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Abstract
Major depression (MD) is a debilitating mental health condition with peak prevalence occurring early in life. Genome-
wide examination of DNA methylation (DNAm) offers an attractive complement to studies of allelic risk given it can
reflect the combined influence of genes and environment. The current study used monozygotic twins to identify
differentially and variably methylated regions of the genome that distinguish twins with and without a lifetime history
of early-onset MD. The sample included 150 Caucasian monozygotic twins between the ages of 15 and 20 (73%
female; Mage= 17.52 SD= 1.28) who were assessed during a developmental stage characterized by relatively distinct
neurophysiological changes. All twins were generally healthy and currently free of medications with psychotropic
effects. DNAm was measured in peripheral blood cells using the Infinium Human BeadChip 450 K Array. MD
associations with early-onset MD were detected at 760 differentially and variably methylated probes/regions that
mapped to 428 genes. Genes and genomic regions involved neural circuitry formation, projection, functioning, and
plasticity. Gene enrichment analyses implicated genes related to neuron structures and neurodevelopmental
processes including cell–cell adhesion genes (e.g., PCDHA genes). Genes previously implicated in mood and psychiatric
disorders as well as chronic stress (e.g., NRG3) also were identified. DNAm regions associated with early-onset MD were
found to overlap genetic loci identified in the latest Psychiatric Genomics Consortium meta-analysis of depression.
Understanding the time course of epigenetic influences during emerging adulthood may clarify developmental
phases where changes in the DNA methylome may modulate individual differences in MD risk.

Introduction
Major depression (MD) is highly prevalent, ranking

second in the global burden of disease, with the overall
lifetime risk estimated to be 16.2% in the general popu-
lation1. MD is associated with increased mortality, parti-
cularly suicide1. Among adolescents, MD is associated
with the greatest level of impairment of all psychiatric
conditions, with 16% of females and 12% of males
endorsing at least one major depressive episode (MDE) by
age 182. An early age of onset confers increased risk for

negative socioemotional outcomes including recurrent
MDEs3,4. Adolescence/young adulthood is characterized
by neurophysiological changes (e.g., synaptic pruning,
myelination) that significantly influence brain function
and behavior, which may increase risk for MD and other
psychiatric conditions5. Thus, understanding the genetic
contributions to MD during this dynamic neurophysio-
logical period where peak incidence is observed2,6–8 is
critical to elucidating developmentally informed pathways
to mood disorders.
Twin and family studies robustly demonstrate that

genetic factors play a role in risk for MD, with heritability
estimates of roughly 35% for MD and 45% for early-onset
MD9; these heritability estimates indicate that MD is
suitable for epigenetic study using twins10. Moreover, a
large number of genetic loci have been identified for MD,
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supporting the role of genetic factors in the etiology of
MD11,12. Twin study variance component analyses also
indicate a considerable contribution of unique environ-
mental risk factors to MD9. Due to the substantial link
between environmental hardship and onset of an
MDE13,14, epigenetic mechanisms may, in part, mediate
the influence of environmental stress and combine with
genetic liability to increase MD risk over the lifespan15–17.
Epigenetic mechanisms refer to DNA, chromatin, and
RNA modifications that can influence the expression of
genes but do not alter the underlying genetic sequence.
Animal studies have been critical to establishing a causal
association between early life environments, epigenetic
alterations, and phenotypic outcomes. For example, the
seminal work of Michael Meaney and his research team
reveals the importance of maternal care in altering the
expression of genes that regulate behavioral and neu-
roendocrine responses to stress as well as synaptic
development in the rat hippocampus18–23. Indeed, a
number of animal and human studies demonstrate lasting
epigenetic alterations occurring in the genomes of cells
including changes to postmitotic neurons that integrate
experience-dependent changes24. Thus, the timing of
environmental stress plays an important role in sub-
sequent epigenetic consequences, with early life stress
paradigms in mice and humans demonstrating enduring
changes in epigenetic profiles18,21,25–29.
A number of studies have utilized genome-wide plat-

forms to determine DNA methylation (DNAm) differ-
ences between MD cases and controls. However, as much
as 37% of DNAm variance can be accounted for by genetic
factors30 with recent studies indicating that common
genetic variation (i.e., methylation quantitative trait loci
[mQTLs]) influence DNAm levels31–35. Most MD case-
control studies of DNAm do not account for allelic var-
iation, which means genetic and environmental influences
on DNAm cannot be disaggreagated. In contrast, the
quasi-experimental design afforded by monozygotic (MZ)
twins greatly improves on the unmatched case-control
design (see Supplementary Table 1). The use of MZ twins,
both discordant and concordant pairs for outcome,
adjusts for much of the impact of unmeasured confounds
such as genetic variation, uterine environment, age, sex,
race, cohort effects, and exposure to many shared envir-
onmental events.
The current study utilized the robust MZ twin design

coupled with an analytically powerful approach to detect
differentially and variably methylated DNAm regions
associated with early-onset MD in a sample of adolescent
and emerging adult twins. Studying this developmental
period offers a number of advantages over later life peri-
ods, including fewer confounds to DNAm variability such
as a history of prolonged or multiple psychiatric/medical

comorbidities and medication usage as well as long-term
nicotine use. Moreover, it eliminates the well-known
epigenetic changes associated with aging36–38. The
developmental window of young adulthood also is asso-
ciated with moderate conservation of DNAm that is
nonetheless responsive to environmental signals39, mak-
ing it an ideal sensitive period for the study of MD.

Methods
Participants
One hundred sixty-six MZ twins (83 pairs) were drawn

from a larger sample of twins (N= 430 pairs) enrolled in a
parent study (R01MH101518)40, which was designed to
estimate genetic and environmental contributions to
RDoC Negative Valence Systems constructs using classi-
cal twin modeling (i.e., disaggregating variance into
additive genetic, common shared, and unique non-shared
environmental variation)41–51. Blood samples were col-
lected as part of the parent R01 for future use. Twins were
primarily recruited through the Mid-Atlantic Twin Reg-
istry (MATR), a population-based registry40,41. All parti-
cipants (parents/minor children, adults) provided written
informed consent/assent.
Of the 83 twin pairs initially identified as MZ via the

zygosity questionnaire, five pairs (6.3%) were determined
to be DZ pairs using DNA-based markers and were
removed (for zygosity determination, see Supplementary).
One or both twins from three additional pairs failed
DNA-based quality control checks, reducing the final
analyzed sample to 75 MZ twin pairs (150 twins; see Table
1 for details). Of the 150 twins, 39 twins endorsed a his-
tory of at least one MD episode, resulting in 27 dis-
cordant, 42 concordant negative (i.e., both twins MD
unaffected), and 6 concordant positive (i.e., both twins
MD affected) pairs. All twins were raised together in the
same home and were required to be free of psychotropic
medications/medications with psychotropic effects at the
time of study entry, although ~4.0% (n= 6) endorsed a
history of psychotropic medication use, slightly lower
than the national average42. See full study exclusionary
criteria in Supplementary material.

Measures
Major depression
All twin pairs completed a psychiatric history based on

an expanded version of the Composite International
Diagnostic Interview—Short Form, which queried DSM-5
MD Criterion A and C (see Supplementary for questions
and diagnostic algorithm)43. Current depressive symp-
toms also were assessed using the Short Mood and Feel-
ings Questionnaire (SMFQ), which is a 13-item
questionnaire validated to measure depressive symptoms
in adolescents and adults44.
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DNAm measurements
Genomic DNA was isolated from peripheral blood

according to standard methods using the Puregene DNA
Isolation Kit (Qiagen). An aliquot of 1 µg DNA per subject
was processed for bisulfite conversion (Zymo Research EZ
Methylation Kit) and genome-wide DNAm assayed on the
Infinium Human Methylation 450 K BeadChip micro-
array, which interrogates 485,512 features. Twin pairs
were localized to the same slide to minimize any potential
artefactual differences in DNAm patterns due to batch
effects.
Details of the 450 K microarray have been previously

described45, and raw data processing was performed
according to best practices reported in recent publica-
tions46,47. Intensity values from the scanned arrays were
processed using the minfi Bioconductor package48 in the
R programming environment (R Development Core Team
2015). There were no sample outliers in values of
ancestry-based principal components estimated from
ancestry informative DNAm probes49.
Quality was assessed both quantitatively and visually to

identify samples with poor signal intensity48. Beta values
were derived as the ratio of the methylated probe intensity
to the sum of the methylated and unmethylated probe
intensities50. Beta value density plots from each array were
inspected to tag poor performing arrays based on a large
deviation from the rest of the samples. Probes were fil-
tered if they had a detection P value of greater than 0.01 in
at least 10% of samples or if they have been previously
identified as cross-hybridizing51, leaving a total of 455,828
probes to analyze (Supplementary Fig. 1). Quantile nor-
malization adapted to DNAm arrays52 was applied to
adjust the distribution of type I and II probes to the final
set of screened sample arrays and probes.
For all statistical tests, beta values were transformed

using the M-value procedure to promote normality and
calculated as a logit transformation of the methylated and
unmethylated intensity ratio along with an added constant
to offset potentially small values50. Correlations between
major experimental factors and the top ten principal
components of M-values across all arrays were inspected
to identify extraneous structure that may account for any
batch effects53. ComBat was used to adjust for differences
across arrays due to slide groupings54. Blood cell type
proportions were inferred for each sample to account for
cellular heterogeneity using the Houseman method55.

Analytic approach
The current sample was composed of three types of MZ

twin pairs (i.e., discordant MD, concordant positive,
concordant negative), resulting in a number of potential
statistical contrasts to be tested (see Supplementary
Table 1). Rather than test each concordance group sepa-
rately, which substantially reduces statistical power, we

used all data in one comprehensive linear mixed-effects
model, which generates results similar to a paired t-test56.
All contrasts were simultaneously fit within one linear
model, allowing the filtering out of CpGs (i.e., cytosine
nucleotide linked to guanidine nucleotide by phosphate)
emerging from inconsequential contrasts not of interest

Table 1 Demographic and clinical characteristics of twins
meeting definite or probable DSM-5 criteria for lifetime
history of MD (MD Affected) versus no lifetime history of
MD (MD Unaffected).

M (SD) or n (%)

MD unaffected

n= 111

MD affected

n= 39

t/χ2 P

Demographic/Sample

Age, years 17.49 (1.3) 17.60 (1.3) 0.66 0.51

Sex, female 81 (73.0%) 29 (74.4%) 0.28 0.87

thnicity, Hispanic 5 (4.5%) 3 (7.7%) 0.58 0.43

Nicotine usea,

current smoker

2 (1.8%) 3 (7.7%) 3.11 0.11

Clinical characteristics

SMFQ 4.4 (3.7) 9.0 (6.0) 6.40 <0.001

History of psychotropic

medication use

2 (1.8%) 4 (10.3%) 0.64 0.62

Panic attackb 10 (9.0%) 6 (15.4%) 1.19 0.28

Social anxiety disorder 10 (9.1%) 8 (20.5%) 3.54 0.08

Specific phobia 8 (7.3%) 7 (17.9%) 3.63 0.07

Generalized anxiety

disorder

2 (1.8%) 4 (10.3%) 5.31 0.04

MD features

Age of onset (years) – 14.9 (1.7)

Number of major

depressive episodes, n

1 episode – 17 (43.6%)

2–3 episodes – 16 (41.0%)

4–5 episodes – 3 (7.7%)

≥6 episodes – 3 (7.7%)

Time since last MDE

(years)

– 1.31 (1.7)

Number of symptoms

during worst MDE

– 5.69 (1.1)

SMFQ Short Mood and Feelings Questionnaire.
aFor smokers, Fagerstrom test for nicotine dependence scores ranged 2 (low
dependence) to 6 (moderate dependence) with a Mode= 2, Median= 2, and
Mean= 3.
bNo case meet full criteria for panic disorder.
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(i.e., contrasts 2–5). For example, contrasts 4 and 5
compare CpGs within twins of a concordant negative pair
and a concordant positive pair, respectively. This
approach retains all the advantages of a typical discordant
MZ twin design with the added benefit of including
negative controls by inclusion of the set of concordant
pairs. This conservative approach was taken by retaining
only those probes that were unique to the primary con-
trast of interest (MD affected versus MD unaffected).
Within the linear model, lifetime early-onset MD status

and natural killer (NK) cell proportion served as fixed
effects, and a random effect term was included to account
for the correlated structure of twin pair membership. NK
cell proportion was the only estimated cell type nominally
significantly different between MD cases and controls
(t= 0.266, p= 0.051) and, therefore, it was included as a
covariate to control for potential bias that might arise
from DNAm differences due to changes in NK blood cell
proportions rather than those attributable to DNAm
changes associated with MD itself. Sex and age were not
included as fixed effects given no association with MD
(age, p= 0.53; sex, p= 0.87).

Identifying regional DNAm change
Based on observations that the average correlation

between probes on the 450 K microarray within ~250 base
pairs (bp) is 0.83 and within 1 kb is 0.4557–59, several
methods have been proposed to take advantage of this
structure to identify consistent DNAm change across a
contiguous region57,58,60,61. Current approaches quantify
regional DNAm change either as a mean difference (dif-
ferentially methylated region [DMR]) or as a difference in
variance (variably methylated region [VMR]). Due to the
sparse and highly clustered placement of features on the
Illumina 450 K platform, a custom approach for defining
DMRs and VMRs was developed for this study adapted
from the algorithm proposed by Ong et al.46,57. They
suggest both a regional and individual CpG probe
approach run in tandem since ~25% of probes do not have
a neighboring probe within 1 kb. To this end, the single-
probe analysis provided the raw materials for the regional
approach adopted to identify and assess significance of
DMRs and VMRs. Type I error rates were estimated from
empirical P values for all univariate statisitics (mean level
and variance based tests) described below were calculated
using a permutation approach. For k= 1000 reordering’s,
the outcome variable was resampled in a way that pre-
served the discordance/concordance pair status fre-
quencies. The false discovery rate (FDR)62 was estimated
from the distribution of these empirical P values.

Differentially methylated regions
Univariate tests were performed by fitting a linear

mixed-effects model63 separately for each probe by

regressing the normalized DNAm probe intensity on
lifetime MD status while adjusting NK cell proportion. A
random effect term was included to account for the cor-
related structure of twin pair membership. Probes were
filtered if they had a P value < 0.05 in any contrast not of
interest. From this reduced set, differentially methylated
probes (DMPs) were called significant at an FDR < 0.01 in
the contrast of interest (Supplementary Fig. 1). DMRs
were constructed using the same univariate test statistics.
Regions were built with univariate tests filtered for sta-
tistics in the 1st and 99th quantile for effects not of
interest and retained for statistics in the 5th and 95th
quantile for the effect of interest. (Supplementary Fig. 2)
From this set of CpG probes, a candidate DMR was
defined as having at least 2 contiguous CpGs within 1 kb.
The strength of a DMR association was estimated by a test
statistic reflecting the area of influence approximated by
the trapezoidal rule where the height (h) was the length in
base pairs between two contiguous CpGs and a and b
were the univariate test statistic for the contiguous CpGs.
For DMRs with more than two CpGs, the area for each
contiguous pairing was summed to represent the area
under the curve (AUC) for the entire DMR. All probes in
the DMR had the restriction of test statistics with the
same sign. A positive test statistic indicated hyper-
methylation in cases versus controls while a negative test
statistic indicated hypomethylation.

Variably methylated regions
A similar strategy was adopted to identify VMR (see

Supplementary Fig. 2). In this case, the univariate test
statistic calculated was the F-value comparing the var-
iance of two samples, cases versus controls. Probes were
filtered if they had a P value < 0.05 in any contrast not of
interest. From this reduced set, VMPs were called sig-
nificant at an FDR < 0.01 in the contrast of interest. VMRs
were constructed using the same univariate test statistics.
Regions were built with univariate tests filtered for sta-
tistics in the 1st and 99th quantile for effects not of
interest and retained for statistics in the 10th and 90th
quantile for the effect of interest. VMRs were restricted to
at least two contiguous probes within 1 kb whereby all
probes had the restriction of either increasing or
decreasing variability in cases versus controls. The
strength of regional influence for variance differences was
estimated using the trapezoidal rule, as was used pre-
viously for DMRs.

Significance assessment of regional change
The statistical significance of DMR and VMR AUC

estimates were assessed using a rank-based permutation
method64. This nonparametric method estimates an FDR
without relying on strong assumptions about the nor-
mality of the data. The k= 1000 permutations of
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univariate tests were used to estimate the expected order
statistics. The FDR was calculated based on the observed
versus expected null scores. Briefly, for a range of
thresholds, regions are called significant if the value of the
observed ordered test statistic minus the mean value from
the permuted rank exceeded a given threshold. The
number of falsely called regions is the median number of
regions that exceed the lowest AUC value of regions
called significant. The FDR is calculated as the ratio of the
number of falsely called regions to the number of regions
called significant. An implementation of the SAM algo-
rithm is available as an R package65 but was recoded to
allow for flexibility in specifying models for the twin data
and to trim extreme test statistics likely to be false posi-
tives before the calculation of the FDR.

Functional and regulatory enrichment
The distribution of significant CpG probes and regions

identified to be differentially and variably methylated by
MD status were examined separately across functional
and regulatory annotations. CpG findings were mapped to
known genes66 for enrichment of Gene Ontology classi-
fications67 using clusterProfiler68. Classification functions
included biological processes, cellular components, and
molecular function, in addition to KEGG pathways. Tests
for nonrandom association of CpG island features and
ChromHMM chromatin states were based on the
AH5086 and AH46969 tracks from the AnnotationHub
package69, respectively. CpG island shores were defined as
being 2 kb regions flanking CpG islands while shelves
were demarcated as 2 kb upstream or downstream shore
regions70. A test of enrichment for each of these anno-
tations was calculated by comparing the proportion of
sequence from the intersection of significant CpG regions
with the regions defined by the annotation feature.
Bootstrap methods using 1000 resamplings were used to
estimate 95% confidence intervals. This observed overlap
was compared to an empirical distribution of random
samples of genome groups of the same size and structure
drawn from the background set under consideration.
Empirical P values were calculated from 1000 random
reorderings of the data using standard methods71.

PGC GWAS enrichment
A similar resampling method was performed to count

the number of significant CpG regions that overlapped
with the findings of a recent genome-wide association
study (GWAS) meta-analysis conducted by the Psychia-
tric Genomics Consortium (PGC) group11. Specifically,
data from the Wray et al. study11 which specified the
coordinates for the linkage disequilibrium (LD) blocks of
each of the 44 hits was used. The region boundaries of the
DMPs/DMRs/VMPs/VMRs to the allelic LD block
boundaries was compared. Only direct overlaps were

included (i.e., being close to the boundary was not suffi-
cient to count as an overlap). The depression phenotype
in this meta-analysis is derived from a number of different
methods including clinical interview, self-report, electro-
nic medical record abstraction, and self-report of a life-
time diagnosis. This study identifies 44 MD-associated
loci across 18 chromosomes, which includes genes enri-
ched for targets of antidepressant medication. The non-
random frequency of overlap between the significant CpG
regions and the 44 independent PGC findings was asses-
sed using bootstrap and permutation approaches from
1000 data resamplings.

Blood–brain DNAm associations
The majority of epigenetic studies conducted to date

have relied on peripheral blood as the primary tissue
source, but use of this tissue has been questioned in the
context of psychiatric disorders where the primary tissue
of interest is brain. Use of peripheral tissues is necessary
and knowing whether DNAm markers in the periphery
mirror those in the brain is key. Thus, the Image-CpG
database72 was used to determine which peripheral blood
loci were informative markers of the brain for measure-
ments of DNAm. The Image-CpG database includes
DNAm data derived from four tissues including brain,
blood, saliva, and buccal cells from a sample of medically
intractable epilepsy patients. Resected brain tissue sam-
ples were acquired from multiple brain regions including
the temporal cortex, hippocampus, amygdala, frontal
cortex, frontal lobe, and insular cortex; sampled brain
regions varied by participant. Correlations are available
for DNAm measurements using the Infinium Human-
Methylation450 chip. Summary statistics are provided to
the public including Spearman rho correlations and
p values for tissue pairs. For the purpose of this paper, we
were interested in the blood–brain tissue correlations for
all significant CpGs located in DMRs and VMRs. Thus,
the median rho for CpGs included in each DMR and
VMR was computed as well as the minimum and max-
imum rho for CpGs.

Results
Sample characteristics
MZ twins meeting DSM-5 MD criteria at the probable

or definite level self-reported higher depression symptom
scores on the SMFQ and had higher rates of generalized
anxiety disorder compared to MD unaffected twins
(t(1,146)= 6.4, p < 0.001); χ2(1)= 5.31, p= 0.04, respec-
tively; Table 1). For those twins meeting DSM-5 criteria
for at least one MDE, the mean age at onset was ~15
years, and the majority of twins (~85%) reported experi-
encing 3 or fewer MDEs in their lifetime. Most MD
affected twins (82%) reported five or more symptoms
during their worst lifetime MDE. The mean length of time
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since last MDE was 1.31 years (SD= 1.7, range: 0–6.67
years), with 63% of MD affected twins experiencing their
last MDE in the past year. Participant age, sex, self-
reported ethnicity, and smoking behavior did not differ by
MD status. See the Supplementary for additional analyses
related to smoking.

Differentially methylated probes and regions
From the set of 455,828 screened CpG probes, 50,990

background regions could be created, covering 59.9
megabases. Following univariate tests, a total of 3995
regions consisting of 28,600 CpG probes could be con-
sidered candidate DMRs (see Supplementary Fig. 1. From
these, seventeen DMRs were identified as significantly
associated with MD (all hypermethylated in MD cases) of
which 15 mapped onto genes (FDR < 10%; see Table 2).
The number of CpG probes in significant DMRs ranged
from 3 to 7 (median= 4). Individual probe testing (DMP)
resulted in 59 hypomethylated and 77 hypermethylated
CpG sites with respect to MD status (FDR < 1%; Supple-
mentary Table 2). The combined set of 30.6 kb DNA
sequence covered by significant DMR and DMP findings
had a nonrandom pattern of enrichment across
ChromHMM annotations, specifically sites of strong
transcription (p= 0.019), enhancers (p= 0.045), ZNF

genes/repeats (p= 0.001), heterochromatin (p= 0.013),
and weak repressed polycomb (p= 0.045) (Supplementary
Fig. 3) and CpG island relationships which included both
north (p= 0.024) and south (p= 0.003) shelf regions
(Supplementary Fig. 4). Effect sizes (R2) were computed
for all DMPs, with a median R2 of 0.063 (range
0.024–0.139; see Supplementary Table 2 for DMP R2

values).

Variably methylated probes and regions
Regional analysis identified ten VMRs significant from a

total of 11,055 candidate regions (FDR < 17%). Seven of
the VMRs mapped onto genes (Table 3). Significant
VMRs were all more variable in MD cases, and the
number of CpG probes in these regions ranged from 2 to
11 (median= 4). The VMP analysis yielded 560 significant
VMP findings (FDR < 1%), all of which were more variable
in MD cases except for a single probe (Supplementary
Table 3). The combined set of VMR and VMP DNA
regions of 16.6 Kb reflected a nonrandom enrichment
with ChromHMM annotations for 5′/3′ transcription
(p= 0.035), genic enhancers (p= 0.024), and hetero-
chromatin (p= 0.050) (Supplementary Fig. 5) and CpG
island relationships within the south shelf (p= 0.029)
(Supplementary Fig. 6).

Table 2 Differentially methylated regions (DMRs) where MD affected twins exhibited higher means compared to MD
unaffected twins and blood–brain correlationsa for CpGs within a DMR.

Chr Start End Symbol EntrezID Number CpGs Empirical AUC Median Bl–Br Corr Min Bl–Br Corr Max Bl–Br Corr

chr1 36787678 36789401 SH3D21 79729 3 3836.37 −0.21 −0.44 −0.18

chr1 221053841 221055665 HLX 3142 4 4242.35 0.01 −0.18 0.61

chr2 240035107 240036791 HDAC4 9759 3 4057.64 −0.08 −0.16 0.15

chr5 1090741 1092417 SLC12A7 10723 4 3818.33 0.08 −0.09 0.43

chr5 171709917 171711524 UBTD2 92181 3 4070.73 0.43 0.04 0.55

chr5 176936563 176938522 DOK3 79930 6 3826.30 −0.33 −0.47 0.09

chr6 30519905 30521619 NA NA 5 3861.90 0.41 −0.19 0.55

chr6 31828260 31830030 NA NA 4 4558.54 0.40 0.03 0.54

chr6 32797253 32798887 NA NA 4 3849.67 0.24 −0.18 0.44

chr6 39281541 39283313 KCNK17 89822 3 4122.08 −0.03 −0.04 0.26

chr6 146863647 146865487 RAB32 10981 7 4701.74 −0.22 −0.53 0.27

chr16 2023998 2025868 TBL3 10607 4 4329.89 0.20 −0.02 0.44

chr16 58767249 58769104 GOT2 2806 4 4046.93 0.02 −0.58 0.24

chr17 46659019 46660940 HOXB3 3213 4 4501.78 −0.05 −0.24 0.03

chr17 70116185 70118162 SOX9 6662 4 4120.22 0.27 −0.10 0.50

chr19 13213428 13215387 LYL1 4066 3 4381.78 −0.33 −0.44 0.04

chr21 38069321 38070994 NA NA 4 3892.48 −0.18 −0.45 0.02

Bl blood, Br brain.
aCorrelations were obtained from the ImageCpG databaseAM72.
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Gene enrichment analysis
Genes that mapped to significant differentially or vari-

ably methylated findings were combined for gene-based
enrichment to provide an overview of all DNAm con-
tributions at a functional level. The results of enrichment
tests yielded significant over-representation for biological
processes (BP) and cellular function (CF), and no
enrichment for molecular function or KEGG pathways, at
FDR < 10% (Table 4). The BP gene category associations
were hemophilic cell adhesion and cell–cell adhesion
while the significant terms for CF were associated with
functions of neurons, including neuron projection ter-
minus, terminal button, axon part, cell projection part,
axon, and presynapse.

Relationship between early-onset MD DNAm markers and
PGC MD-associated genetic Loci
A total of 6 differentially methylated sites (including

DMP/DMRs; p= 0.002; 95% CI= 2–11) (Supplementary
Table 4) and 12 variably methylated sites (including
VMPs/VMRs; 95% CI= 5–19, p= 0.008) (Supplementary
Table 4) overlapped significant PGC GWAS loci. These
enrichment results were largely driven by overlap
observed with the PGC GWAS locus on chromosome 6 at
27.738–32.848Mb (Fig. 1). At this locus, 5 of 6 differen-
tially and 10 of 12 variably methylated sites overlapped.

Relationship between blood and brain DNAm markers
Tables 2 and 3 include the median Spearman rho cor-

relation as well as minimum and maximum correlation
for CpGs included within each DMR and VMR, respec-
tively. Across all DMRs, the median correlation between
blood and brain CpGs ranged −0.33 to 0.43. The

magnitude of the minimum and maximum correlations
was similar (rho=−0.58 and rho= 0.61, respectively).
For VMRs, the median correlation between blood and
brain CpGs ranged −0.12 to 0.67. The minimum rho
observed was −0.45 while the maximum rho was 0.84.

Discussion
The main objective of the current study was to identify

differentially and variably methylated positions and
regions that distinguished MZ twins with and without a
history of early-onset MD. Across BP and CF domains of
the gene enrichment analysis, there was consistency in the
functional attributes of the genes related to neural
structures and processes as a key differentiating feature
between MD affected and unaffected MZ twins. BP gene
ontologies referenced homophilic cell adhesion and
cell–cell adhesion processes, which are involved in brain
functioning.
A number of cadherins and protocadherins emerged in

the cell adhesion gene sets with MD affected persons
demonstrating increased variation in two cadherins
(CDH3, CDH6), the clustered protocadherin alpha family
(PCDHA), and two non-clustered protocadherins
(PCDH10, PCDH20). CDHs/PCDHs are a group of cal-
cium dependent cell–cell adhesion molecules that are
abundantly expressed in the nervous system and play a
major role in multiple steps essential to neurodevelop-
ment (e.g., dendrite arborization, synaptogenesis73–78).
The DNAm profile of the PCDHs is known to be
responsive to environmental factors79, and emerging evi-
dence suggests a role for PCDHs in multiple psychiatric
phenotypes including MD80,81. Two small twin studies
analyzing peripheral blood samples report an association

Table 3 Variably methylated regions (VMRs) where MD affected twins exhibited greater variance compared to MD
unaffected twins and blood–brain correlationsa for CpGs within a VMR.

Chr Start End Symbol EntrezID Number CpGs Empirical AUC Median Bl–Br Corr Min Bl–Br Corr Max Bl–Br Corr

chr3 39321449 39323539 CX3CR1b 1524 4 5572.92 0.67 −0.10 0.82

chr3 46925081 46925524 PTH1R 5745 2 5031.13 0.04 −0.12 0.19

chr3 170136920 170137321 CLDN11 5010 2 5110.24 −0.12 −0.45 0.22

chr6 32049516 32049825 NA NA 3 5038.87 0.18 0.18 0.27

chr6 169284344 169287304 NA NA 5 5276.01 0.27 −0.04 0.31

chr6 170595385 170597898 DLL1 28514 8 5628.62 0.38 0.16 0.61

chr7 157225062 157225567 NA NA 2 5131.48 0.81 0.79 0.83

chr10 134739746 134741032 CFAP46 54777 4 5667.46 0.13 −0.30 0.16

chr11 64510112 64513156 RASGRP2 10235 7 5458.44 −0.12 −0.37 0.84

chr17 40837037 40839469 CNTNAP1 8506 4 5035.57 0.35 0.16 0.48

Bl blood, Br brain.
aCorrelations were obtained from the ImageCpG database72.
bMissing one CpG from ImageCpG database.

Roberson-Nay et al. Translational Psychiatry          (2020) 10:301 Page 7 of 12



between several cadherin/protocadherin genes and twin
pairs repeatedly discordant for elevated depression
symptoms82 as well as a history of MD or an anxiety
disorder83. A related study observed increased DNAm in
PCDH gene families with the highest enrichment of
hypermethylated sites in the PCDHA genes located in the
hippocampus of suicide completers with a history of
severe childhood abuse20. At the genetic variant level, a
recent meta-analysis detected an SNP (rs9540720) in the
non-clustered PCDH9 gene to be significantly associated
with MD case status at the genome-wide level84, and a
related gene that encodes a protein of the same family
(PCDH17) was found to confer risk for mood disorders85.
Moreover, expression patterns of Pcdh genes have been
examined in rodent brain regions involved in the neuro-
circuitry of MD86, with results indicating high expression
levels in subregions of the hippocampus and basolateral
amygdaloid complex86,87. The clustered PCDHA family
also is strongly expressed in serotonergic neurons88–90

and PcdhαC2 is necessary for axonal tiling and assembly
of serotonergic circuitries90. Thus, a comprehensive
understanding of the genetic architecture of the devel-
oping adolescent/young adult brain may be critical to
identify etiological determinants of MD.
Additional genes/gene regions previously linked to MD,

stress, or psychiatric/substance use disorders differ-
entiated twins with and without a lifetime history of MD
(e.g., HDAC4, NRG3, CRHR2)91–97. Moreover, 6 differ-
entially methylated and 12 variably methylated findings
overlapped loci identified in a recent PGC GWAS of
depression. These enrichment results were primarily dri-
ven by regions in the extended MHC region chromosome
6, which has been associated with both depression, bipolar
disorder, and schizophrenia98,99. The MHC also is densely
populated with genes related to neuronal signaling and
plays a role in immunity. Other genes related to immune
functioning (e.g., CX3CR1, IL23R)100–103 also emerged.
Study results support multiple etiologic pathways to MD
and indicate that complex genetic disorders such as MD
likely reflect a large number of independent genetic fac-
tors that each contribute a small amount of variance to
disease susceptibility and multiple psychiatric diseases
likely share genetic risk factors.
The ImageCpG database was used to determine which

peripheral blood loci were revealing of brain for mea-
surements of DNAm. While unique and informative, the
Image-CpG dataset includes brain and blood correlations
from a small sample of ten subjects with medically
intractable epilepsy. Moreover, while tissue was gathered
from several of the most optimal brain regions involved in
the pathophysiology of MD (e.g., amygdala, hippo-
campus), there was varation in brain tissue collection
across participants and not all brain regions relevant
to MD were assessed (e.g., nucleus accumbens).Ta
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Nonetheless, this valuable dataset provided an opportu-
nity to determine the correspondence between blood and
brain DNA markers. Strong correlations were observed
for a number CpGs, indicating a reasonable level of
resemblance between brain and blood. The most striking
blood–brain association was observed for the VMR of the
CX3CR1 gene (median rho= 0.67 and maximum rho=
0.82). The magnitude of association also was generally
higher for CpGs involved in VMRs compared to DMRs
and some correlations were robustly negative, indicating
blood–brain relationships where CpGs are hypermethy-
lated in one tissue and hypomethalated in the other.
Overall, a number of markers exhibited promising asso-
ciations, supporting the potential of blood to track MD.
Strengths of the current study design include its use of

both discordant and concordant MZ twins in conjunction
with a sensitive developmental window to reveal genome-
wide DNAm biomarkers associated with early-onset MD.
Limitations of the current study include its reliance on an
all Caucasian sample, which may reduce the general-
izability of findings. Consistent with epidemiological
findings104, females represented the majority of the sam-
ple. Thus, increased numbers of males are needed to
determine potential sex-related differences. The cross-
sectional design of the current study also does not allow
for determination of epigenetic differences as cause or

consequence of MD onset. Finally, like many DNAm
studies, DNA was derived from a peripheral tissue (i.e.,
blood) versus brain tissue, with the latter being the tissue
of primary interest for psychiatric disorders. Nonetheless,
these results add to the literature, showing an association
between the early life major depression and differential
DNAm patterns. As a next step, it will be necessary to
characterize the longitudinal course of epigenetic influ-
ences during emerging adulthood to clarify how the DNA
methylome contributes to the pathoetiology of MD.

Web resources
Image-CpG database: http://han-lab.org/methylation/

default/imageCpG.
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