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Organic greenhouse farming is an innovative system that may maintain a high yield
and healthy agroecosystem. There have been no rigorous studies on the comparison
of total and nitrogen-cycling bacterial community in vegetable soils between organic
and conventional farming management at large scale. A survey of bacterial community
and nitrogen cycles from soils under organic and conventional greenhouse farming
was performed at 30 sites, covering seven soil types with 4 to 18 years of organic
farming history. Communities of the total, diazotrophs and ammonia-oxidizing bacteria
were studied with high-throughput sequencing of the 16S rRNA, nifH and amoA
genes, respectively. Organic greenhouse farming did not influence alpha diversities. Beta
diversities among the total (26/30) and diazotrophic (17/19) bacteria differed between
farming systems, but compositional differences in ammonia-oxidizing bacteria between
the two farming systems were only detected at 6 sites. Despite the effects of farming
system on most bacterial genera were varied across different sites, organic greenhouse
farming persistently selected for a few genera, possibly for the biodegradation of organic
carbon with high molecular weight (Hyphomicrobium, Rubinisphaera, Aciditerrimonas,
Planifilum, Phaselicystis, and Ohtaekwangia), but against putative ammonia oxidizing
(Nitrosospira, Nitrosopumilus) and diazotrophic (Bradyrhizobium) bacterial genera, as
determined by 16S rRNA analysis. Diazotrophic bacteria affiliated with nifH cluster
1J were preferentially associated with organic greenhouse farming, in contrast to
Paenibacillus borealis. In summary, this study provides insights into the complex
effects of organic greenhouse farming on the total, diazotrophic and ammonia oxidizing
bacterial communities across different environmental context.

Keywords: organic greenhouse farming, bacteria, diazotrophs, ammonia-oxidizing bacteria, high-throughput
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INTRODUCTION

In China, greenhouse vegetable production increased rapidly,
with a yield of ca. 260 million tons in 2014, accounting for
35% of the total vegetable production (National Bureau of
Statistics of the People’s Republic of China [NBSC], 2014;
Zhong Jing Hui Cheng Institute of Urban-Rural Planning and
Design [ZIURPD], 2014). Intensive agricultural management,
such as continuous cropping and overuse of chemical fertilizers,
pesticides, irrigation or tillage, can maintain high but short-
term productivity. However, soil degradation (Hannachi et al.,
2015), severe greenhouse gas emissions (Alam et al., 2019),
contamination of groundwater (Yang et al., 2018), loss of organic
matter (Scotti et al., 2015), and accumulation of pesticides (Chen
et al., 2015) frequently lead to failure of sustainable production,
especially under greenhouse conditions. Adaptation of organic
agricultural management into greenhouse vegetable production
may mitigate these adverse environmental problems. In general,
organic greenhouse farming delivered greater ecological services
but smaller (between 5 and 34%) productivity than conventional
farming (Bengtsson et al., 2005; Seufert et al., 2012). Due to price
premiums for organic foods, organic farms could still achieve
income levels similar to or higher than those of comparable
conventional farms (Qiao et al., 2018). In China, the total area for
organic vegetable production reached 148,500 hectares by 2017,
accounting for 6% of the commercial vegetable planting area1.
Although whether organic greenhouse farming can mitigate
climate warming is controversial (Searchinger et al., 2018; Smith
et al., 2019), the positive effects of organic greenhouse farming on
ecosystem functions such as soil fertility (Gomiero et al., 2011)
and plant health (Van Bruggen et al., 2016) are very promising.

Soil bacteria, providing the majority of biodiversity in soil
ecosystems, participate in almost every crop-soil interaction,
including in soil carbon and nitrogen cycling (Thorpe and
Callaway, 2011; Che et al., 2018), plant growth and health (Janvier
et al., 2007; van Bruggen et al., 2015), and the maintenance
of soil architecture (Bonanomi et al., 2016). For example,
aerobic ammonia oxidation mediated by β- and γ-proteobacteria
is the rate-limiting step in nitrification, which is associated
with nitrogen availability to plants, the leaching of nitrate
into groundwater or N2O emission (Di and Cameron, 2016).
Diazotrophic bacteria can transform atmospheric N2 into a
biologically useful form, and the nifH gene encoding a subunit
of nitrogenase reductase (Kuypers et al., 2018) is often used as
a genetic marker for the molecular analysis of N-fixing bacteria
(Levy-Booth et al., 2014). Functional populations involved in
nitrogen fixation or nitrification are associated with soil fertility
and high nitrogen use efficiency (Levy-Booth et al., 2014).
Free-living or symbiotic diazotrophic bacteria contribute to the
gaining of biological useful nitrogen while ammonia-oxidizing
bacteria (AOB) or ammonia-oxidizing archaea (AOA) could
oxidize ammonia into nitrite and further into nitrate which
can easily loss during leaching. Here, we studied greenhouse
agriculture where excessive nitrogen was often applied to
maintain high vegetable productivities, AOB was selected as

1http://www.cir.cn/

indicative microbial populations due to it were more responsive
to higher N inputs (Hink et al., 2018).

The effects of organic farming on the soil microbiome are
complex. Previously, its effects on the taxonomic compositions
of the soil microbiome have been explored under field
(Dennert et al., 2018) and greenhouse (Hartmann et al., 2015;
Ding et al., 2019) conditions. Organic farming enhances soil
microbial abundance and activity (Lori et al., 2017; Ouyang
et al., 2018b) and shifts microbial community compositions
(Moeskops et al., 2010; Bonanomi et al., 2016). However,
the effects on microbial alpha diversity (Lupatini et al., 2017;
Chen et al., 2018) and specific taxonomic groups (Tuck
et al., 2014) has varied between studies (Postma et al., 2008;
Bonanomi et al., 2016) and across time (Wu et al., 2019).
The effects of organic fertilizer on the diversity and abundance
of ammonia-oxidizing bacteria have been evaluated extensively
(Chu et al., 2007; Ouyang et al., 2018a). The abundance or
relative abundance of ammonia oxidizing bacteria tends to
be lower in organic than conventional or integrated farming
systems (Wessen et al., 2011; Ding et al., 2019). In a farm-
scale field study, the community composition of ammonia
oxidizing bacteria and archaea showed no difference between
organic and integrated farming systems (Wessen et al., 2011).
In a greenhouse experiment, organic farming altered the
ammonia-oxidizing bacterial community (Ding et al., 2019).
Agricultural management may enrich the abundance and
diversity of diazotrophic bacteria (Köberl et al., 2016), but a direct
comparison between organic and conventional farming systems
is rare (Ding et al., 2019). The effects of organic greenhouse
farming on soil microbial diversity are likely to be context
dependent. Here, we hypothesized that organic greenhouse
farming may still cause persistent, indicative changes in total,
diazotrophic and ammonia oxidizing bacterial communities in
the soil microbiome across different environmental context.
This knowledge is significant to deepen our understanding of
the mechanisms associated with ecological services delivered by
organic greenhouse farming.

In the present study, a survey including thirty sites in China
was performed in July 2017 to study the interplay between
organic greenhouse farming and the soil microbiome. The
diversities of total, diazotrophic and ammonia-oxidizing bacteria
were explored by high-throughput sequencing analyses of PCR
amplified 16S rRNA, nifH and amoA gene fragments. The
aims of the present study were to (1) examine the interplay
between organic greenhouse farming and total, diazotrophs, and
ammonia-oxidizing bacteria across different sites; (2) identify the
key factor underlying the interplay; and (3) identify persistent,
predictable changes in those microbial populations.

MATERIALS AND METHODS

Soil Sampling
A total of 30 sites located in the regions with the most
organic farms in China were selected (Figure 1). These sites
represent 4 to 18 years of organic greenhouse management
and seven soil types. Eight and six sites were in Beijing
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FIGURE 1 | Locations of organic and conventional farms for greenhouse vegetable production. The colors on the points indicate soil types: black (Beijing, brown
lime soil), blue (Hebei, cinnamon soil), yellow (Henan, alluvial soil), magenta (Shandong, brown soil), green (Jiangsu, yellow brown soil), red (Shanghai, saline soil) and
purple (Chengdu/Chongqing, purple soil).

and Shanghai, respectively (Figure 1). All studied organic
farms were certified. Organic greenhouse farming was
performed according to the basic standards of the International
Federation of Organic Agriculture Movements (IFOAM) by
using biological and physical methods for plant protection
and organic fertilizers (farmyard manure and commercial
organic fertilizer) (Table 1). Frequently, both organic and
mineral fertilizers were used in conventional farms, in which
chemical agents for weed (glyphosate and oxalamine), disease
(azoxystrobin and thiophanate methyl) and insect (chlorfenapyr
and lufenuron) control as well as synthetic plant growth
regulators were applied (Table 1). For each site, three adjacent
conventional and organic greenhouses with the same crop
(tomato, cucumber, eggplant, or green pepper), the same
soil types and similar cropping rotations, were selected by
interviewing local farmers. For each replicate, ten drills of
topsoil (0–20 cm) were collected (approximately 1 kg). Samples
were transported to the lab in a cool box and kept at −20◦C
prior to DNA extraction, which was performed after sieving
the samples through a 2-mm mesh. The soil physicochemical
properties total nitrogen (TN), total carbon (TC), pH, electrical
conductivity (EC), density, available nitrogen (AN), Olsen
phosphorous (Olsen P), available potassium (K) and cation
exchange capacity (CEC) were determined according to standard
protocols (Bao, 2000).

PCR Amplification of 16S rRNA, amoA,
and nifH Genes
Total community DNA was extracted using the FastDNA
Spin Kit for Soil (MP Biomedicals, Santa Ana, Carlsbad, CA,
United States) according to the manufacturer’s instructions. The
primers used for amplification of the 16S rRNA, amoA and nifH
genes are given in Supplementary Table S1 (Rotthauwe et al.,
1997; Poly et al., 2001; Tamaki et al., 2011). PCR products were
gel purified, quantified and pooled, with equimolar amounts for
each sample, for high-throughput sequencing on the Illumina
Hi-Seq platform by using the Reagent Kit v2 2 × 250 bp (Hi-
Seq platform 2500).

Bioinformatic and Statistical Analyses
Sequences of high quality (length >300 bp, without ambiguous
base “N,” and average base quality score >30) were used
for downstream analyses. Sequences of the 16S rRNA and
nifH genes were assembled using the software package mothur
v1.39 (Schloss et al., 2009) and were further assigned to each
sample based on barcodes and primers. Bidirectional sequences
of the amoA genes were assigned to samples separately due
to insufficient read length. Denoising, OTU assignment, and
classification of the 16S rRNA gene were performed as previously
described (Schloss et al., 2009; Caporaso et al., 2010; Cole
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TABLE 1 | Details of agricultural managements under the long-term greenhouse experiments.

Farming systems Organic Conventional

Vegetable species Leafy vegetables (green vegetables and leek), Melons and
fruits (tomatoes, cucumbers, eggplants, and green
peppers)

Leafy vegetables (green vegetables and leek), Melons and
fruits (tomatoes, cucumbers, eggplants, and green
peppers)

Fertilization types Seedling medium, commercial organic fertilizer, liquid
fertilizer, natural mineral fertilizer and composting fertilizer

Compost, urea, calcium superphosphate and potassium
chloride, compound fertilizer

Plant protection
Insects Sticky yellow paper traps and insect net, natural botanical

pesticide (pyrethrin, matrine)
Insect net, boscalid, acetamiprid, prochloraz manganese
salt, chlorfenapyr

Plant diseases Biopesticide, mechanical removed diseased plants, pest
and disease resistant varieties, ridging planting

Biocontrol, bactericide, ridging planting

Weed Artificial/mechanical weed removing Artificial/mechanical weed removing, herbicide

Measures to improve soil fertility Returning straw to field, green manure, covering, high
temperature stuffy shed, plowing

Returning straw to field, green manure, covering, high
temperature stuffy shed, plowing

Irrigation methods Flood irrigation, spray irrigation, trickle irrigation Flood irrigation

et al., 2013; Ding et al., 2012, 2019). For the nifH and amoA
genes, a standalone BLASTX analysis was performed against
corresponding functional gene sequences downloaded from the
RDP database to identify correct translation frames. Only those
sequences with no stop codon within their deduced amino acid
sequences were included for further analysis. Deduced amino
acid sequences were further subjected to hmmscan analysis to
identify nifH or amoA gene sequences. The hmm profile was
acquired from the RDP FunGene website2. Amino acid sequences
of nifH were further assigned to OTUs (>95% sequence identity)
using vsearch software. Representative OTUs of nifH were
assigned to different subgroups using the curated database as
described by Zehr et al. (2017). For amoA genes, the selected
sequence was grouped into OTUs at 80% identity by analyzing
representative sequences of different subgroups as described
previously (Li et al., 2011; Guo et al., 2017). Discriminative
taxa, OTUs and differences in community composition and
co-occurrence network were mainly examined as described
previously (Hothorn et al., 2008; Li et al., 2019). Briefly,
significant differences in microbial community composition
were compared by permutation test (Kropf et al., 2004) using
the calculated pairwise Bray-Curtis distance. Based on the
“Vegan” package, alpha diversity indexes (Chao1, Simpson,
and Pielou’s evenness) were calculated by 1000 re-samplings
of an equal amount of sequences from each sample to
alleviate biases caused by read number or individual sampling.
Comparisons of community composition, identification of taxa
with significantly different relative abundances and network
analysis were performed as previously described (Li et al., 2019).
Classification random forest analyses were also performed with
the R-addon package “randomForest” (Liaw and Wiener, 2002)
to identify key taxa for farming systems. This network was
analyzed using Gephi (version 0.91) software (Bastian et al.,
2009). All statistical analyses and plotting were performed with
R 3.1.2 software3, and these tools were implemented in a
Galaxy instance4.

2http://fungene.cme.msu.edu/
3http://www.r-project.org/
4www.freebioinfo.org

RESULTS

Effects of Organic Greenhouse Farming
on the Alpha and Beta Diversities of Soil
Bacteria
Soil bacterial diversity from organic and conventional
farms at 30 sites was studied by 16S rRNA sequencing.
Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes,
Bacteroidetes, Chloroflexi, Planctomycetes, Gemmatimonadetes,
and Cyanobacteria were dominant in all the soil samples
(Supplementary Figure S1). Alpha diversity (Chao1 richness
and Pielou’s evenness index) was not affected by organic
greenhouse farming and was significantly correlated with soil
pH (Chao1: R2 = 0.23, P = 0; Pielou’s evenness: R2 = 0.12, P = 0)
(Figure 2A). Beta diversity clearly differed between organic and
conventional farming systems at 26 out of the 30 studied sites
(Figure 2B and Supplementary Figure S2). Permutation analysis
also confirmed that the bacterial community was significantly
(p = 0; d = 20.2%) different between organic and conventional
farming systems. However, the average dissimilarity between
organic and conventional farming systems did not increase with
the period of organic farming (Supplementary Figure S3). The
heterogeneity in community composition was slightly higher in
organic than conventional farming system (Figure 2C).

Common and Site-Specific Taxa
Associated With Organic Greenhouse
Farming
Genera with significantly (P < 0.05) different relative abundances
between farming systems were identified for those 26 sites with
different community compositions between farming systems.
The effects of organic greenhouse farming on most genera were
inconsistent, as demonstrated by the low frequency or site-
dependent response to farming systems (Figure 3A). Ninety-four
genera that frequently (>12 sites) differed in relative abundance
between farming systems were further analyzed for their response
patterns (Figure 3B). Despite the wide geographical distribution
of the studied sites, genera that were preferentially (Group 1) or
negatively (Group 5 and 6) associated with organic greenhouse
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FIGURE 2 | Alpha- and beta-diversity of bacterial microbial communities in soils under organic (ORG) and conventional (CON) farming systems at 30 sites.
(A) Chao1 and Pielou’s evenness indexes and their correlations with pH; green dots and orange squares indicate organic and conventional farming, respectively.
(B) Number of sites with the schematic UPGMA cluster. (C) Variation in beta diversity within ORG or CON farming systems.

farming were still identified (Figure 3B). Hyphomicrobium,
Rubinisphaera, Aciditerrimonas, Planifilum, Phaselicystis, and
Ohtaekwangia, known as chemoorganotrophic microorganisms,
were preferentially associated with organic greenhouse farming
(Figure 3B). Bradyrhizobium, Nitrosospira, Nitrosopumilus,
Gaiella, Arthrobacter, Flavisolibacter, Acidobacter Gp1, GP3, Gp4,
and Gp25 were negatively associated with organic greenhouse
farming (Figure 3B). Interestingly, 23 of these genera ranked as
the top 50 genera that were the most influential between farming
systems as revealed by random forest analysis (Figure 3B).
Notably, seventeen of them demonstrated persistent response
patterns to organic farming (Figure 3B). These results suggested
that organic greenhouse farming tended to select for organic
matter-degrading bacteria but against diazotrophic, ammonia-
oxidizing, and oligotrophic bacteria.

Diversity and Community Composition of
Diazotrophic Populations
The diversity of diazotrophic bacteria was studied by high-
throughput sequencing analysis of the nifH gene. The effects of
organic greenhouse farming were only successfully studied at 19
sites where sufficient sequences were acquired for at least two
samples per farming system. Most sequences fell within nifH

clusters 1 and 3 (Figure 4A), which were mainly affiliated with
Proteobacteria, Cyanobacteria and Firmicutes. Alpha diversity
(Chao1 richness and Pielou’s evenness indexes) was not affected
by organic greenhouse farming (Figure 4B) but was significantly
correlated with CEC (Chao1: R2 = 0.09, P = 0; Pielou’s evenness:
R2 = 0.08, P = 0.001) (Figure 4B). The community composition
of diazotrophic populations differed between organic and
conventional farming at 17 out of 19 sites (Figure 4C and
Supplementary Figure S4). The relative abundance of subgroup
J of nifH cluster 1 was significantly high in the soil organically
managed at nine sites (Figure 4D), where soil pH, K and density
were significantly lower than those at other sites (Figure 4E). The
relative abundances of cluster 3 and subgroup G and C of cluster 1
tend to be negatively associated with organic greenhouse farming
(Figure 4D). A divergent association of subgroup A of cluster 1
with organic greenhouse farming was observed (Figure 4D). The
most dominant (top 5) OTUs in each sample were selected to
identify key diazotrophic populations that responded to organic
greenhouse farming. Seventy out of 81 OTUs varied between the
two farming systems at one or more sites, and a majority of
these OTUs were identified as nifH cluster 1 or 3 (Figure 4F).
Interestingly, the relative abundance of the nifH gene affiliated
with Paenibacillus borealis was negatively associated with organic
greenhouse farming (Figure 4G). Several other diazotrophic
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FIGURE 3 | Bacterial genera with significantly (p < 0.05) different relative abundances between farming systems and their association with different soil
physicochemical properties. (A) The frequency of a genus to be discriminative between farming systems. The light yellow triangle indicates an increased frequency of
a genus to be discriminative between farming systems. (B) Groups of genera with similar response patterns to farming systems and which ranked in the 50 most
influential genera across sites; ORG, organic farming system; CON, conventional farming system. Brown and cyan squares indicate significantly (p < 0.05) higher or
lower relative abundance in the ORG than in the CON, respectively. Gray squares indicate no significant difference between farming systems.

populations were divergently associated with organic greenhouse
farming (Figure 4G). The putative lifestyles of these populations
are diverse, including symbiotic (Bradyrhizobium), free-living
(Azoarcus, Paenibacillus, and Bacteroidales) and anaerobic
(Desulfofustis, Desulfovibrio) lifestyles (Figure 4G). Redundancy
analysis (RDA) indicated that soil pH, TC, and CEC could explain
most of the variations in those OTUs on a large scale (Figure 4H).

Diversity and Community Composition of
Ammonia-Oxidizing Populations
Here, the effects of organic greenhouse farming on ammonia-
oxidizing bacteria were analyzed at 16 sites. The diversity
of amoA gene sequences was also high, reaching 6,769
OTUs (>80% identity), with the majority affiliated with
Nitrosospira, Nitrosovibrio and Nitrosomonas-like bacteria.
Again, the alpha diversity of amoA was not influenced by
organic greenhouse farming, and Chao1 was significantly
correlated with TC (forward: R2 = 0.097 P = 0.001; reverse:
R2 = 0.036, P = 0.035) (Figure 5A). The community

composition of ammonia oxidizing bacteria only differed
between organic and conventional farming systems at six
sites (Figure 5B and Supplementary Figures S5, S6). AmoA
OTUs affiliated with Nitrosovibrio-like bacteria tended to be
negatively associated with organic greenhouse farming, in
contrast to those Nitrosospira-like bacteria (Supplementary
Figure S7). These results indicated that the effects of organic
greenhouse farming on the composition of ammonia oxidizing
bacteria were patchy.

Associations Among Total, Diazotrophic
and Ammonia-Oxidizing Populations and
Test-Site Physicochemical Properties
It is known that soil microbial communities are sensitive to
environmental changes such as physicochemical characteristics
and climate change and result in differences in microbial
communities of test sites. Dominant (>1% relative abundance)
total (112), diazotrophic (177) and ammonia-oxidizing (97)
bacterial OTUs were subjected to co-occurrence network
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FIGURE 4 | Association of the diversity of diazotrophic populations with the farming system. (A) Relative abundance of major nifH gene clusters, (B) Chao1 and
Pielou’s evenness indexes and their correlations with CEC; green dots and orange squares indicate organic and conventional farming, respectively. (C) Number of
sites with the schematic UPGMA cluster. (D) Discriminative subgroups of nifH genes. (E) Boxplot of differences in pH, density and K levels between the sites with
increased and non-increased relative abundance of subgroup J of nifH cluster 1. (F) The association of each diazotrophic OTU with the farming system. The size of
the dots indicates the frequency of each OTU to be discriminative between farming systems. The tendency of each OTU to organic or conventional farming systems
was indicated by their distance to farming systems. (G) Discriminative diazotrophic OTUs between farming systems ranked in the 50 most influential OTUs. Brown
and cyan squares indicate significantly (p < 0.05) higher or lower relative abundance in the ORG than in the CON, respectively. Gray squares indicate no significant
difference between farming systems. (H) Redundancy analysis (RDA) of soil characteristics and diazotrophic microbial communities. ORG, organic farming system;
CON, conventional farming system.

Frontiers in Microbiology | www.frontiersin.org 7 August 2020 | Volume 11 | Article 1861

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01861 August 10, 2020 Time: 14:53 # 8

Chen et al. Microbiome Biodiversity in Organic Soil

FIGURE 5 | Association of the diversity of ammonia-oxidizing bacteria with the farming system. (A) Chao1 indexes of ammonia-oxidizing bacteria as revealed by
forward and reverse datasets and their correlations with TC; green dots and orange squares indicate organic and conventional farming, respectively. (B) Number of
sites with the schematic UPGMA cluster. Brown and cyan squares indicate significantly (p < 0.05) higher or lower relative abundance in the ORG than in the CON,
respectively. Gray squares indicate no significant difference between farming systems. ORG, organic farming system; CON, conventional farming system.

analysis (Supplementary Figure S8). On average, 37.3%
of the selected taxa exhibited significant co-occurrence
with each other, and these genera were mainly affiliated
with Proteobacteria (16), Acidobacteria (13), acteroidetes
(6), Firmicutes (5), Actinobacteria (4) and Chloroflexi (3)
(Supplementary Figure S8). Among these phyla, the highest
fraction of co-occurring genera was affiliated with Acidobacteria,
a phylum frequently referred to as k-strategists (Supplementary
Figure S8). These co-occurring microbial populations formed
11 major microbial hubs (more than five nodes) by network
analysis (Figure 6A). Interestingly, total taxa and diazotrophic
and ammonia-oxidizing bacteria mainly formed separate
hubs, suggesting that the dominant bacteria exhibited low
correlation with both functional populations (Figure 6A). The
relative abundance of different hubs varied greatly among
sites but exhibited little association with farming systems
(Supplementary Figures S9A–C). Soil pH and CEC were two
main factors affecting the relative abundances of three major
total bacterial hubs (green, cyan, and blue) (Figure 6B). Soil
pH, CEC, TC, TN, and EC values were closely associated
with the composition of diazotrophic bacteria, among which
five major hubs were significantly correlated with pH, TC or
CEC (Figure 6C). Interestingly, the relative abundance of the
orange hub tended to be high under neutral pH conditions, in
contrast to that of the purple hub (Figure 6C). In addition to
pH, two hubs (red or brown) were positively correlated with
CEC, and the yellow hub was positively correlated with TC
(Figure 6C). Dominant OTUs of ammonia-oxidizing bacteria
formed two major hubs (Figure 6D). The relative abundance of
the green hub tended to decrease when the pH was lower than 6.5
(Figure 6D), while the opposite trend was observed for the black
hub (Figure 6D). RDA further revealed that soil pH explained

the significant variation within co-occurring populations for all
three populations (Figures 6B–D). These results indicate that soil
pH was a key factor shaping microbial occurrence in the total,
diazotrophic and ammonia-oxidizing bacterial communities.

DISCUSSION

Understanding the interplay between organic farming and the
soil microbiome is important for enhancing the ecological
benefits of organic farming for the sustainable production of
food. Here, a large survey across soils with a broad range of
physicochemical properties, geographical regions and organic
farming periods was performed to examine the effects on total,
diazotrophic and ammonia oxidizing bacterial diversity, which
provides an opportunity to examine the effects of organic farming
on the soil microbiome. In addition, organic greenhouse farming
may cause persistent, predictable changes in total, diazotrophic
and ammonia oxidizing bacterial communities across different
soils. This knowledge is significant to deepen our understanding
of organic farming on the soil microbiome under greenhouse
conditions across space.

Organic Farming Shifted Bacterial
Community Composition, but It Did Not
Affect Alpha Diversity or Increased
Community Heterogenicity Under
Greenhouse Condition
Previously, the effects of organic farming on soil microbial
communities have been detected under both greenhouse and
field conditions for a few studied sites (Hartmann et al., 2015;
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FIGURE 6 | Co-occurrence network analysis of dominant total, diazotrophs and ammonia oxidizing bacteria. (A) Co-occurrence network and major microbial hubs
as indicated by different colors. Number and fraction of cooccurring microbial populations; microbial hubs association with soil physicochemical properties for total
(B), diazotrophs (C) and ammonia-oxidizing bacteria (D).

Bonanomi et al., 2016; Ding et al., 2019). However, spatial and
temporal variation are common for soil microbial communities
(Uksa et al., 2014; Hill et al., 2016); thus, it is still uncertain
whether organic greenhouse farming can cause changes in soil
microbial diversity. Here, distinct bacterial compositions between
organic and conventional greenhouse farming systems were
observed for 26 out of 30 sites. These findings indicated that
organic greenhouse farming was largely a momentous driver of
bacterial communities across different sites. The alpha diversity
of soil bacteria did not differ by farming system, in agreement

with other studies (Prober et al., 2015; Banerjee et al., 2019). It
was significantly correlated with soil pH. The decisive role of
pH in the alpha diversity of soil bacteria has been demonstrated
previously (Rousk et al., 2010; Wang et al., 2017). Our results
showed that the effect of pH on bacterial alpha diversity could
also be extended to greenhouse conditions. The heterogenicity
in community composition was comparable between farming
systems. Other studies suggested that the soil microbiome was
more heterogeneous in organic than in conventional farming
systems (Tuck et al., 2014; Lupatini et al., 2017). Compared to the
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field or grassland, agricultural management under greenhouse
conditions is highly intensive, and these management practices
may reduce heterogenicity in soil.

Organic Greenhouse Farming Caused
Persistent Changes in a Few Bacterial
Taxa Across Different Sites
The effects of organic greenhouse farming on most bacterial
genera (including groups 2, 3, and 4 in Figure 2B) varied
across different sites, as several other factors, such as soil
physicochemical properties, types and amount of organic
fertilizer, may also affect soil microbial communities (Chu et al.,
2007; Yao et al., 2016; Ouyang et al., 2018a). However, we still
detected genera that were persistently responsive to organic
greenhouse farming. Several genera (group 1 in Figure 3)
preferentially associated with organic greenhouse farming were
often prevalent in environments with abundant organic materials
(Dennert et al., 2018; Zhang et al., 2019). In contrast, other
genera, such as Nitrosospira and Bradyrhizobium, were negatively
associated with organic greenhouse farming. Members of
Nitrosospira were able to perform ammonia oxidization, and
changes in putative ammonia-oxidizing bacteria agree with other
studies on organic farming (Wessen et al., 2011; Ding et al., 2019).
Members of Bradyrhizobium were able to form symbioses with
legume plants for biological nitrogen fixation (Liu et al., 2015).
Furthermore, groups of genera with similar response patterns
to farming systems and which ranked in the 50 most influential
genera across sites by random forest analysis provide insight into
the response of important taxa to organic greenhouse farming.

Organic Greenhouse Farming Shifted
Diazotrophic Bacterial Communities, and
Its Effects on Different Diazotrophic
Populations Were Largely
Site-Dependent
Free-living or symbiotic diazotrophic bacteria can fix
atmospheric N2 and add biologically active N to agroecosystems
(Orr et al., 2011). The alpha diversity of diazotrophic bacteria
did not differ by farming system but was correlated with the
CEC. In a recent study by Wang (Wang et al., 2019), the highest
diversity of diazotrophic bacteria was detected in the soil with
the highest CEC. The community composition of diazotrophic
bacteria has implications for the rate of nitrogen fixation in
agricultural systems (Hsu and Buckley, 2009; Feng et al., 2018).
Here, the diazotrophic community differed by farming system at
17 out of 19 sites (The significant difference on the community
composition between ORG and CON was confirmed by 1000
times two-way permutation analysis with a p-value of 0.000
and the community dissimilarity of 21.8%). Although direct
comparisons of diazotrophic communities between organic
and other farming systems are rare (Orr et al., 2011; Ding
et al., 2019), agricultural management associated with organic
farming, such as organic fertilization, has been suggested to be
a factor driving diazotrophic bacterial populations including

alpha- and beta- diversity (Tang et al., 2017; Wang et al., 2017;
Lin et al., 2018).

NifH cluster 1 and 3 were dominant in greenhouse soils
regardless of the farming system, and their prevalence in
terrestrial ecosystems was reported previously (Zehr et al., 2017).
The effects of organic farming on different groups of diazotrophs
are largely unknown (Grossman et al., 2005; Ramos et al.,
2011). Here, we found that nifH cluster 1J, frequently harbored
by Proteobacteria and Cyanobacteria (Krausfeldt et al., 2017;
Zehr et al., 2017), was preferentially associated with organic
farming at sites where soil pH, K and density were significantly
low. Diazotrophic P. borealis was negatively associated with
organic farming. Changes in P. borealis seem to be inconsistent
with the results of 16S rRNA gene analysis, in which the
association of Paenibacillus with organic farming was divergent.
It is possible that only a fraction of Paenibacillus carries
the nifH gene (Grube et al., 2009). The effects of organic
greenhouse farming on several other diazotrophic bacteria,
such as Bradyrhizobium, Azoarcus, Paenibacillus, Bacteroidales,
Desulfofustis, and Desulfovibrio, with putative symbiotic, free-
living and anaerobic lifestyles were inconsistent across different
sites (Wakelin et al., 2010). RDA further revealed that soil pH
could explain most of the variation, in agreement with other
studies (Reardon et al., 2014; Zarraonaindia et al., 2015; Wang
et al., 2017). Organic greenhouse farming possibly exerts selection
pressure on diazotrophic bacteria adapted to different niches by
altering key soil physicochemical properties.

The Effects of Organic Greenhouse
Farming on Ammonia-Oxidizing Bacteria
Were Largely Patchy
Previously, the effects of organic greenhouse farming on the
alpha diversity of ammonia-oxidizing microorganisms have only
been explored in few studies (Wessen et al., 2011; Ding et al.,
2019) and were largely unclear. Here, we found that the alpha
diversity of ammonia oxidizing bacteria was not different by
farming systems but was negatively correlated with the contents
of organic matter. Ammonia oxidizing bacteria are largely
lithoautotrophic, and ammonia application is likely to be the
most important driver of its community composition (Li et al.,
2018). Nitrogen fertilizer-dependent changes in the abundance,
diversity and activity of these bacteria were frequently detected
in several agroecosystems (Shen et al., 2012; Guo et al., 2017).
Responses of AOB to ammonia addition were observed at
both microcosm and filed experiments (Daebeler et al., 2015;
Ying et al., 2017), highlighting that ammonia addition which is
common under conventional farming system might play roles
on shifting the AOB community. However, compared with
the total and diazotrophic bacterial communities, the effects
of organic greenhouse farming on ammonia oxidizing bacteria
were unexpectedly inconsistent, as community composition was
only different by farming systems at six out of seventeen sites.
These results indicated that organic greenhouse farming was not
necessarily the major driver of ammonia-oxidizing bacteria. In
a farm-scale field study, the community composition displayed
a patchy pattern (Wessen et al., 2011). Several other factors,
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such as EC and density, which were less associated with organic
farming may synergistically, shape the communities of ammonia-
oxidizing bacteria.

The Soil pH at the Test Site Was
Correlated With the Microbial Hubs of
Total, Diazotrophic and
Ammonia-Oxidizing Bacteria
Organic farming frequently results in increased diversity of
macroorganisms (Wanjiku Kamau et al., 2019); however, the
effect of organic greenhouse farming on microbial diversity
varies among different studies. In general, soil physicochemical
properties such as pH, soil type rather than farming systems
were the major factors shaping the alpha diversity of total,
diazotrophic and ammonia-oxidizing bacteria in soil on a
large scale by variation partition analysis (Supplementary
Figure S10). Co-occurrence network analysis revealed that
dominant total, diazotrophic and ammonia-oxidizing bacteria
mainly formed separate hubs, suggesting that diazotrophic or
ammonia-oxidizing bacteria were not closely associated with
the dominant total bacteria. Previous studies suggested that
the abundances of both ammonia-oxidizing and diazotrophic
bacteria were frequently low in bulk soil, as the amount
of energy harvested by oxidation of ammonia is very low,
and N fixation is highly energy intensive (González-Cabaleiro
et al., 2019; Luo et al., 2019). The association between the
soil microbiome and the physicochemical properties of soil
has been explored largely based on taxonomy (Hansel et al.,
2008; Rousk et al., 2010; Zhao et al., 2019), and few persistent
correlations were detected. It is possible that there was divergence
between the taxonomy and physiological properties of the
soil microbiome or that several taxa responded similarly to
certain changes. Here, we found that the relative abundance
of different microbial hubs was often associated with soil
pH, CEC, and TC to a large extent. These findings further
suggest that co-occurrence network analysis may also help
identify the association of microbial populations as hubs with
key soil physicochemical properties or highlight that organic
farming may alter microbial interactions by changing soil
physicochemical properties.

CONCLUSION

In summary, the alpha diversity of total, diazotrophic and
ammonia oxidizing bacterial communities did not differ
by farming system. The beta diversity of the total and
diazotrophic, but not the ammonia oxidizing bacterial
communities largely varied between farming systems across
different sites. Organic greenhouse farming persistently selected
for organic carbon degrading bacteria (Hyphomicrobium,
Rubinisphaera, Aciditerrimonas, Planifilum, Phaselicystis, and
Ohtaekwangia) and cluster 1J diazotrophs but not for ammonia
oxidizing (Nitrosospira, Nitrosopumilus) and putative symbiotic
diazotrophs (Bradyrhizobium), possibly by altering key soil
physicochemical properties, such as pH or CEC. These results

highlight that organic greenhouse farming manipulates the
reassembling of soil microbiome associated with the cycling of
soil carbon, biological nitrogen fixation and ammonia oxidation,
which plays a key role on maintaining soil fertility.
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FIGURE S2 | Beta-diversity of bacterial microbial communities in soils under
organic (ORG) and conventional (CON) farming systems by UPGMA
cluster analysis.

FIGURE S3 | The linear relationship between the average dissimilarity of organic
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FIGURE S4 | Beta-diversity of diazotrophic microbial communities in soils under
organic (ORG) and conventional (CON) farming systems by UPGMA
cluster analysis.

FIGURE S5 | Beta-diversity of ammonia-oxidizing bacterial forward region
microbial communities in soils under organic (ORG) and conventional (CON)
farming systems by UPGMA cluster analysis.

FIGURE S6 | Beta-diversity of ammonia-oxidizing bacterial reverse region
microbial communities in soils under organic (ORG) and conventional (CON)
farming systems by UPGMA cluster analysis.

FIGURE S7 | Discriminative ammonia oxidizing reverse region OTUs between
farming systems, which ranked in the 50 most influential OTUs. Brown and cyan
squares indicate enrichment or depletion in the organic greenhouse farming
system at the studied sites. ORG, organic farming system; CON,
conventional farming system.
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FIGURE S8 | Dominant (>1% relative abundance) total, diazotrophic and
ammonia-oxidizing bacterial OTUs and the fraction of genera by Co-occurrence
network analysis.

FIGURE S9 | Relative abundances of microbial hubs for total (A), diazotrophs (B)
and ammonia-oxidizing bacteria (C) by Co-occurrence network analysis.

FIGURE S10 | The amount of variation in total, diazotrophic and
ammonia-oxidizing bacterial communities explained by pH, soil types and
farming systems.

TABLE S1 | Details of agricultural managements under the long-term greenhouse
experiments.
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