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Abstract

The goal of this study was to investigate the effects of acute cocaine injection or dopamine

(DA) receptor antagonists on the medial prefrontal cortex (mPFC) gamma oscillations and

their relationship to short term neuroadaptation that may mediate addiction. For this pur-

pose, optogenetically evoked local field potentials (LFPs) in response to a brief 10 ms laser

light pulse were recorded from 17 mice. D1-like receptor antagonist SCH 23390 or D2-like

receptor antagonist sulpiride, or both, were administered either before or after cocaine. A

Euclidian distance-based dendrogram classifier separated the 100 trials for each animal in

disjoint clusters. When baseline and DA receptor antagonists trials were combined in a sin-

gle trial, a minimum of 20% overlap occurred in some dendrogram clusters, which suggests

a possible common, invariant, dynamic mechanism shared by both baseline and DA recep-

tor antagonists data. The delay-embedding method of neural activity reconstruction was

performed using the correlation time and mutual information to determine the lag/correlation

time of LFPs and false nearest neighbors to determine the embedding dimension. We found

that DA receptor antagonists applied before cocaine cancels out the effect of cocaine and

leaves the lag time distributions at baseline values. On the other hand, cocaine applied after

DA receptor antagonists shifts the lag time distributions to longer durations, i.e. increase the

correlation time of LFPs. Fourier analysis showed that a reasonable accurate decomposition

of the LFP data can be obtained with a relatively small (less than ten) Fourier coefficients.

Introduction

Use of psychostimulants, such as cocaine, is a serious health problem and opens the door to

neurobiological changes in limbic and cortical circuits that engage cognitive and emotive pro-

cessing. We have just began to understand the cellular adaptations that occur in the cortex fol-

lowing a single exposure to cocaine and their contribution to the continuous and further use

of drugs of abuse. The behavioral consequences of first time cocaine use are varied and appear
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to be somewhat contradictory. First time cocaine users often report feeling a sharpening of the

senses [1], and anecdotal information suggest that acute cocaine increases attention. Indeed,

individuals with ADHD will sometimes self-medicate with cocaine [2]. Contrastingly, Jentsch

and colleagues [3] have shown that acute cocaine administration impairs performance on a

reversal learning task, and several studies have reported compromised performance during

repeated acquisition tasks in monkeys [4, 5]. Additionally, imaging studies in humans have

shown that acute cocaine administration induces prominent activation of the prefrontal cor-

tex, primarily in the dorsolateral regions [6]. Furthermore, acute cocaine administration has

been linked to poor impulse control [3, 7, 8]. Therefore, it seems that first time cocaine use

may give users a sense of enhanced awareness, while cognitive performance is diminished.

Cocaine abuse is a public health challenge for which we are still seeking more effective

treatments [9, 10]. Additionally, patients relapse in greater numbers increasing the social and

economic cost of this disease and the burden on medical and welfare systems. Thus, under-

standing the cellular and network process underlying the effects of cocaine in the prefrontal

cortex is a critical necessity.

Neuronal oscillations are thought to be general and fundamental mechanisms for enabling

coordinated activity during normal brain functions [11–13] and it is within this framework

that the function of gamma oscillations have recently acquired importance. Gamma oscilla-

tions in the cortex involve the reciprocal interaction between interneurons, mainly PV+ fast

spiking interneurons (FS PV+) and principal cells [14]. Gamma oscillations appear to be a

critical mechanism underlying the cognitive and behavioral function of mPFC. It is therefore

highly likely that gamma oscillations in mPFC would be altered by cocaine administration. In

this study we investigated changes in gamma oscillations following an acute administration of

cocaine and the effects of selective dopamine (DA) receptor antagonist on the gamma band

oscillations.

Parvalbumin (PV) interneurons and pyramidal cells in the mPFC

The vast majority (over 70% according to [15, 16]) of excitatory neural population is made of

pyramidal cells. Pyramidal cells span cortical layers 2-6 [16] and are thought to be involved in

both maintaining the working memory [17] and the UP states of persistent network activity

[18, 19]. The main modulators of the pyramidal cells are interneurons, of which PV+ fast-spik-

ing interneurons represent the majority [20–22]. PV+ neurons coordinate the output of the

local minicolumns [23, 24], maintain and/or modulate both the 15–30 Hz beta [25–27] and

the 25–40 Hz gamma [28–30] rhythms of the brain, and facilitate information processing [31–

33]. PV+ interneurons are known to both modulate the firing rate of pyramidal cells through

their dendritic projections [34, 35] and to block action potentials through their axonal projec-

tions [34–38]. Abnormal activity of PV+ inerneurons have been linked to autism [39–42],

schizophrenia [32, 43–45], sensory hypersensitvity and neural hyper-excitability [46–49].

Optogenetic studies of mPFC

Optogenetics refers to the use of optical stimuli to elicit neural responses from neurons whose

ionic channels were genetically modified to respond to light stimuli. Optical fibers transmit

the light stimulus from the external laser to the brain region of the mouse. For optogenetics,

the optical fiber is integrated with electrophysiological probes and form a device called an

optrode [50]. In basic science studies, optogentics has been used for investigating neural plas-

ticity mechanisms [51–53], understanding information processing by neural networks [29, 30,

54], and testing hippocampal memory formation hypotheses [55, 56]. In behavioral studies,

optogentics proved invaluable in studying feeding [57–60], fear conditioning [61, 62], and

Dopamine receptor antagonists effects on neural activity

PLOS ONE | https://doi.org/10.1371/journal.pone.0223469 October 16, 2019 2 / 39

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0223469


aggression [63]. The ultimate goal of these studies is to find optogenetics-based solutions to

neural disorders, such as anxiety and depression [64–66], and ameliorate neurodegenerative

conditions, such as Parkinson disease [67, 68], and epilepsy [69–72]. Finally, another promis-

ing development includes the use of optogentics for the restoration of visual functions in blind

animals [73–75] and the design of neural interface [76].

Dopamine (DA) receptor

The widely-accepted paradigm regarding the mechanisms of cocaine and amphetamine effect

is through increasing synaptic levels of DA, mainly through DA transporter’s inhibition [77–

80]. As a result, DA receptors are exposed to an elevated and sustained levels of endogenous

DA, which amounts to an indirect DA agonist effect [81]. All drugs of abuse produce increased

levels of DA [82–85]. Additionally, the relapse to cocaine-seeking behavior implicates the

mesolimbic DA system [86–89] through DA receptor’s potentiation [86, 90].

There are several kinds of DA receptors, which are studied with the purpose of finding

effective addiction treatments [91–93]. Five DA receptor subtypes, called D1-D5, have been

identified [94–97], although they appear to form two classes of pharmacologically and bio-

chemically similar receptors, i.e. D1-like receptors, which refer to D1/D5, and D2-like recep-

tors, which refer to D2/D3/D4, respectively. Both D1- and D2-like receptors have both been

implicated in the discriminative and reinforcing effects of cocaine [78, 98, 99], although they

seem to be somewhat selective in their response to cocaine [100, 101].

We previously carried out a similar computational study on a subset of the same animals
under control conditions [102] and following an acute cocaine injection [103]. The present

study expands our previous investigation of cocaine effects on mPFC [102, 103] in which we

systemically injected DA receptor antagonists & cocaine. As in our previous studies, we cor-

rected for the light-induced phase resetting using both the autocorrelation [102, 104] and Hil-

bert’s transform [105]. Delay-embedding method has been used for estimating the delay (lag)

time and embedding dimension of the LFPs [102, 106, 107]. We also used spectral analysis to

model the LFPs and found that a significant fraction of the data trend can be captured with as

few as ten Fourier coefficients.

Materials and methods

A detailed description of the procedures can be found in the previous two papers of this series

[102, 103]. Mice Cre-PV+ adult males were mounted in an steretoaxic apparatus, and a small

hole drilled over the PFC to insert the optrodes. Temperature was maintained at 35 C via a

thermal blanket and isoflourane anesthesia was maintained using an isoflourane anesthesia

system. At the end of the recordings animals were deeply anesthetized and the brain extracted

to confirm anatomical localization of optrodes. All procedures were done in accordance to the

National Institute of Health guidelines as approved by the Medical University of South Caro-

lina Institutional Animal Care and Use Committee.

Experimental protocol

The response of medial prefrontal cortex (mPFC) to a brief 10 ms optical stimulation was mea-

sured from 2-s long LFP recordings that were repeated 100 times for each of the 17 animals in

this study. The fast-spiking interneurons were activated by laser stimulation. This study used

the same mice model together with optogenetics and in vivo electrophysiology described in

detail in [108]. The viral vector (AAV2/5. EF1a. DIO. hChR2(H134R)—EYFP. WPRE. hGH,

Penn Vector Core, University of Pennsylvania) has been injected to the mPFC of male mice at

least 3 weeks before electrophysiological recordings (B6; 129P2 − Pvalbtm1(Cre)Arbr/J Jackson
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Laboratory (Bar Harbor, ME, USA) [108]. The extracellular LFPs were amplified (Grass Tech-

nologies, West Warwick, RI, USA), digitized at 10 kHz (1401plus data acquisition system), and

analyzed offline. The signal was filtered (Quest Scientific Inc., Canada) and band-pass online

between 0.1 and 130 Hz to obtain the LFPs. The light stimulation was provided by a 473 nm

laser (DPSS Laser System, OEM Laser Systems Inc, East Lansing, MI, USA).

The animals received acute systemic injection of the D1 receptor antagonist SCH 23390, 1.0

mg/kg, i.p. or the D2 receptor antagonist sulpiride, 15 mg/kg, i.p. and optical stimulation.

The novelty of this study compared to others involving DA receptor antagonists is the use

of delay embedding for data visualization and spectral analysis for data modeling. The novelty

of this study compared to the previous two [102, 103] is that we targeted DA receptors with

specific receptor antagonists. When the DA receptor antagonist was injected systemically after

the baseline and prior to cocaine the name of the trial is xxxbyy where xxx is either sch for

SCH 23390 or sulp for sulpiride, the letter b stands for before cocaine and yy is the mouse num-

ber. For example, schb14 means LFP recordings from mouse # 14 with SCH 23390 D1 receptor

antagonist applied before cocaine. Similarly, the name xxxayy means the receptor antagonist

xxx was applied after cocaine. Finally, in other trials we applied both DA receptor antagonists

together and the name of the trial is both followed by either a (after cocaine) or b (before

cocaine) and the mouse number (see Table 1). For example, bothb24 means LFP recordings

from mouse # 24 with SCH 23390 & sulpiride applied before cocaine.

In the following, we briefly summarize the main methods used here for data analysis, visual-

ization, and modeling.

Cluster analysis with dendrograms

A dendrogram is a diagram that shows the hierarchical relationship between objects. The den-

drograms are used for allocating objects to clusters. For example, a scattered plot in a two-

dimensional Euclidian space may look like Fig 1a. The (x, y) pair could be single measure-

ments data or, as in our study, they could represent an entire trial. In our example, the dendro-

gram computed the “distance” between the scattered points shown in Fig 1a and then ordered

them according to the distance, which is shown along the vertical axis of the dendrogram in

Fig 1b. In the example above, we can immediately notice from Fig 1a that data points #4 and

#5 are the closest across all ten, and therefore they will be shown in the dendrogram of Fig 1b

as the most similar, i.e. the height of the link that joins them together is the smallest. A cursory

inspection of Fig 1a suggests that the next closest data points are #1 and #2, which translates

into the next most similar objects in the dendrogram shown in Fig 1b. In a dendrogram, the

height of the dendrogram indicates the order in which the clusters were joined. Each joining

(fusion) of two clusters is represented on the dendrogram by the splitting of a vertical line into

two vertical lines. The vertical position of the split, shown by the short horizontal bar called

clade, gives the distance (dissimilarity) between the two clusters. The terminal end of each

clade is called a leaf.

Observations are allocated to clusters by drawing a horizontal line through the dendrogram.

In our example, below the dashed line marked (a) in Fig 1b there are two clusters, which are

separated by the corresponding dashed line in Fig 1a. If the required maximum distance is

lowered (see dashed-dotted line marked (b) in Fig 1b), then we identify three clusters, which

correspond to separated data clusters in Fig 1a. By further decreasing the required maximum

distance within a cluster (see the double dashed line marked (c) in Fig 1b), then five clusters

emerge.

Although in our example, we simply used the Euclidian distance between the points shown

in Fig 1a, other distance measures could be used for hierarchical organization of data. Among
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many possible distance measures, the correlation coefficient [109] and the Euclidian distance

[110] are most common. For example, a correlation-based distance is distance = 1 − c, where c
is the correlation coefficient (c).

Delay-embedding method

In this paper series (see also [102, 103]), we used the delay-embedding method of nonlinear

dynamics to estimate the number of degrees of freedom of the steady activity of mPFC neural

Table 1. Experimental protocol for DA receptor antagonists.

Mouse # cocaine first SCH23390 sulpiride cocaine last trial name

8 x x sulpb8

9 x x sulpb9

10 x x sulpb10

11 x x sulpb11

12 x x schb12

13 x x schb13

14 x x schb14

15 x x schb15

16 x x scha16

17 x x sulpa17

18 x x sulpa18

19 x x sulpa19

20 x x x bothb20

21 x x x bothb21

22 x x x bothb22

23 x x x botha23

24 x x scha24

https://doi.org/10.1371/journal.pone.0223469.t001

Fig 1. Dendrogram analysis. Euclidian distance between scattered two-dimensional data (a) was used for assigning

individual points to clusters based on their similarity as measured by the Euclidian distance between data points (b).

The vertical axis of the dendrogram (b) gives the distance between different data points (leaves). The closest points #4

and #5 (see panel a) are clustered together in the dendrogram (panel b) with the lowest horizontal linkage (distance). A

horizontal dashed line marked with (a) through the dendrogram (panel b) shows two clusters, which are identified in

the actual data (panel a) by the corresponding dashed line. Lower maximum distances among data points split the data

in three (dashed-dotted line marked with (b)) and five (double dashed line marked with (c)) clusters, respectively.

https://doi.org/10.1371/journal.pone.0223469.g001
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network. The challenge is to extract, or reconstruct, from the one-dimensional data (time

series) the actual multidimensional attractors of neural activity.

Theoretically, the first derivative of continuous functions, or equivalently the first order dif-

ference of discrete data sets, is orthogonal to the original time series. Therefore, one could use

the original time series and its first order difference as the two “natural” dimensions (axes) to

unfold the dynamics of the system. If the phase space trajectories cross each other, then we

could use the second derivative as the third orthogonal direction in the phase space and try

to unfold the attractor again. The procedure could be repeated until all self-crossings of the

phases space trajectory are eliminated, which is the final unfolded attractor of neural dynamics

[111]. Takens’ theorem proved that for regularly sampled and noise free time series, the

attractor reconstructed using the above-described differential embedding is diffeomorphic to

the original (unknown) attractor [112, 113].

A more robust to noise approach is to use the delay-embedding method [112, 114], which

takes a time series xi = x(iΔt) with i = 1, 2, . . .,N where N is the number of data points and Δt is

the uniform sampling time, and expands it into a d−dimensional vector by temporally shifting

the data [112, 114–116]:

xi ¼ ðxi; xiþn; . . . ; xiþðd� 1ÞnÞ;

where τ = nΔt is the delay, or lag, time. The challenge of the delay-embedding method is to

correctly select both the number of independent variables, i.e. the embedding dimension d,

and the lag time τ.

The lag time. The challenge of selecting the “right” delay time is to avoid both the redun-
dancy, i.e. high correlation among the data points because of a too small delay time, and

completely de-correlating the data points by a too large delay time [117]. As in the previous

studies [102, 103], we used both the autocorrelation [117–122] and the average mutual infor-

mation (AMI) [123–125] for estimating the lag time τ. The first zero crossing of the autocorre-

lation ensures that the lag time completely de-correlated the original and the time-shifted time

series [126]. While convenient, the autocorrelation method only eliminates the linear correla-

tion. As a result, we also estimating the lag time using the first minimum of the nonlinear auto-

correlation function called Average Mutual Information (AMI) [123, 125].

In order to allow a direct comparison of our current results on the effect of DA receptor

antagonist combined with cocaine on LFP recordings against similar results on the same mice

for baseline recordings (see [102]) and cocaine (see [103]), we only analyzed the lag times

obtained from the autocorrelation function method. However, for completeness, we also

briefly summarize the statistics of the lag times obtained from AMI.

The embedding dimension. As before [102, 103], we used the false nearest neighbors

(FNN) algorithm [124, 127, 128] to estimate the embedding dimension. Intuitively, a high-

dimensional phase space trajectories projected onto a too low dimensional embedding space

has self-crossing points, or false nearest neighbors (FNN). Such FNN could be eliminated by

progressively increasing the dimension of the embedding space until reaching a reasonably

low percentage of FNN [127].

Without repeating all the details in [102, 103], we used the lag times computed in the previ-

ous section for each condition to estimate the embedding dimension with variable distance

ratios, f, between 2 and 20. The distance ratio f estimates the factor by which the distance

between two points increased when increasing the embedding dimension by one unit [126,

127, 129]. Usually, small f overestimates the percentage of FNN, whereas a too large f values

give a large number of false positives. In our study, for f> 10, the percentage of FNN drops
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below 1% for an embedding dimension dE = 3 (not shown), whereas for f> 12 the percentage

of FNN dropped below 10−6% at dE = 3.

As in the previous studies [102, 103], we further removed spurious temporal correlations

[130, 131] with Theiler windows from 100 to 8000 sampling times [131, 132]. For all tested

Theiler windows, the percentage of FNN dropped below 0.1% for an embedding dimension of

dE = 3 and f> 10.

Fréchet distance method

Fréchet distance [133] relates to the “man walking a dog on a leash” paradigm, i.e. find the

shortest leash needed such that the man walks along one curve and the dog walks along the

other [134]. Both the man and the dog can adjust their speeds but are not allowed to move

backwards [135]. Fréchet distance is a topological measure of the similarity between two

curves [134], i.e. it does not consider any temporal constrains regarding the location of figura-

tive points on the two curves. We computed Fréchet distance using the algorithm in [136].

Fourier method

We used Fourier analysis to determine the spectral composition of each trial. Any periodic sig-

nal x(t) of period T could be represented as an infinite sum of harmonics [137]:

xðtÞ ¼
Xk¼þ1

k¼� 1

ake
jokt ¼ a0 þ

Xk¼1

k¼1

2Reðake
joktÞ; ð1Þ

where j ¼
ffiffiffiffiffiffiffi
� 1
p

is the imaginary unit, ak are called Fourier coefficients, and ωk = kω0 are kth

order harmonics of the fundamental frequency ω0 = 1/T. For real periodic signals in continu-

ous time, the above Fourier representation becomes [138]:

xðtÞ ¼ a0 þ 2
Xk¼1

k¼1

Ak cos ðo0kt þ ykÞ; ð2Þ

where the complex Fourier coefficients were represented in polar coordinates as ak ¼ Akejyk
with Ak the amplitude and θk the corresponding phase of kth harmonic. Eq 2 is sometimes

called the synthesis equation because it can be used for synthesizing a signal that resembles the

original time series based on its Fourier frequency spectrum.

Results

As in the previous papers of this series [102, 103], the response of the local mPFC neural net-

work to a brief 10 ms light pulse was recorded for 2 s and the procedure repeated 100 times for

each animal. We discarded the transient response of the neural network by removing the first

0.5 s of each trial. The transient response contains information regarding the phase resetting of

the entire local neural network, which has been successfully applied to epilepsy [139, 140] or

Parkinson’s [141, 142] studies. However, here we focused on the last 1.5 s of steady activity of

each trial with the purpose of identifying stable and repeatable patterns of neural activity that

may connect the control [102], the pure cocaine [103], and this DA receptor antagonists study.

Phase resetting of LFPs

A brief 10 ms light pulse alters both the phase and the amplitude of the ongoing oscillatory

activity of the local mPFC [104, 106, 143, 144]. Such transient resettings dissipate after a few

cycles and eventually the neural network returns to its unperturbed steady activity [105]. We
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corrected the trials for the transient phase resetting induced by light stimuli by circularly shift-

ing each LFP trace with respect to an arbitrary “reference” trial until maximizing the correla-

tion coefficient [105, 144]. Phase resetting correction led to a significant increase in the

coefficient of correlation among trials as seen in Fig 2a1 for the case of scha16 and in Fig 2a2

for all mice and conditions. The correlation coefficients before circularly shifting the data to

account for the transient LFP phase resetting has very low values (see the solid black trace in

Fig 2a1 and solid black squares in Fig 2a2). For each condition, e.g. scha, schb, supla, sulpb,

botha, bothb, and each animal #, the averages of all correlation coefficients (such as the one

Fig 2. The correlation among trials. The correlation coefficients of a “reference” trial with each of the other 99 trials for a particular animal and condition (black

continuous line in panel a1) are relatively low due to the random light stimulus timing relative to the network’s activity. After circularly shifting the trials, we noticed

an order of magnitude increase of the correlation coefficient (see a1 dashed line). The vertical error bar corresponds to one standard deviation. Similar analysis was

carried out for the sum of the squared differences (SSD) between the arbitrary “reference” trial and each of the other 99 trials for each animal and condition (see panels

b1 and b2). The increase in the correlation coefficient due to phase correction also decreases the SSD values. Rectangular shaded areas mark similar conditions, such as

scha, schb, etc.

https://doi.org/10.1371/journal.pone.0223469.g002
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shown in panel a1) indicate a very low initial correlation (solid black squares in Fig 2a2) due to

the fact that the incoming light stimulus finds the neural network at random phases. By circu-

larly shifting the trials to maximize the correlation coefficient we corrected for the random

phase of light stimulus relative to the ongoing rhythmic activity of the network (solid red

circles in Fig 2a2). Although for the same animal and the same condition the correlation coeffi-

cient differs from one pair of trials to the other as shown in Fig 2a1, we averaged the correla-

tion coefficients over all 100 trials and only showed in Fig 2a2 the average and standard

deviation bar. We further averaged all data for the same condition to gain a better understand-

ing of the average increase of correlation due to phase shifting.

For example, the three scha16, scha24, and scha25 data points in Fig 2a2 (already averaged

over all trials) were considered as a single scha condition in Table 2. While the improvement

in the correlation coefficient is qualitatively apparent from Fig 2, the compact numerical sum-

mary in Table 2 shows that in most cases the circular shifting improvement exceeded one

order of magnitude.

We also computed the sum of squared differences (SSD) between the “reference” trial and

all the other trials for each animal and each condition (see one example in Fig 2b1 for scha16).

As expected, circularly shifting the trials to maximize the correlation coefficient also reduces

the SSD among trials (Fig 2b1), overall per animal and condition (Fig 2b2), and also when

aggregated in a single average per condition as in Table 2.

Dendrograms of phase shifted LFPs

A dendrogram is a visual representation of “relationships” among trials. The horizontal axis of

the dendrogram in Fig 3a1–3b1 shows the trial index. However, the trials are not listed in their

recording order but rather based on their membership to the respective cluster. The vertical

axis of the dendrogram is the distance between the “leaves”, i.e. trials, of the dendrogram tree

(see Fig 3a1–3b1).

We used dendrograms for two purposes: (1) to qualitatively check that the circular shifting

of trials for the purpose of maximizing the correlation coefficient also reduced the distance

among trials in a cluster, and (2) to quantitatively measure the amount of overlap between the

baseline and the DA receptor antagonists trials.

Since we established that the correlation coefficients increase by circularly shifting the trials

(see Fig 2a1 and 2a2) then it follows that the corresponding dendrogram distances would

decrease (see Fig 3a1–3b1). In particular, it is expected that the distances in the circularly

shifted dendrogram (Fig 3b1) should be smaller compared to the original data (Fig 3a1). The

reason we used the dendrogram of the circularly shifted data is because it better separated

trials in disjoint classes as we can see from two examples of LFP traces shown Fig 3a2 and 3b2.

Indeed, before circularly shifting the data, even trials as dissimilar-looking as those shown in

Table 2. Averages ± standard deviations of the correlation coefficient and the sum of squared differences (SSD) before and after shifting the trials to correct for the

phase resetting.

Condition Corr. Corr. Shift SSD SSD Shift

scha 0.018 ± 0.004 0.51 ± 0.05 28 ± 13 12 ± 2

schb 0.011 ± 0.008 0.34 ± 0.06 25 ± 7 12 ± 3

sulpa 0.008 ± 0.006 0.4 ± 0.1 21 ± 12 10 ± 3

sulpb 0.015 ± 0.004 0.34 ± 0.09 29 ± 14 16 ± 7

botha 0.13 ± 0.01 0.32 ± 0.08 28 ± 12 16 ± 4

bothb 0.02 ± 0.01 0.43 ± 0.07 14 ± 3 6.0 ± 0.5

https://doi.org/10.1371/journal.pone.0223469.t002
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panels a2 and b2 could be classified as belonging to the same cluster in Fig 3a1. This is because

a certain amount of correlation, no matter how small, would still exist between two trials

recorded from the same system even if they have a random phase difference between them

due to light stimulus resetting of neural activity. By circularly shifting the trials with respect to

one (reference) trial to maximize the correlation coefficient, we eliminated random overlaps

among trials which resulted in small correlations shown in Fig 2a1 and 2a2 and only retained

for further analysis correlations that are significant, i.e. one order of magnitude larger than

before circularly shifting the data.

The Euclidian distance that measures the similarities among the “leaf” nodes of the dendro-

gram (see Fig 3a1 and 3b1) has been significantly reduced by phase reseting correction. For

example, for the scha16 experiment the distance threshold for breaking the 100 trials of into

six clusters was reduced from 62 (arbitrary) units (see the horizontal dashed line in Fig 3a1) to

42 units (see the horizontal dashed line in Fig 3b1).

Fig 3. Dendrogram-based groups of similar LFPs using Euclidian distance among trials. Twelve similar clusters were formed out

of the 100 trials both without (a) and with (b) circular phase shifting to account for network phase resetting due to light stimulus.

The distance threshold that generates, for example, six clusters was about 62 arbitrary units without phase correction (a) and

decreased to about 42 arbitrary units (b) after phase correction (see the horizontal dashed lines in a1 and b1). Panels a2 and b2 show

two representative examples of LFP recordings belonging to two different clusters in the dendrogram. The recordings in panel a2

belong to the largest cluster whereas in b2 they belong to the second largest cluster in the dendrogram shown in panel b1. The LFP

pattern classifier correctly separated dissimilar recordings in different clusters and also correctly placed in the same cluster similarly-

looking LFPs.

https://doi.org/10.1371/journal.pone.0223469.g003
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In Fig 3a2–3b2 we plotted two traces from the first two largest clusters of the 12 shown in

Fig 3b1. There are clear differences between the traces, e.g. the largest cluster in Fig 3b1 collects

all LFP with small amplitude and high frequency oscillations (Fig 3a2), whereas the second

largest cluster collects large amplitude LFPs that show a graded, almost linear, amplitude decay

over time (Fig 3b2).

Dendrogram-based quantitative test. We also used the dendrogram-based clustering for

measuring the percentage overlap between baseline and DA receptor antagonists trials. For

each animal, we concatenated the 100 baseline trials (trial index from 1 to 100) with the 100 tri-

als after DA receptor antagonist treatment (trial index 101 to 200) in a single 200-trial file. If

the neural activity patterns for baseline and DA receptor antagonists were totally distinct, then

we would expect that they separate in disjunct clusters. As a result, a perfect dendrogram clas-

sifier would correctly separates the 200 mixed baseline and dopamine antagonists trials in dis-

joints (non-overlapping) clusters such that each of them only contains one type of trials, either

only baseline or only DA receptor antagonist trials. On the other hand, if half of the trials in a

given cluster are from baseline and the other half are from DA receptor antagonists then the

overlap is maximum possible and the Euclidian distance-based dendrogram cannot discrimi-

nate between those trials.

For each cluster, we computed the percentage of mixing between baseline and DA receptor

antagonists trials by using the formula [102, 103]:

%overlap ¼
minð#trialsbaseline; #trialsdopamineÞ

#trialscluster
; ð3Þ

where #trialscluster represents the total number of trials in a given cluster, of which #trialsbaseline
belongs to the baseline, i.e. trial index 1 to 100, and #trialsdopamine belongs to the DA receptor

antagonist trials, i.e. index 101 to 200. We imposed on dendrogram classifier both the option

of using six (see Fig 4a) and 12 clusters (see Fig 4b) to classify the 200 baseline and DA receptor

antagonists combined trials. The reason for trials classification with a different number of clus-

ters is that a too low number of clusters would inevitably force some trials to be miss-classified.

An extreme case is a dendrogram with only one cluster, which places all 200 trials together

and produces a maximum possible overlap with 50% of data from baseline and 50% from DA

Fig 4. Percentage overlap between baseline and DA receptor antagonist trials. The baseline (bc) trials were concatenated with the corresponding DA receptor

antagonist trials and classified in either 6 (a) or 12 (b) clusters. Overlapping between bc and DA receptor antagonists trials could be due to the limited number (six) of

allowed clusters (a). Some overlapping was removed by allowing the trials to separate in 12 clusters (b). In almost all cases, the mean percentage mixing between bc and

DA receptor antagonists trials in the same cluster is within a standard deviation regardless of the number of clusters used by classifier (c). A minimum of 20% overlap

between bc and DA receptor antagonists suggests a possible common, invariant, part of the mathematical model that applies to both conditions. The minimum

number of clusters that produce a consistent separation of trials may indicate the required number of parameters in a mathematical model that capture trials’ details.

https://doi.org/10.1371/journal.pone.0223469.g004
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receptor antagonists. Another extreme case is a dendrogram with 200 clusters such that each

trial is place in just one cluster without any overlap. We expect that for any other arbitrarily

selected number of clusters for the dendrogram classifier the overlap between the baseline and

DA receptor antagonists is between zero and 50%. Although arbitrary, a reasonably small

number of clusters is about six and 12 is already a too fine separation among trials to be of

practical use in data modeling. The difference in the average percentage of trials overlap

between 6 (solid black squares) and 12 (solid red circles) clusters is shown in Fig 4c for all

mice. First, we notice that the mean percentage overlap for 6 and 12 clusters are within one

standard deviation of each other in all cases. Since the average percentage overlap did not

change significantly by doubling the dendrogram’s number of clusters it means that the

observed overlap could be the result of true similarities among the LFP recordings as opposed

to trials being forced to mix due to a too low number of available clusters for classification. Sec-

ond, there are significant differences between mice (see Fig 4c) regarding the percentage mix-

ing of baseline and DA receptor antagonist trials. For example, for mice # 16, 17, and 24 the

mean overlap is less than 20%, whereas for mice 11, 12, 20, 21, and 23 the trial mixing is maxi-

mum (50%) possible.

On the low side, the 20% average mix between trials could indicate the lower bound of the

correlation-based dendrogram sensitivity, which classifies some trials as “similar”, regardless

how small is the correlation among them. The fact that even after circularly shifting the data

we still find 20% misclassification between baseline and DA antagonist trials is an indication

that the correlation-based clustering method is not perfect. The 50% average mix suggests that

for the respective mice (see Fig 4c) the correlation-based dendrogram classifier is not effective

in distinguishing between the baseline and DA receptor antagonist. For this purpose, we fur-

ther investigated the statistics of lag times using the Fréchet distance among trials to sort out

true similarities (see below).

Lag time statistics

The autocorrelation-based lag time distributions for all six conditions listed in Table 1 are

shown in Fig 5. All weighted averages of lag times were presented with four significant figures

because the sampling rate was 10 kHz, i.e. a sampling time of 0.0001 s.

SCH 23390 after cocaine (Fig 5a1) shows a clear bimodal distribution of lag times with one

distinct peak at very low lag times (around 0.1s) and another peak at much longer lag times

(about 0.45 s). For every pharmacological manipulation, such as sch, sulp, or both from

Table 1, there is always a baseline recording for the respective mouse [102]. Such baseline

recordings were called bcxx where xx is the mouse number and the corresponding distribu-

tions of lag times are shown in (Fig 6). In order to quantify the effect of DA receptor antago-

nists on cocaine administration, we could directly compare the distributions of lag times

against the baseline distributions. For example, Fig 5a1 (SCH 23390 condition mice # 16 and

24) directly compares against Fig 6a1 (baseline recordings mice # 16 and 24). While the distri-

bution of lag times under scha treatment, i.e. cocaine after SCH 23390, preserves the original

bimodal distribution of the baseline it has a noticeable drift towards longer lag times. This

means that the correlation time of the scha data increased compared to baseline.

Another direct comparison is with the cocaine data [103] shown in Fig 7. As we previously

reported, cocaine generally shifts the lag times towards shorter durations compared to baseline

values [103]. If we compare the peak around the lag time of 0.1 s in the baseline Fig 6a1 against

the cocaine Fig 7a1, then not only that the peak narrowed under cocaine but it is also much

stronger compared to any other lag times. More quantitatively, the weighted average of all lag

times for the baseline was 0.2072 s, 0.1937 s after cocaine, and 0.3012 s after scha (see Table 3).
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Fig 5. Correlation-based lag time statistics for all DA receptor antagonist conditions and mice. For scha condition (a1) the correlation-based lag times have a

bimodal distribution with some trials having a very short correlation time around 0.1 s and another group with 0.45 s. Although this and all the other distributions are

similar to their corresponding baselines (see Fig 6), they also have significant differences presumably due to the DA receptor antagonist effect. For example, scha
condition (a1) significantly shifted towards longer lag times compared to baseline. The weighted average of all lag times were 0.3012 s for scha (panel a1), and 0.2072 s

for the baseline (see Fig 6a1), which represents a significant 45% increase in correlation time. Similarly, the weighted average of lag times for sulpa was 0.2864 s (panel

a2) compared to 0.2275 s for the baseline (see Fig 7), which is a 26% increase in the correlation time. For botha (panel a3) there was only one viable animal which

showed no change in the weighted average lag times compared to the baseline (see Fig 6a3). The weighted averages of lag times were 0.2594 s for the schb (panel b1),

0.2439 s for sulpb (panel b2), and 0.2548 s for bothb (panel b3). In all cased when DA receptor antagonist was applied before cocaine the weighted average of all lag

times is the same as the corresponding baseline value.

https://doi.org/10.1371/journal.pone.0223469.g005
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Fig 6. Distributions of all baseline lag times. The animal were grouped according to the DA receptor antagonist treatments shown in

Fig 5 for direct comparison. Most of the distributions are unimodal, except a1 and a2. The features of the lag time distributions of the

baseline were preserved both under DA receptor antagonist (see Fig 5) and under cocaine alone (see Fig 7).

https://doi.org/10.1371/journal.pone.0223469.g006
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In this study, we expanded our previous analysis [102, 103] from six to 17 animals and noticed

that sometimes the cocaine increases the weighted average of lag times compared to baseline.

However, to put this apparently contradictory result in statistical perspective, we notice that

the largest increase of 35% is only observed in one animal, i.e. bc23. The other increase of 17%

compared to the baseline is also due to only one animal bc10 that skews the entire average of

the group. In all the other 15 animal the cocaine shifts the weighted average lag times to shorter

durations compared to the baseline as previously reported in [103].

Fig 7. Lag time distributions under cocaine alone. While cocaine preserves the general structure of the lag time distributions noticed in the baseline (Fig 6),

there are subtle differences that could be captured, for example, by the weighted average of the lag times. For example, after cocaine the weighted lag time is

0.1937 s (panel a1) and the baseline is at 0.2072 s (7% shorted compared to baseline). For panel b1 the weighed average lag time is 0.2635 s compared to 0.2594

s for baseline (2% longer than baseline). For panel a2 the weighed average lag time is 0.2275 s, which is the same as the baseline. For panel b2 the weighed

average lag time is 0.2850 s under cocaine and 0.2439 s for the baseline (17% increase compared to baseline). For panel a3 the weighed average lag time is

0.2423 s after cocaine and 0.1790 s for the baseline (35% increase). For b3 the weighed average lag time is 0.2194 s for cocaine and 0.2548 s for baseline (14%

shorter than baseline).

https://doi.org/10.1371/journal.pone.0223469.g007
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This confirms the observation that generally cocaine alone shifts the lag times towards

smaller durations compared to baseline [103], i.e. decreases the correlation time of the data,

whereas SCH 23390 applied after cocaine significantly shifts the lag times towards longer dura-

tions. In this study, we used the weighted average of the lag times to put a number on a com-

plex and complicated distribution of lag times. In our previous studies, we fitted the lag time

distributions with log-normal functions and extracting the peak of the fitting function (see

[103]). The main reason for such a change in our approach is that a log-normal fit, while

appropriate for the six mice considered in [103], it is not appropriate for all distributions in

this 17 mice study. Indeed, some distributions are clearly bimodal, such as the one shown in

Fig 5a1, which would be a very poor log-normal fit.

SCH 23390 before cocaine lag time distributions (Fig 5b1) are unimodal with a weighted

average of lag times around 0.26 s. The range of lag times is similar for both SCH 23390 condi-

tions and is shorter than 0.6 s. The unimodal shape reflects the original baseline unimodal

shape of the lag time distribution in Fig 6b1. The weighted average of lag times for baseline

was 0.2594 s (see the first column in Table 3), which shifted to 0.2635 s under cocaine (see Fig

7b1), which remained unchanged when DA receptor antagonists were applied before cocaine

(see the second column in Table 3). The shift in the lag time when cocaine follows the DA

receptor antagonists is shown in the third column of Table 3. When SCH 23390 was applied

before cocaine (second column in Table 3) it facilitated the shift of the lag times back towards

the baseline values (first column in Table 3) and canceled out the effect observed in cocaine tri-

als (third column in Table 3). When SCH 23390 was applied after cocaine (fourth column in

Table 3) it facilitated the occurrence of longer lag times compared to baseline.

Sulpiride after cocaine (Fig 5a2) also shows a bimodal distribution with one peak around

0.25 s and the other, significant but less prominent, around 0.5 s. The bimodal distribution is

more prominent in the baseline histograms shown in Fig 6a2 and also somewhat preserved

under cocaine (see Fig 7a2). The weighted average of lag times for the baseline was 0.2275 s,

remained unchanged under cocaine (third column in Table 3), and then shifted to a longer

duration of 0.2864 s when sulpiride was applied after cocaine (the fourth column in Table 3).

We noticed that when either DA receptor antagonists sulpiride or SCH 23390 are applied after

cocaine (see the fourth column in Table 3), they increase the lag time compared to baseline

(see the first column in Table 3).

Sulpiride before cocaine trials (Fig 5b2) have almost unimodal distributions of lag times

with a peak around 0.2 s. The range of both distributions is a bit over 0.6 s. The weighted aver-

age of lag times was 0.2439 s for the baseline (Fig 6b2), shifted to 0.2850 s under cocaine (Fig

7b2), and returned to the baseline value of 0.2439 s when sulpiride was applied before cocaine

(Fig 5b2).

Table 3. Autocorrelation-based lag time averages (in milliseconds) for baseline, DA receptor antagonists before cocaine, cocaine, and DA receptor antagonists after

cocaine. The first column represents the baseline recording, the second column represents data from DA receptor antagonists applied before cocaine, the third column

represents data collected when cocaine alone was applied, and the last column are data recorded when DA receptor antagonists was applied after cocaine. The respective

DA receptor antagonists are listed in parentheses. All standards deviations are given with two significant figures.

Baseline DA antagonist

before cocaine

Cocaine DA antagonist

after cocaince

259 ± 92 259 ± 92 (sch) 260 ± 120

240 ± 100 240 ± 100 (sulp) 290 ± 200

250 ± 140 250 ± 140 (both) 220 ± 140

210 ± 130 190 ± 140 300 ± 140 (sch)

230 ± 140 230 ± 140 270 ± 130 (sulp)

180 ± 110 240 ± 110 180 ± 110 (both)

https://doi.org/10.1371/journal.pone.0223469.t003
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Both SCH 23390 & Sulpiride after cocaine is unimodal (Fig 5a3), although we only

retained one good data set. The weighted average of lag times for the baseline was 0.1790 s (see

Fig 6a3), 0.2423 s after cocaine (see Fig 7a3), and 0.1790 s for both sulpiride and SCH 23390

after cocaine (see Fig 5a3).

Both SCH 23390 & Sulpiride before cocaine clearly show unimodal lag time distributions

(see Fig 5b3). As opposed to SCH 23390 or sulpiride alone, the lag times in this case concen-

trate around very short values (around 0.12 s) and the distribution has a long tail of significant

contributions up to 0.6 s. The weighted average of lag times was 0.2548 s for baseline (see Fig

6b3), 0.2194 s for cocaine (see Fig 7b3), and 0.2548 s when sulpiride and SCH 23390 were

applied together before cocaine (see Fig 5a3).

To summarize, regardless of the effect of cocaine when applied alone (the third column in

Table 3), the combination DA receptor antagonists followed by cocaine (the second column of

Table 3) always leaves the lag time at the baseline values. On the other hand, when DA receptor

antagonists is applied after cocaine (the fourth column in Table 3) it increases the lag time

compared to the baseline. There is one exception to this observation (see the last line in

Table 3), but it could be an outlier since there was only one set of data available for this particu-

lar condition.

Below we briefly summarize the results on the lag times obtained from AMI in Fig 8 and

Table 4. When comparing the lag time obtained with the autocorrelation method (see Fig 5)

against AMI lag times (see Fig 8) one obvious difference is that AMI lag times are about an

order of magnitude shorter.

One benefit of the AMI-based lag times analysis is the identification of a few faulty cou-

plings between the optrode and the tissue. Lag times of the order of 1-5 ms could be realistic

when studying small neural networks, since they are of the same order of magnitude as the

durations of individual action potentials. However, such short lags are unrealistic when mea-

suring LFPs that average processes over hundreds and possibly thousands of individual action

potentials. We noticed a few unusually short lag times (between 2 ms and 5 ms) while most of

the lag times are above 0.01 s. As shown in Fig 8, such examples are mouse 17 (about 30% of

the lag times below 5 ms), mouse 22 (over 85% of the lag times below 5 ms), and mouse 21

(over 40% of lag times below 5 ms). A closer inspection of all these particular trials showed

that the LFPs have very low peak-to-peak amplitude (below 0.04) and they were covered by

noise, probably due to faulty coupling with the optrode.

One immediate conclusion from comparing autocorrelation-based lag times from Table 3

against the AMI-based lag times from Table 4 is that the standard deviation of AMI-based lag

times is smaller in most cases. This suggests a narrower distribution of lag times for AMI-

based method. Another conclusion is that the correlation-based lag time (see Fig 5) is larger

than the AMI-based lag time (see Fig 8) by an order of magnitude. With such a wide spread of

lag times, the concern is that the attractors may not unfold properly. We found that attractors

unfold both with the AMI-based and autocorrelation-based lag times.

Kolmogorov-Smirnov (KS) test

We are both interested in determining the exact values of the delay (or lag) time and also

check if the lag time distributions differ from one condition to another. This is the second sta-

tistical test, in addition to the previously performed dendrogram clustering of similar trials,

aimed at identifying statistically significant variability among trials for the purpose of subse-

quent mathematical modeling. We are interested in checking if baseline trials which previously

could not be distinguished from DA receptor antagonist trials using dendrogram classifiers

are in any way distinct from each other with respect to lag time distributions.
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Fig 8. Average mutual information-based lag time statistics for all DA receptor antagonist conditions and mice. For scha condition (a1), the AMI-

based lag times have narrow unimodal distributions with an average around 0.017 s (see Table 4 for mean ± standard deviation values). For schb
condition (a2), the AMI-based lag times is unimodal with an average of 0.024 s, although for mice 14 and 15 the distributions have long tails that

extend past 0.04 s. For sulpa condition (b1), the AMI-based lag times have unimodal distributions with an overall average of about 0.017 s. For sulpb
condition (b2), the AMI-based lag times have unimodal distributions with an overall average of about 0.23 s and long tails that extent past 0.04 s. For
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Although the plots of the distributions in Figs 5–7 offer a good qualitative comparison

among them and the wighted average of lag times (see Table 3) gave a quantitative description

of the expected lag, we also performed a direct comparison of lag time distributions. Multiple

conventional statistical significance test methods can be used, such as two-tailed t-test, two-

sample Kolmogorov-Smirnov test, Wilcoxon rank sum test, analysis of variance, and Kruskal-

Wallis test.

Kolmogorov-Smirnov test [145] was used here for deciding if a sample comes from a popu-

lation with a specific distribution. If the data come from the same distribution at the default

5% significance level, then we represented that result with a solid black square in Fig 9a1–9c1.

The probability of observing a test statistic as extreme as, or more extreme than, the observed

value under the null hypothesis is shown on a natural logarithmic scale in Fig 9a2–9c2. Statisti-

cal significance is often referred to as the probability value, or p-value. A small p-value means

that the data are unlikely under some null hypothesis. Usually, the null hypothesis is rejected if

p< 0.05. We also computed the maximum difference between empirical distribution func-

tions and plotted them in Fig 9a3–9c3.

To understand how much of the pharmacological manipulation changes the distributions

of lag times, we first run the KS test on the baseline data (Fig 9a1). Any off-diagonal black

square indicates that the respective baseline distributions are from the same empirical distribu-

tion. For example, the lag times for bc8, bc9, bc11, bc15, bc20, and bc22 seem to all follow the

same distribution.

The next comparison is among the distributions of the baseline versus DA receptor antago-

nists trials (see Fig 9b1). For example, the mouse #8 has been treated with sulpiride before

cocaine (sulpb) and the distribution of delay times for suplb8 is similar to bc8, bc9, bc11, bc15,

bc20, and bc22. This means that for this mouse the sulpiride injection did not change the lag

time distribution and, therefore, the black squares remained in the same place as in the base-

line case shown in Fig 9a1.

For other mice, such as #18 it turned out that the injection of sulpiride after the cocaine

(sulpa) changed the distribution of lag times and made it more similar to bc9, bc11, bc12, bc15,

bc19, bc20, bc21, and bc22 (see the solid red squares in Fig 9b1). At the same time, for mouse #

18 the sulpa distribution is definitely different than its baseline (bc18) and also different from

bc23 (see the solid blue squares in Fig 9b1). Notice that in the baseline case, bc18 and bc23 lag

time distributions are of the same type. This suggests that the combination cocaine followed

botha condition (c1), the AMI-based lag time distribution has and average of about 0.023 s and a long tail that extent past 0.04 s. For bothb condition

(c1), the AMI-based lag time distribution has and average of about 0.012 s and a long tail up to 0.04 s.

https://doi.org/10.1371/journal.pone.0223469.g008

Table 4. Average mutual information-based lag time averages (in milliseconds) for baseline, DA receptor antagonists before cocaine, cocaine, and DA receptor

antagonists after cocaine. The first column represents the baseline recording, the second column represents data from DA receptor antagonists applied before cocaine,

the third column represents data collected when cocaine was applied, and the last column are data recorded when DA receptor antagonists was applied after cocaine. The

respective DA receptor antagonists are listed in parentheses. All standards deviations are given with two significant figures.

Baseline DA antagonist

before cocaine

Cocaine DA antagonist

after cocaince

24.1 ± 7.0 24.1 ± 7.0 (sch) 24.8 ± 7.3

23.1 ± 6.7 23.1 ± 6.7 (sulp) 23.4 ± 7.0

12.0 ± 6.2 12.0 ± 6.2 (both) 7.7 ± 3.7

21.3 ± 5.8 20.6 ± 5.5 17.0 ± 3.4 (sch)

16.8 ± 5.5 16.8 ± 5.5 17.8 ± 6.8 (sulp)

22.8 ± 8.1 17.4 ± 5.6 22.8 ± 8.1 (both)

https://doi.org/10.1371/journal.pone.0223469.t004
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Fig 9. Kolmogorov-Smirnov tests. Solid black squares indicate lag time distributions belonging to the same class (a1). For example, bc8 and bc9, bc11, bc15, bc20 and

bc22 are likely to be drawn from the same distribution. The measure of likelihood is determined by p-value, which is given on a natural logarithmic scale in panel (a2)

where the bright orange color covers the range from e0 = 1 to e−10� 4.5 × 10−5. The maximum difference between any two distributions is shown in panel (a3). Dark

colors mean small differences between empirical distributions. Panels a1-a3 refer to baseline distributions and are only provided to help us understand the changes

induced by DA receptor antagonists (panels b1-b3). Panel b1 is similar to a1 (baseline), except for a few conditions and mice that seem to be affected by DA receptor

antagonists. For example, the mouse # 18 only had similar distribution of lag times with mouse #23 under baseline (see panel a1), whereas when treated with sulpa
(sulphiride after cocaine) its lag time distribution became similar to baseline lag time distributions for bc9, bc11, bc12, bc15, bc19, bc20, bc21, and bc22. These new

correlations are shown with solid red squares to signal that they are new and unexpected compared to baseline. At the same time, sulpa18 distribution lost its baseline

similarity with bc18 and bc23, which is marked with solid blue triangles in panel b1. The corresponding p-values (panel b2) confirm the new membership of the lag time

distributions to the set bc9, bc11, bc12, bc15, bc19, bc20, bc21, and bc22. Furthermore, the maximum distance between sulpa18 and bc9, bc11, bc19, bc20, bc21, and bc22 is

indeed low (below 0.2), whereas it increases a bit when compared to bc12 and bc15, but remains below 0.4 (panel b3). When cross-correlating the DA receptor

antagonists’ effects against themselves (a3) we notice a significant increase similar lag time distributions (solid red squares) compared to the baseline (solid black squares).

Some previously similar distributions in the baseline, e.g. bc16, bc22, and bc23, are lost under DA receptor antagonists (marked with solid green squares).

https://doi.org/10.1371/journal.pone.0223469.g009
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by sulpiride is affecting the dynamic reconstruction of the attractor through the correlation lag

time of data.

When compared against the baseline lag time distributions, the changes seem to occur in

scha16, sulpa17, sulpa18, sulpa19, and scha24 recordings (solid red squares in Fig 9b1).

Finally, when computing the KS test across all DA receptor antagonist trials (see Fig 9c1)

we notice an increase in the fraction of similar distributions compared to the baseline. For

example, mouse #24 had similar distributions with mice # 17, 20, and 22 (see solid black

squares in Fig 9a1). However, scha treatment made the lag time distributions for mouse #24

similar to those of mice # 12, 16, 18, 19, and 21 (see the solid red squares in Fig 9c1). Notice

that before treatment the distribution of lag times for #24 was different from the baseline for #

12, 16, 18, 19, and 21. We also noticed that scha treatment removed similarities with the base-

line # 17, 20, and 22, which is shown with green solid squares in Fig 9c1.

Reconstructed neural activity under DA receptor antagonists

The lag time

The distribution of all autocorrelation-based lag times are shown in Fig 5 and the AMI-

based lag time values (not shown) were within 5% of those obtained with the autocorrelation

method. As before [102, 103], we used the Tisean function autocor to compute the autocorrela-

tion and mutual to compute the AMI.

The embedding dimension

The lag time was used for computing the embedding dimension of the data over distance

ratios, f, between 2 and 20 and Theiler windows from 100 to 8000 sampling times (see [102,

103] for explicit Tisean function calls). We found that the percentage of FNN dropped below

0.1% for an embedding dimension of dE = 3 and f> 10.

The phase space attractor of each trial was obtained but we only show two representative

examples from each dendrogram-based cluster (see Fig 10). Although the attractors for differ-

ent clusters look different, they are topologically equivalent (see [102, 103]), i.e. by changing

the delay time one phase space trajectory could be morphed into the other. The attractors in

Fig 10a1 (scha), a2 (sulpa), and a3 (botha) show an “8”-shape, which is topologically equivalent

with a closed elliptic attractor as shown in Fig 10b1 (schb), b2 (sulpb), and b3 (bothb). Indeed,

the attractor in Fig 10a1–10a3 could be morphed into the one shown in Fig 10b1–10b3 by

twisting the upper half of the attractor with respect to the lower half.

As mentioned in the lag time section, the autocorrelation-based lag time (see Table 3) was

an order of magnitude larger than the AMI-based lag time (see Table 4). This raised the ques-

tion whether such low lag times could properly unfold the three dimensional attractor as we

observed for much larger autocorrelation-based lag times in Fig 10. We show below a side-by-

side example of an attractor for the same condition and the same trial unfolded both with the

autocorrelation-based and AMI-based lag time in Fig 11. For the example shown in Fig 11, the

condition, the mouse, and the trial were randomly selected from among the six conditions, 24

mice, and 100 trials for each mouse.

Fréchet distance in neural activity space

Finally, we performed a third statistical test of similarities among trials based on the recon-

structed tree-dimensional attractors. For this purpose, we computed the Fréchet distance [133,

135] between three-dimensional phase space trajectories, such as those shown in Fig 10. Intui-

tively, Fréchet distance relates to the “man walking a dog on a leash” paradigm, i.e. find the
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shortest leash needed such that the man walks along one curve and the dog walks along the

other [134]. Fréchet distance is a topological measure of the similarity between two curves

[134], i.e. it does not consider any temporal constrains regarding the location of figurative

points on the two curves. We computed Fréchet distance using the algorithm in [136]. In Fig

12, each white-bordered square corresponds to a combination of 100 baseline trials × 100 trials

with DA receptor antagonists. For example, the top left square shows the color-coded Fréchet
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Fig 10. Three-dimensional reconstructed attractors of neural activity. Representative reconstructed attractors of neural activity under each

condition: scha (a1), schb (b1), sulpa (a2), sulpb (b2), botha (a3), and bothb (b2). For each condition only two traces are shown with thin

continuous and dashed lines, respectively. The thick line is the average reconstructed trace over the entire cluster, which is provided only as a

visual aid. The trajectories resemble those observed under baseline [102] and cocaine [103].

https://doi.org/10.1371/journal.pone.0223469.g010
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Fig 11. Three-dimensional reconstructed attractors both with autocorrelation-based and AMI-based lag times. Representative reconstructed attractors of neural

activity from schb12 trial #5 with a lag time of 1953 sampling times, i.e. 195.3 ms, based on autocorrelation method (a), and with 205 lag times, i.e. 20.5 ms, based on

AMI method (b). While the lag times are one order of magnitude apart, they still unfold the attractor without any self-crossings of the phase space trajectory (see also the

three-dimensional rotating frame in S1 Fig (for correlation-based lag time reconstruction) and S2 Fig (for AMI-based lag time reconstruction)).

https://doi.org/10.1371/journal.pone.0223469.g011

Fig 12. Fréchet distance between baseline and DA receptor antagonists. (a) Each white-bordered square contains the color-coded Fréchet distance between the 100

control (bc) trials and the 100 DA receptor antagonist trials. Deep blue colors mean small Fréchet distance and suggest similar phase space trajectories. (b) The average

over each 100 × 100 block offers a smoother color-coded overview of topological similarities among conditions. For example, there are a few clusters of similar

geometrical structure among the three-dimensional attractors that are below 10% of the maximum observed arbitrary Fréchet distance. Among them, bc8 are

topologically similar to sulpb8, sulpa18, sulpa19, and bothb20. Similar clusters are bc19 & bc20 and sulpb19 & sulpb20 and a larger blue cluster with sulpa18, sulpa19, and

bothb20 (see upper right side of panel b).

https://doi.org/10.1371/journal.pone.0223469.g012
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distance between the 100 baseline trials bc8 and the 100 trials after DA receptor antagonist

sulpb8.

Fréchet distance is a topological measure of similarity between two curves, i.e. once the lag

time was used for the purpose of unfolding the attractor the structure is “frozen” in phase

space. This means that Fréchet distance only computes the topological distance between any

two points of the two trajectories regardless of the speed at which the figurative points travel

along the path, i.e. disregards dynamical aspects.

The fact that two different conditions, such as bc8 and sulpb8 have similar-looking three-

dimensional attractors at an average minimum distance of 0.03 ± 0.01 arbitrary units (indi-

cated by blue color in Fig 12) means that the figurative points of the two conditions visit

similar phase space regions of neural activity. At the same time, for the same two conditions

the weighted average lag times is 0.244 s both for the baseline (Fig 6b2) and sulpb8. This

means that the two trajectories are similar both geometrically and that they are traveled at the

same speed. Other conditions, such as bc9 and sulpb9, have quite large Fréchet distance of

0.15 ± 0.02 between reconstructed attractors despite the fact that their lag time distributions

have the same weighted average lag times. The implication is that although the time constants

for the phase space dynamics are identical for mice # 8 and 9 both for the baseline and DA

receptor antagonist, the differences in topological distances suggest that either the initial con-

ditions for the two mice were different or the sensitivity to light stimuli for the two mice is sys-

tematically different.

Towards a quantitative model of the experimental data

The reconstructed attractors (see Figs 10 and 11) suggest closed phase space, i.e. periodic, tra-

jectories. While in principle any signal could be represented as an infinite series of harmonics,

we only decomposed the signals using 3, 5, 10, and 100 of the harmonics with the highest

amplitudes (see Fig 13). As the inset in Fig 13a1 shows, including more frequencies in the spec-

tral analysis leads to a better approximation of the original LFP. The distribution of residuals,

i.e. the difference between the LFP and the synthesized signal, shown in Fig 13a2 suggests that

the spread of the distribution decreases as the number of harmonics increases. When 100 fre-

quencies with the highest amplitude are considered (Fig 13b1), then the synthesized signal can

reproduce minute details of the LFP and the corresponding residual has a Gaussian distribu-

tion with a very narrow range (see Fig 13b2).

We tested the LFP residuals obtained by subtracting the synthesized signal according

to Eq 2 from the original LFP data (see Fig 13a2 and 13b2). In all signals synthesized with

more than 10 frequencies the residuals were identified with Matlab system identification

toolbox as ARMA(0,0) processes, i.e white noise. Additionally, we ran the augmented

Dickey-Fuller and Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) tests. Both tests showed

that the residual time series shown in Fig 13 were stationary. When we used less than 10 fre-

quencies of the Fourier spectrum to synthesized the signal, the residual signal failed one or

both stationarity tests. This shows that with a too low number of harmonics the residual sig-

nal still contains trends that were not removed from the original signal when subtracting the

synthesized one.

The summary of spectral analysis over all trials of sulpa for mouse #18 is shown in Fig 14a1

(first three strongest frequencies in Fourier spectrum), a2 (first five frequencies), and a3 (first

ten frequencies). As Fig 14a1–14a3 suggest, for each frequency in the Fourier spectrum (hori-

zontal axis) the corresponding amplitude has a consistent distribution (see the insets) regard-

less the number of selected frequencies. Fig 14b1–14b3 summarize the distribution of Fourier

amplitudes over all trials of sulpa for mouse #18 for the first four frequencies.
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We present in the Supporting Information the extensive S1 Table that contains all the fre-

quencies and Fourier amplitudes necessary for the synthesis of the signal with three, five, and

10 highest amplitudes. We did not include in the table the model with 100 highest amplitudes

since it only adds extra coefficients with little extra information compared to the already pre-

sented reduced models. First, we noticed that different trials may have different spectral

decompositions. For example, when decomposed in three Fourier components, trial #1

requires frequencies k = 2, 4, 6 whereas trial # 15 requires frequencies k = 2, 4, 8. As a result,

for each of the three decompositions in Fourier components, we also show what fraction of the

trials required a particular frequency. Based on the number of data points and the sampling

duration, the actual frequency is fk = k/3 (Hz). Since in Fig 14 we only showed the distribution

of amplitudes for the first four strongest frequencies, we show below a very small excerpt from

S1 Table.

Fig 13. Synthesized traces from the strongest harmonics of the original signal. The original LFP recording (black) was first decomposed in Fourier

harmonics and then a signal was synthesized from the first 3 (a1 red line), 5 (a1 blue curve), 10 (a1 green curve), and 100 (b1 red curve) frequencies with the

largest amplitude in the power spectrum. The insets show that as we include more harmonics, the synthesized signal better approximates the original LFP

recording. All distributions of residuals, i.e. the difference between the original and the synthesized signal, have Gaussian shapes (a2 and b2). The amplitude or

residuals decreases by an order of magnitude as the number of frequencies for the synthesized signal increased from 3 (a2) to 100 (b2).

https://doi.org/10.1371/journal.pone.0223469.g013
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Fig 14. Fourier amplitudes versus frequency for signal synthesis. The Fourier amplitudes for the first 3 (a1), 5 (a2), and 10 (a3)

strongest harmonics over all trials of sulpa for mouse #18. Each frequency has an amplitude range (see shade narrow rectangle) that can

be better capture by its distribution (see the corresponding shaded inset). The insets in panels (a) show the percentage contribution

(horizontal axis) of each Fourier amplitude (vertical axis) for a particular frequency. Panels (b) show the distribution of Fourier

amplitudes of the first four strongest harmonics.

https://doi.org/10.1371/journal.pone.0223469.g014
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We notice from Table 5 that the first four frequencies have stable amplitudes over different

Fourier representations of the signal, which is an indication that they capture a significant

amount of information regarding the LFPs. Even in the case of a flexible decomposition of

LFPs with 10 frequencies, the four strongest harmonics listed cover over 44% of the trials

and 61% of the trials when constraining the Fourier decomposition to five frequencies (see S1

Table for detailed information on Fourier coefficients and their corresponding weights in data

modeling).

To conclude, a spectral model of the data with less than ten harmonics is accurate enough.

Given the large number of trials that are captured correctly even by only four harmonics (see

Table 5), a much lower number of Fourier coefficients (maybe five) may suffice.

Discussion

What did we learn from analyzing the neural activity under DA receptor antagonists? First, we

found that the delay embedding method works (see [102] for a discussion of control data and

[103] for cocaine data). Second, we found that the embedding dimension is still three, the

same as in the previous studies [102, 103]. This means that the mathematical model that could

describe the control, the cocaine, and DA receptor antagonists only require three independent

variables.

We also found that there are mice for which the overlap between baseline and DA receptor

antagonists is maximum, i.e. 50% and, therefore, the dendrogram with Euclidian distance

measure cannot distinguish between baseline and DA receptor antagonists. Such examples are

mice # 11, 12, 20, 21, and 23. We also caution against exclusively and solely relying on dendro-

gram for the purpose of trials’ classification and statistics. For example, the dendrogram is sen-

sitive to the type of distance selected for classifier.

Weighted average of lag times

The second, more qualitative classifier was based on the distribution of lag times. The delay

times for the phase space reconstructions significantly differ among animals (see Fig 5).

Although the optimal delay time even differs from trial to trial, it is clear that the distributions

of delay times are also significantly different between baseline (Fig 6) and DA receptor antago-

nists for most mice (see Fig 5).

For some mice, the LFPs of baseline and DA receptor antagonists were not distinguishable

using dendrogram method, whereas the lag time statistics allowed a clear separation of the two

conditions. For example, for mouse # 12 the weighted average of lag times for baseline was

0.297 s which shifted to a lower lag times of 0.26 s when SCH 23390 was applied before cocaine

(see Fig 7b1).

Table 5. Fourier coefficients for the first four strongest frequencies in Fourier spectrum. The Fourier amplitudes for sulpa mouse #18 shown in Fig 14 for the 100 trials

with three Fourier coefficients (the second and third columns), five coefficients (the fourth and fifth columns), and 10 coefficients (the sixth and seventh columns). The

first column represents the integer frequency index k. Although each trial was synthesized using the largest 3, 5, or 10 Fourier amplitudes, different trials have different

combinations of frequencies. For each of the three decompositions in Fourier components, we show what fraction of the trials required a particular frequency.

k % trials

(3 coeff)

Ak
(3 coeff.)

% trials

(5 coeff.)

Ak
(5 coeff.)

% trials

(10 coeff.)

Ak
(10 coeff.)

4 31 0.059 ± 0.038 23 0.059 ± 0.041 12.9 0.059 ± 0.037

6 20 0.091 ± 0.068 16 0.083 ± 0.069 9.1 0.083 ± 0.067

8 15 0.125 ± 0.090 11 0.125 ± 0.097 6.1 0.125 ± 0.090

10 15 0.125 ± 0.092 11 0.125 ± 0.10 6.1 0.125 ± 0.10

https://doi.org/10.1371/journal.pone.0223469.t005
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On the other hand, the weighted average of lag times for other mice did not change between

baseline and DA treatments. For example, for the mouse # 11 the weighted average of lag times

was 0.244 s (Fig 5b2), for mice # 20 and 21 it was 0.255 s (see Fig 6b3), and for mouse # 23 it

was 0.178 s (see Fig 6a3). At the same time, only comparing DA receptor antagonists against

baseline does not cover the entire complexity of the experiment we carried out. This is because

the common denominator of all DA receptor antagonist experiments in this study is cocaine:

we either injected cocaine before or after the D1 receptor antagonist SCH 23390, or the D2

receptor antagonist sulpiride, or both SCH 23390 & sulpiride. Therefore, we also checked DA

receptor antagonists’ effect on lag time distributions when compared against pure cocaine

experiments [103]. We are again interested in mice # 11, 12, 20, 21, and 23 since the dendro-

gram could not distinguish between baseline and DA receptor antagonist trials in these cases.

As it turned out, in all of the above cases there were significant differences between the lag

times of cocaine trials (see [103]) and DA receptor antagonists. For example, the weighted lag

time for mouse # 11 is 0.285 s under cocaine and 0.244 s when sulpiride was applied before

cocaine (Fig 5b2). The weighted lag time for mouse # 12 was 0.263 s under cocaine and 0.26 s

when SCH 23390 was applied before cocaine (Fig 5b1). The weighted lag times for mice # 20

and 21 were 0.219 s for cocaine and 0.255 s for sulpiride and SCH 23390 applied before cocaine

(see Fig 5a3). The weighted lag times for mouse # 23 was 0.242 s after cocaine and at 0.178 s for

both sulpiride and SCH 23390 after cocaine (see Fig 5a3).

It is also important to note that when compared against baseline, the only trials in which

the weighted average of the lag time increased were scha and sulpa. In all other conditions, i.e.

schb, sulb, and both, the weighted average of the lag times remained the same. This indicates

that from a dynamic point of view, it matters in which order is the SCH 23390 and sulpiride,

respectively, injected with respect to cocaine. In trials where the DA receptor antagonists were

injected after cocaine the lag time increased, which means a longer correlation time of the

LFP recordings and, therefore, a different time scale of the model equations compared to the

baseline. At the same time, when cocaine was applied before DA receptor antagonists we did

not observe changes in the weighted average of the lag times compared to baseline. To fully

understand these cases we need to compare them against the effect of pure cocaine (no DA

receptor antagonists). We noticed that in sulpb, such as sulpb9 and sulpb11, the cocaine alone

decreased the weighted average of the lag times compared to baseline whereas sulpiride

applied before cocaine shifted the lag times to longer durations and precisely back to the base-

line, practically canceling the effect of cocaine. Similar responses were observed in schb13

and schb15 where cocaine alone decreased the weighted average of the lag times compared to

baseline and then SCH 23390 applied before cocaine practically canceled the effect of

cocaine leaving the lag time at baseline values. Finally, in all cases when both SCH 23390 & sul-

piride were applied before cocaine, i.e. bothb20, bothb21, and bothb22, the cocaine alone sys-

tematically moved the weighted average of the lag times to shorter durations compared to

baseline, whereas the two DA receptor antagonists together practically canceled out the effect

of cocaine and left the lag times at baseline values.

It is also important to address the issue of some trials that do not fit the above picture, such

as sulp8 and sulp10 for which cocaine alone shifted the weighted average of the lag times to

longer durations. Even in these two cases, the effect of sulpiride was consistent with the other

sulpb cases, i.e. sulpiride applied before cocaine shifted the lag times back to baseline. The mis-

match does not concern the effect of DA receptor antagonists, which consistently cancel out

the effect of cocaine when applied before it, but rather the unusual increase in the weighted

average of the lag times under cocaine. The cause could be our choice of the weighted average

of the lag times as a measure for comparing two distributions, i.e. baseline and cocaine. In con-

trast, in [103] we first fitted the distributions with a log-normal function and then compared
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the location of the peaks of the distributions. In particular, sulpb8 and sulpb10 have a longer

tail compared to sulpb9 and sulpb11 that shifts the weighted average of lag times towards lon-

ger durations while the peak of the log-normal distribution remains unchanged (not shown).

Therefore, the mismatch could be determined by our choice of the number we put on a distri-

bution of lag times. Furthermore, for the particular mice # 8 and 10, a log-normal fit is not

quite optimal as the lag time distributions seem to have bimodal shapes.

Kolmogorov-Smimov (KS) similarity of lag time distributions

The KS test that compared the actual distributions of baseline lag times against DA receptor

antagonists (see Fig 9b1) has a significantly large number of diagonal elements, i.e. cases where

KS test placed the baseline and DA receptor antagonists in the same empirical distribution.

Among others, we find again mice # 11, 12, 20, 21, and 23 in this category. Interestingly, DA

receptor antagonists removed mice # 16, 17, 18, and 24 from the cross-list and indicated that

their lag time distributions changed compared to baseline (see blue solid squares in Fig 9b1).

This confirms the findings based on the weighted average of the lag times and supports the

conclusion that DA receptor antagonists applied after cocaine, i.e. scha16, scha24, sulpa17,

sulpa18, increased the lag time/correlation time of LFP recordings. The two missing mice for

DA receptor antagonists applied after cocaine, i.e. sulpa19 and sulpa23 had a large p-value, i.e.

close to the borderline of the statistical test.

As with any statistical test, we must also be aware of their weaknesses. For example, the KS

test may not give reliable estimates for similar but different cumulative distribution functions

since this statistical test is most sensitive near the median of the samples and less sensitive near

the tails [146]. As we notice from Fig 5, all our lag time distributions are skewed towards one

(very low) extreme of the spectrum. Therefore, we expect that KS test may fail on some of

these distributions.

Three-dimensional reconstructed attractors

We reconstructed three-dimensional attractors based on LFPs from mPFC of ChR2 expressing

PV+ interneurons (see Fig 10). We found topologically similar phase space attractors that

could be morphed into each other after an appropriate change in delay time (see [102, 103])

for details). The characteristic “8” -shaped attractor (see Fig 10) was also found in the control

[102] and cocaine cases [103].

All studies on control data [102], cocaine [103], and this DA receptor antagonists study sug-

gest that the local network could be described by a model with only three variables. Further-

more, all control, cocaine, and DA receptor antagonists trials are classified as similar and

placed in the same cluster by the dendrogram method in at least 20% of the cases, regardless

of the number of clusters of the dendrogram (see Fig 4c). This overlap suggests that there may

be a common, invariant, part of the mathematical model that describes all trials. At the same

time, there are some significant difference in the delay times between control and DA receptor

antagonists (see Fig 5) that could lead to different phase space dynamics. The differences in

the delay times between baseline and DA receptor antagonists, whenever significant, could be

interpreted as two different time scales for the two experiments.

We also found that the attractors correctly unfold for a wide range of lag times. Both the

attractors unfolded with the autocorrelation-based lag time (see Fig 11a) and with the AMI-

based lag time (see Fig 11b) are correctly unfolded. The only difference is that the attractors

for unfolded using the very short lag times obtained with the AMI-based method are very nar-

row along a diagonal.
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Fréchet distance between pairs of attractors

Fechet distance plots shown in Fig 12 provide an intuitive and global understanding of poten-

tially similar time scales between different trials as represented by blue colors. Although the

3D attractors use the lag time to unfold the phase space trajectories (see Fig 10), they lack any

temporal dimension. Therefore, Fréchet distance is a measure of only topological similarities

between phase space trajectories. In other words, Fréchet distance can tell how close the

attractor visits a certain region of the phase space, but not how often or how long the system

remains in that region of the phase space. As a result, Fréchet distance offers a complementary

view of reconstructed dynamics when compared against lag times, one in which we are inter-

ested more in the geometry rather than the dynamics of the phase space. One very good exam-

ple of the complementarity is bc8 attractor that is very similar topologically to both sulpb8 and,

surprisingly, sulpa19 (see Fig 12). From a dynamic point of view, the KS test of lag/correlation

times distributions for bc8 and sulpb8 shows that they were identical (Fig 9b1), but bc8 and

sulpa19 do not have similar lag time distributions. This suggests that different statistical mea-

sures capture different aspects of neural activity, some capture the time scale of the dynamics

(lag/correlation time) and others capture the topology of the phase space trajectories and the

type of accessible states.

Fourier analysis

The closed phase space trajectories shown in Figs 10 and 11 suggest that spectral (Fourier)

analysis may capture the most significant part of the LFP dynamics. We found that Fourier

decomposition with more than ten harmonics leaves a white noise residual. Depending on the

required accuracy of the model, it is even possible to capture the main trends with less than

five Fourier coefficients.

Conclusions

The activity of the medial prefrontal cortex (mPFC) in 17 mice across six difference combina-

tions of two DA receptor antagonists were investigated. The D1 receptor antagonist SCH

23390 and D2 receptor antagonist sulpiride were used in these experiments either applied

before, as in schb, sulpb, and bothb trials, or after, as in scha, sulpa, and botha trials. The tran-

sient phase resetting induced by a light stimulus was removed using the pair correlations

between recorded local field potentials (LFPs) [102, 103]. While the improvement in the corre-

lation coefficient is qualitatively apparent from Fig 2, the compact numerical summary in

Table 3 shows that the circular shifting improvement exceeds one order of magnitude.

The phase-corrected trials were embedded in a three-dimensional phase space using a

delay-embedding method. The main novel results of this study are as follows:

1. We reconstructed the DA receptor antagonist attractor and found that it is three-

dimensional.

2. In all trials SCH 23390 after cocaine increases the lag time by about 55% compared to pure

cocaine case and when applied before cocaine it decreases the weighted lag time by about

1%. The same trend is preserved when comparing SCH 23390 against baseline, albeit at dif-

ferent percentage changes (see Table 3).

3. Sulpiride after cocaine increases the lag time by about 26% compared to pure cocaine trials,

whereas when applied before cocaine it decreases the weighted lag time by about 14%. Sul-

piride after cocaine preserves the trend when compared against baseline, although when

applied before cocaine produces no change compared to baseline (see Table 3).
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4. When both SCH 23390 & sulpiride are applied they seem to reverse the trend observed in

the single DA receptor antagonist cases above. For example, when both SCH 23390 & sul-

piride were applied after cocaine they seem to decrease the weighted average of lag times

by 27%, although the observation is only based on one available mouse. When both SCH

23390 & sulpiride are applied before cocaine its weighted average of lag times increases by

16%. There is no change in the weighted average of the lag times between baseline and both

SCH 23390 & sulpiride receptor antagonists case.

5. A spectral model for the LFP recordings with as low as five Fourier coefficients can capture

a significant portion of data trends.

To summarize, both SCH 23390 and sulpiride, either applied separately or together, cancel

out the effect of cocaine when applied before it (see Table 3). At the same time, both SCH

23390 and sulpiride, either applied separately or together, consistently increase the lag/correla-

tion time of LFP recordings when applied after cocaine.

Supporting information

S1 Fig. Animated three-dimensional reconstructed attractor using autocorrelation-based

lag times. The reconstructed attractor for schb12 trial #5. The video augments the static picture

in Fig 11 and shows that when the attractor is rotated, there are no self-crossings of the phase

space trajectories. The autocorrelation-based lag time was 1953 sampling times, i.e. 195.3 ms.

(AVI)

S2 Fig. Animated three-dimensional reconstructed attractor using AMI-based lag times.

The reconstructed attractor for schb12 trial #5. The video augments the static picture in Fig 11

and shows that when the attractor is rotated, there are no self-crossings of the phase space tra-

jectories. The AMI lag time was 205, i.e. 20.5 ms. Although the attractor is correctly unfolded

with both correlation- and AMI-based lag times, the very short lag time of AMI method

shrinks the attractor along the diagonal and flattens it.

(AVI)

S1 Table. Fourier coefficients for signal synthesis. The Fourier amplitudes for sulpa mouse

#18 were computed for each of the 100m trials with three coefficients (the second and third

columns), five coefficients (the fourth and fifth columns), 10 coefficients (the sixth and seventh

columns), and 100 coefficients (not shown). The first column represents the integer frequency

index k. Based on the number of data points and the sampling duration, the actual frequency

is fk = k/3 (Hz). Although each trial was synthesized using the largest 3, 5, 10, or 100 Fourier

amplitudes, different trials have different combinations of frequencies. For example, when

decomposed in three Fourier components, trial #1 requires frequencies k = 2, 4, 6 whereas trial

# 15 requires frequencies k = 2, 4, 8. As a result, for each of the three decompositions in Fourier

components, we also show what fraction of the trials required a particular frequency.

(PDF)
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109. Saraçli S, Doğan N, Doğan İ. Comparison of hierarchical cluster analysis methods by cophenetic cor-

relation. Journal of Inequalities and Applications. 2013; 2013(1):203. https://doi.org/10.1186/1029-

242X-2013-203

110. Hill T, Lewicki P, editors. Statistics: Methods and Applications. Tulksa, OK: StatSoft, Inc; 2005.

111. Xu P. Differential phase space reconstructed for chaotic time series. Applied Mathematical Modelling.

2009; 33(2):999–1013. https://doi.org/10.1016/j.apm.2007.12.021

112. Takens F. Detecting strange attractors in turbulence. In: Rand D, Young LS, editors. Dynamical Sys-

tems and Turbulence, Warwick 1980. vol. 898 of Lecture Notes in Mathematics. Springer Berlin Hei-

delberg; 1981. p. 366–381.

113. Diks C, van Houwelingen JC, Takens F, DeGoede J. Reversibility as a criterion for discriminating time

series. Phys Lett A. 1995; 201:221–228. https://doi.org/10.1016/0375-9601(95)00239-Y

114. Packard NH, Crutchfield JP, Farmer JD, Shaw RS. Geometry from a Time Series. Phys Rev Lett.

1980; 45:712–716. https://doi.org/10.1103/PhysRevLett.45.712

115. Whitney H. Differentiable Manifolds. Annals of Mathematics. 1936; 37(3):645–680. https://doi.org/10.

2307/1968482
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