-(8), 6(c)-(12), and 6(c)-(13). However, the ligand still
needs interactions with the protein by H-bond production.
Although the main structure of the ligand was stable, Figures
6(c)-(14) and 6(d)-(22) described the large variation of ligand
structure during the MD process. This phenomenon may be
caused by two hexagonal ring structures limiting the flex-
ibility of ligand variation during the interaction.

In the clustering based on RMSD variation (Figure 7),
monomethylcurcumin had the fewest groups of these com-
pounds, indicating that the variation was lower than in the
others. Ningposides C had the greatest RMSD range and the
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Figure 13: The pathway determination and HDAC2 structure variation with monomethylcurcumin iteration. (a) Pathway and (b) structure
variation.

most groups of these compounds. From this result, we suggest
that the complex of ningposides C and HDAC2 was unstable
and the interaction of this complex seemed to be incessant.
This phenomenon was described after the screening of the
MD process which recorded ningposides C drifting away
from the docking site at 4.12 ns, then retargeting at 14.8 ns. It
drifts away from the docking site again at 16.36 ns and targets
again at 21.06 ns. This result suggests that ningposides C
might not be an appropriate compound due to the possibility
of its moving away during MD.

The DSSP describes the type of protein structure
(Figure 8). In this figure, SAHA causes the HDAC2 structure
to reduce other types (not comprising 𝛼 helix, 𝛽 sheet, and
turn structure) but increases the percentage of 𝛼 helix, 𝛽
sheet, and turn at least 20 ns interaction. (−)-Bontl ferulate,
monomethylcurcumin, and ningposides C make different
effect from SAHA in that the other type was increased and
the 𝛼 helix was decreased. This result suggests that these
candidate compounds may result from different level effects
on the amino-acids of HDAC2.

The disorder shows the protein unfolding region and the
RMSFdescribes the protein variation (Figure 9).Thedisorder

analyzed the completeHDAC2 amino-acid sequence and this
figure focuses on the region of HDAC2 structure. In this
result, the residue with the larger pick is not disorder region.
Thus, the disorder region has weak effect on this investiga-
tion. The RMSF recorded the amino-acid variation in 40 ns.
The amplitude in RMSF among different ligand interactions
was similar and this result indicates that the protein structure
variationmay be similar.This suggestionmay be based on the
structure that illustrates their matrix (Figure 10). The highest
pick in RMSD was Phe210, which is one of the important
amino-acids, and this result may indicate that Phe210 will
move away from the ligand to inhibit the protein function.

The variation in structure was calculated from the cen-
troid distance from Met35, Gly154, Phe210, and Leu276,
which are four important amino-acids in HDAC2. The
centroid distance betweenMet35 andPhe210 and the centroid
distance between Gly154 and Leu276 could help us to investi-
gate the HDAC2 variation (Figure 11). The distance between
Met35 and Phe210 in SAHA increased from 13.383 to 24.938.
The distance betweenMet35 and Phe210 changed to 32.454 in
(−)-Bontl ferulate, 28.667 in monomethylcurcumin, and
23.149 in ningposides C. There was an obvious increase in
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Figure 14:The pathway determination and HDAC2 structure variation with ningposides C iteration. (a) Pathway and (b) structure variation.

this distance when the protein and ligand interacted during
theMD. On the other hand, the distance between Gly154 and
Leu276 in SAHA increased from 10.955 to 15.335, and this
distance increased to 12.570, 13.810, and 16.482 during other
ligand interactions. These distance variations the candidate
ligands made during interactions were similar to SAHA, a
result which can be confirmed from Figure 10.

The pathway and structure variation could help to discuss
the protein-ligand interaction. The pathway definition is
using caver 3.0 to determine the interpath protein path during
MD simulation [59] and structure variation comparing the
difference between MD 0ns and MD 40 ns (Figures 11 to 14).

While protein interacts with SAHA, the pathway for
ligand was around docking site (Figure 11(a)) and the pole of
HDAC2 will be spread (Figure 11(b)). Similar to SAHA, (−)-
Bontl ferulate also makes the same variation in both pathway
and structure (Figure 12). The pathway for monomethylcur-
cumin is defined around binding site based on calculation
(Figure 13). One pathway for ningposides C is defined inside
the protein colored in red, but that is not reasonable in
biology. This situation is caused from the structure variation

and then the path which is large enough for calculation.Thus,
this unreasonable pathway does not take reference for the
analysis of the ligand moving.

The structure variation of HDAC2 might make ligand
move away fromdocking site if the force of target ismuch less.
If the ningposides C, selected as candidate compounds, away
from binding site is unreasonable for drug design, the MD
simulation for the investigation of protein-ligand interaction
is more important than docking.This situation could present
thatMD could confirm protein-ligand interaction by compu-
tational biology.

4. Conclusion

The analysis of HDAC2 found that the candidate compounds
had a HDAC structure variation similar to SAHA. Because
these compounds had better bioactivity than SAHA based on
SVM, MLR, and BNT, these compounds had a different
effect on the amino-acids and caused changes to the com-
ponent percentage of HDAC2 structure. Finally, from a
comparison of HDAC2 structure variation, component, and
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protein-ligand interactions, we propose that the candidate
compounds are appropriate to inhibit HDAC2, including
ningposides C due to its unstable interaction.
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