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Abstract

A general method to infer both positive and purifying selection during the real-time evolution

of hypermutator pathogens would be broadly useful. To this end, we introduce a Simple

Test to Infer Mode of Selection (STIMS) from metagenomic time series of evolving microbial

populations. We test STIMS on metagenomic data generated by simulations of bacterial

evolution, and on metagenomic data spanning 62,750 generations of Lenski’s long-term

evolution experiment with Escherichia coli (LTEE). This benchmarking shows that STIMS

detects positive selection in both nonmutator and hypermutator populations, and purifying

selection in hypermutator populations. Using STIMS, we find strong evidence of ongoing

positive selection on key regulators of the E. coli gene regulatory network, even in some

hypermutator populations. STIMS also detects positive selection on regulatory genes in

hypermutator populations of Pseudomonas aeruginosa that adapted to subinhibitory

concentrations of colistin–an antibiotic of last resort–for just twenty-six days of laboratory

evolution. Our results show that the fine-tuning of gene regulatory networks is a general

mechanism for rapid and ongoing adaptation. The simplicity of STIMS, together with its intui-

tive visual interpretation, make it a useful test for positive and purifying selection in metage-

nomic data sets that track microbial evolution in real-time.

Author summary

Organisms often evolve elevated mutation rates as they adapt to new environments. That

said, the genomic basis of adaptation in asexual hypermutator populations has been diffi-

cult to discern, because the few mutations driving adaptation are often associated with

large numbers of non-adaptive “hitchhiker” mutations elsewhere in the genome. To

address this research gap, we present a Simple Test to Infer Mode of Selection (STIMS)

which aggregates the overall signature of selection seen over hundreds of genes. Using

STIMS, we find strong positive selection on key regulators of the E. coli gene regulatory
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network across nonmutator and hypermutator populations of Lenski’s long-term evolu-

tion experiment with Escherichia coli. We also find positive selection on regulatory genes

in populations of Pseudomonas aeruginosa that evolved hypermutability as they evolved to

resist colistin, an antibiotic of last resort. Our work shows that positive and purifying

selection can be resolved in hypermutator populations, given sufficient genomic data, and

show that regulatory mutations are a major driver of adaptation in experimental popula-

tions of microbes.

Introduction

Organisms often evolve defects in DNA repair and recombination pathways that cause very

high mutation rates. Hypermutability is readily observed in cancer [1–3] and in opportunistic

pathogens attacking immunocompromised individuals [4]. Hypermutability is also associated

with the evolution of antibiotic resistance, including multi-drug-resistant tuberculosis [5].

Hypermutability can increase the rate of beneficial mutations, but it can also obscure the geno-

mic basis of adaptation [6], because vast numbers of nearly-neutral mutations hitchhike to

high frequencies with the beneficial mutations that drive the selection dynamics. In this

regime, called “emergent neutrality” [7], it is challenging to identify selection on particular

genes, unless those genes are under very strong selection [8,9]. As such, there is a need for

methods that can resolve positive and purifying selection in hypermutator populations, due to

their importance in basic research, genetic engineering, and medicine. To address this research

gap, we present a Simple Test to Infer Mode of Selection (STIMS) from metagenomic time

series of large asexual hypermutator populations, and use this method to study positive and

purifying selection in bacterial populations that evolved hypermutability during long-term

experimental evolution.

We developed STIMS in the context of Lenski’s long-term evolution experiment with

Escherichia coli (LTEE) [10,11]. The LTEE has become an important test bed for many funda-

mental questions in evolutionary biology, due to its simplicity (daily serial transfer of twelve

populations) and comprehensive record of frozen bacterial samples. Previous studies have

used the LTEE as a model system to study the tempo and mode of both genomic [12–16] and

phenotypic evolution [10,17–22]. Many of those previous studies focused on the evolutionary

dynamics underlying adaptive evolution. The evolution of hypermutability in six of the LTEE

populations has obscured the genomic signatures of adaptation [6,12,15,16,23], again due to

emergent neutrality. STIMS gains statistical power to infer selection despite emergent neutral-

ity, by aggregating mutations within a focal set of genes, counting their occurrence, then com-

paring the counts to a background distribution of the number of mutations per gene set.

Researchers can use STIMS to test genes that cluster by co-expression, interaction, or function

[24–28] for aggregate signatures of selection.

This work expands on previous observations suggesting the action of purifying selection on

hypermutator populations of the LTEE [21]. In that work, we found that aerobic-specific

genes were depleted in mutations compared to randomized sets of genes in three hypermuta-

tor populations: Ara−2, Ara+3, and Ara+6. That finding suggests that aerobic-specific genes

may have transitioned from positive selection to purifying selection in those LTEE populations

[21]. Our work also complements recent findings of purifying selection affecting protein evo-

lution [29] and protein-protein-interaction network evolution in the LTEE [30].

Here, we demonstrate that STIMS recovers signals of positive and purifying selection in

evolutionary simulations of haploid populations under a Wright-Fisher model, and show that
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STIMS recovers signals of positive and purifying selection on gold-standard sets of genes with

a priori evidence of those selection pressures in the LTEE. We then use STIMS to examine the

tempo of molecular evolution in modules of co-regulated genes [24–26], and to generate test-

able hypotheses about the mode (i.e. purifying or positive selection) of evolution on those gene

modules in the LTEE. Finally, we use STIMS to test for positive selection on regulatory genes

in a 26-day evolution experiment involving adaptation of hypermutator Pseudomonas aerugi-
nosa to subinhibitory concentrations of colistin, an antibiotic of last resort. These results indi-

cate that STIMS is a useful and general test for selection, even over relatively short timescales

of molecular evolution.

Results

Simulations demonstrate the conditions in which STIMS is an effective test

for positive and purifying selection

The key premise of STIMS is that the tempo of molecular evolution differs across different sets

of genes, due to variation in the underlying selection pressures affecting those sets of genes. By

aggregating mutations over the gene set of interest, STIMS gains statistical power to detect

selection. As input, STIMS requires a list of mutations that have been observed in metage-

nomic sequencing of a haploid population, sampled over time (Fig 1). STIMS then calculates a

simple summary statistic of the evolutionary dynamics: the number of observed mutations in a

query gene set, normalized by total gene length. A p-value is then calculated using the non-

parametric bootstrap, which is simply a count of the times that a random gene set accumulates

more mutations than the query gene set (Fig 2). The same logic applies when measuring

whether a gene set is depleted of mutations: in this case, STIMS counts the number of times

that a random selection of genes accumulates fewer mutations than the query gene set. Since

each trajectory in the STIMS visualization is a discrete integral (i.e., a cumulative sum) param-

eterized by time F(t), the endpoint used for the STIMS p-value calculation integrates all infor-

mation over the timeseries. Importantly, the bootstrapped background distribution does not,
in general, correspond to a neutral null model of evolution: genome-wide positive and purify-

ing selection may affect the background distribution. Accordingly, STIMS is interpreted in

relation to the overall tempo at which mutations are observed across the genome in a given

population, which is driven by population-genetic parameters such as mutation rate, popula-

tion size, and the genomic distribution of mutation fitness effects (DFE).

For this reason, we evolved haploid populations in silico using a Wright-Fisher model to

examine the conditions under which STIMS can detect positive and purifying selection in ide-

alized populations, in which the strength of selection on various regions of the genome is

known a priori. We ran 10 replicate simulations of nonmutator haploid populations and 10

replicate simulations of hypermutator haploid populations, using large population sizes, muta-

tion rates parameterized from LTEE measurements, and an idealized genome and DFE based

on E. coli (Materials and Methods). The results of these simulations, and our analysis of these

simulations using STIMS, are shown in Fig 3 for the nonmutator case and in Fig 4 for the

hypermutator case.

The dynamics of adaptation in our simulations are strikingly similar to the dynamics

observed in the LTEE: both the nonmutator populations (Fig 3A) and the hypermutator popu-

lations (Fig 4A) show periodic selective sweeps, cohorts of mutations rising to fixation simulta-

neously, and clonal interference. These patterns are characteristic of the evolution of large

asexual populations in which the supply of beneficial mutations does not limit adaptation

[14,16,31]. Thus, our in silico simulations are representative of the biology we aim to describe.
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Fig 1. Data analysis workflow. 12 E. coli populations have evolved for more than 60,000 generations in Lenski’s long-term evolution experiment

(LTEE). We reanalyzed metagenomic time series of the LTEE, reported by Good and colleagues [16]. We also evolved 20 asexual haploid

populations in silico for 5,000 generations. We identified variants segregating during the simulations to model metagenomic sequencing and
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We designed the genomes of our simulated haploid populations such that we knew a priori
the mode of selection acting on particular genomic regions. Therefore, we used our simulated

data to evaluate how well STIMS could detect selection given that it exists (sensitivity), and

avoid false positives (specificity). Our simulations demonstrate that STIMS has both high sen-

sitivity and specificity in detecting positive selection in both nonmutator and hypermutator

populations (Figs 3B and 4B). Most mutations observed in the nonmutator populations are

beneficial. So, the background distribution for the nonmutator populations reflects positive

selection on beneficial driver mutations and the dynamics of passenger mutations hitchhiking

with those driver mutations. In the nonmutator populations, not enough mutations are

variant calling. We designed a simple test to infer mode of selection (STIMS) to test pre-defined query gene sets for positive or purifying selection

in the metagenomic time series. See the Materials and Methods for further details. Created with BioRender.com.

https://doi.org/10.1371/journal.pgen.1010324.g001

Fig 2. The STIMS algorithm. When examining the evolutionary dynamics of a gene set of interest, one often wants to know whether the set is

enriched or depleted of observed mutations over time. To test for depletion, we use the non-parametric bootstrap to estimate the fraction of

randomized gene sets that have fewer mutations over time than the query gene set. For example, if 11% of randomized gene sets have fewer

mutations by end of the time series than the query gene set, then the query gene set is not depleted of mutations (one-tailed p-value = 0.11). A

similar derivation holds for tests of enrichment. This worked example uses the allele frequency dynamics of ribosome-associated proteins in

the Ara−1 population of Lenski’s long term evolution experiment with Escherichia coli (LTEE) to illustrate how the STIMS algorithm works.

This population evolved a hypermutator phenotype around the 26,250-generation time point.

https://doi.org/10.1371/journal.pgen.1010324.g002
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Fig 3. In silico evolution experiments demonstrate that STIMS can detect positive but not purifying selection in nonmutator populations.

Bacterial evolution was simulated using a Wright-Fisher model. Each simulation lasted 5,000 generations. The effective population size was set to

1 million individuals. Nonmutator bacteria were modeled using a mutation rate of 10−10 per base-pair per generation. Each individual contains

an idealized genome of 4,000 genes, each 1,000 base-pairs in length, for a genome of 4 million base-pairs. 100 genes are targets of positive

selection, 100 genes are evolving completely neutrally (relaxed selection), and 100 genes are evolving under purifying selection. The remaining

3,700 genes evolve nearly neutrally, based on published estimates of the genomic distribution of mutation fitness effects in Escherichia coli. See

the Materials and Methods for further details. A) Typical allele frequency dynamics of a nonmutator population, showing selective sweeps and

clonal interference. B) STIMS shows high sensitivity and specificity for detecting positive selection in nonmutator populations. C) STIMS is

unable to detect purifying selection (low sensitivity), but shows no false positives (high specificity). D) Typical result of running STIMS on genes

evolving under positive selection in the nonmutator simulations. E) Typical result of running STIMS on genes evolving neutrally in the

nonmutator simulations. F) Typical result of running STIMS on genes evolving under purifying selection in the nonmutator simulations.

https://doi.org/10.1371/journal.pgen.1010324.g003
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Fig 4. In silico evolution experiments demonstrate that STIMS can detect both positive and purifying selection in hypermutator

populations. Bacterial evolution was simulated using a Wright-Fisher model. Each simulation lasted 5,000 generations. The effective

population size was set to 1 million individuals. Hypermutator bacteria were modeled using a mutation rate of 10−8 per base-pair per

generation. Each individual contains an idealized genome of 4,000 genes, each 1,000 base-pairs in length, for a genome of 4 million base-

pairs. 100 genes are targets of positive selection, 100 genes are evolving completely neutrally (relaxed selection), and 100 genes are evolving

under purifying selection. The remaining 3,700 genes evolve nearly neutrally, based on published estimates of the genomic distribution of

mutation fitness effects in Escherichia coli. See the Materials and Methods for further details. A) Typical allele frequency dynamics of a

hypermutator population, showing selective sweeps and clonal interference. B) STIMS shows high sensitivity and specificity for detecting

positive selection in hypermutator populations. C) STIMS detects purifying selection with increasing sensitivity at lower allele frequency

mutation detection thresholds, more genes sampled from the set of genes evolving under purifying selection, the length of the time series, and

shorter intervals between metagenomic sampling, and shows high specificity across all tested parameters. D) Typical result of running STIMS

on genes evolving under positive selection in the hypermutator simulations. E) Typical result of running STIMS on genes evolving neutrally

in the hypermutator simulations. F) Typical result of running STIMS on genes evolving under purifying selection in the hypermutator

simulations.

https://doi.org/10.1371/journal.pgen.1010324.g004
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observed across the genome to see which genes are depleted of passenger mutations. Conse-

quently, STIMS cannot detect purifying selection in this context. Nevertheless, STIMS is highly

specific. It does not call any false positives in our tests for positive and purifying selection in

the nonmutator populations (Fig 3C). Representative visualizations of STIMS when run on

nonmutator populations are shown for genes evolving under positive selection in Fig 3D, for

genes evolving completely neutrally in Fig 3E, and for genes evolving under purifying selection

in Fig 3F. These visualizations show that for nonmutator populations, gene modules with tra-

jectories below the background distribution could be evolving under purifying selection, or

could be evolving completely neutrally due to relaxed selection. This apparent difference from

the background distribution is never statistically significant, because most random gene sets

have no mutations at all, and these empty sets are not plotted. Gene modules with trajectories

above the background distribution are evolving under strong positive selection.

In contrast to the nonmutator populations, our simulations show that STIMS has high sensi-

tivity and specificity in detecting purifying selection in hypermutator populations (Fig 4C). In

this case, mutation rates are high enough that passenger mutations arise densely across the

genome, allowing for the detection of genes that are depleted of observed passenger mutations

due to purifying selection. The sensitivity with which STIMS detects purifying selection

increases when 1) mutations can be reliably detected at lower frequencies; 2) the number of

genes in the gene set increases; 3) the interval between metagenomic sampling time is smaller;

and 4) the length of the time series increases (Fig 4C). All of these experimental variables

increase the resolution of the data and increase the ability of STIMS to detect purifying selection

in hypermutator populations. Representative visualizations of STIMS when run on hypermuta-

tor populations are shown for genes evolving under positive selection in Fig 4D, for genes evolv-

ing completely neutrally in Fig 4E, and for genes evolving under purifying selection in Fig 4F.

These results show that STIMS is an effective test for selection, given sufficient data. How-

ever, the realized DFE for microbial populations evolving in the laboratory or in nature may

deviate substantially from the idealized DFE in the simulations that we have presented. For

this reason, we validated STIMS on published metagenomic data tracking the allele frequency

dynamics in the LTEE, using three gold standard sets of genes with empirical evidence of

relaxed, purifying, and positive selection in the LTEE. These positive controls provide hard evi-

dence that STIMS is effective in practice.

Control 1: Resolving relaxed selection in the LTEE

As a first positive control, we examined 63 genes that have empirical evidence for neutral fit-

ness effects in REL606 (A. Couce, personal communication). Fig 5 shows the results of apply-

ing STIMS on these genes, which we suppose are evolving under relaxed selection in the

LTEE. In 5 out of 6 nonmutator populations (top two rows), the trajectory of this gene set falls

within the null distribution. The remaining nonmutator population, Ara+5, has no mutations

in this gene set, and so falls significantly below the null distribution (two-tailed bootstrap: Bon-

ferroni-corrected p< 0.005). In 5 out of 6 hypermutator populations (bottom two rows), the

trajectory of this gene set falls within the null distribution. The remaining hypermutator popu-

lation, Ara+6 lies at the margin of the null distribution (two-tailed bootstrap: Bonferroni-cor-

rected p = 0.06). S1 Fig shows the result of applying STIMS on these genes, summed across all

12 LTEE populations. Overall, the global tempo of observed mutations in the nonmutator pop-

ulations is best explained by the occurrence and fixation of beneficial mutations with small

numbers of hitchhikers. By contrast, the global tempo of observed mutations in the hypermu-

tator populations is best explained by large numbers of nearly neutral mutations hitchhiking

to high frequency with a much smaller number of beneficial mutations [15].
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Control 2: Detecting purifying selection in the LTEE

As a second control, we examined genes that were experimentally shown to be essential or

nearly essential in REL606 under LTEE conditions [6]. Many of the genes under strongest pos-

itive selection in the LTEE are also essential genes [23]. Thus, we excluded 24 essential genes

with evidence of parallel evolution in the LTEE (Materials and Methods). We hypothesized

that the remaining 491 essential genes would show evidence of purifying selection in the

Fig 5. Gold-standard genes under relaxed selection. Each panel shows the cumulative number of mutations in the gold-standard neutral genes

(black) in the 12 LTEE populations. For comparison, random sets of 57 genes were sampled 1,000 times, and the cumulative number of

mutations in those random gene sets, normalized by gene length, were calculated. The middle 95% of this null distribution is shown in gray, in

order to show a two-tailed statistical comparison of the cumulative number of mutations in the gold-standard neutral gene set to the null

distribution at α = 0.05. The top six panels are populations with the ancestral mutation rate (nonmutator populations) and the bottom six panels

are those that evolved elevated mutation rates (hypermutator populations).

https://doi.org/10.1371/journal.pgen.1010324.g005
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hypermutator populations, such that those loci would be depleted in mutations in comparison

to the null distribution (Figs 6 and S2). Indeed, these 491 loci show significant depletion of

observed mutations in all 6 hypermutator populations (one-tailed bootstrap: p< 0.0001 for

Ara−1; p< 0.01 for Ara−2; p< 0.01 for Ara−3; p< 0.005 for Ara−4; p< 0.02 for Ara+3;

p< 0.0001 for Ara+6). Additionally, one of the six nonmutator populations, Ara+1 shows a

marginally significant depletion of mutations at these loci (one-tailed bootstrap: p< 0.05). Ara

+1 evolved a insertion-sequence hypermutator phenotype early in its evolutionary history

Fig 6. Gold-standard genes under purifying selection. Each panel shows the cumulative number of mutations in the gold standard set of genes

under purifying selection (black) in the 12 LTEE populations. For comparison, random sets of 490 genes were sampled 1,000 times, and the

cumulative number of mutations in those random gene sets, normalized by gene length, were calculated. The middle 95% of this null distribution

is shown in gray. The top six panels are the nonmutator populations and the bottom six panels are the hypermutator populations.

https://doi.org/10.1371/journal.pgen.1010324.g006
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[32–34], so it is plausible that signatures of purifying selection can be seen in Ara+1 [30], even

though it did not evolve an elevated point-mutation rate [33].

Despite the global signal of purifying selection on these 491 essential genes, it is not clear

which specific ones are under purifying selection. The best candidates are the ones that have

no mutations whatsoever in the LTEE, while the second-best are those that were only affected

by synonymous mutations. We found 65 genes with no observed mutations in the metage-

nomics data, 18 of which are essential. 105 genes have only synonymous mutations, 30 of

which are essential. We examined 491 essential genes, out of 3,948 genes in the genome that

passed our filters (Materials and Methods). Based on these numbers, there is a significant asso-

ciation between essentiality and having no observed mutations (Fisher’s exact test: p = 0.0007)

and between essentiality and only having synonymous mutations (Fisher’s exact test:

p< 10−5). The first set of candidates for purifying selection in the LTEE are reported in S1

Table, and the second set of candidates are reported in S2 Table. As one would expect, many of

these genes encode proteins that catalyze key biological reactions, such as ATP synthase and

ribosomal proteins.

Control 3: Verifying positive selection in the LTEE

As a final control, we examined genes that have previously been shown to be evolving under

positive selection in the LTEE. We examined the genes with the strongest signal of parallel evo-

lution in genomes sampled over the first 50,000 generations of the LTEE [15].

We first considered the 50 genes with the most parallelism in the nonmutator populations

(Figs 7 and S3). STIMS recovered the expected signal of positive selection on these genes in the

nonmutator populations (one-tailed bootstrap: p< 0.0001 in all cases). STIMS also found an

overall signal of positive selection on these genes in the hypermutator populations (one-tailed

bootstrap: p< 0.05 in all hypermutator populations).

In the same fashion, we examined the genes with the strongest signal of parallel evolution

in the hypermutator genomes (S4 and S5 Figs). The nonmutator populations accumulate

mutations in this gene set at a rate similar to background. As expected, 5 out 6 hypermutator

populations show a strong excess of mutations above background (one-tailed bootstrap:

p< 0.02 in Ara−1, Ara−2, Ara−4, Ara+3, Ara+6). In the remaining population, Ara−3, muta-

tions in this gene set accumulate at the background rate. It is unclear why this population is an

outlier, but this finding may be related to the evolution of a citrate metabolic innovation that

modified the ecology of this population [35].

Comparison of STIMS to a test for selection based on the Poisson

distribution

We also benchmarked STIMS against a statistical test for selection that uses the Poisson distri-

bution to model the expected distribution of mutations per genomic site per unit time under

neutral evolution [16,36]. In brief, STIMS trades off sensitivity for higher specificity (lower

false positive rate) in comparison to the Poisson method, and also has the advantage of show-

ing how the tempo of molecular evolution varies over time in a gene set of interest. These find-

ings, and additional considerations, are described in detail in the S1 Text.

Application to module decompositions of the E. coli genome

Our control experiments demonstrate that STIMS can recover signals of purifying and positive

selection. In this section, we use STIMS to examine how different modules of genes in the E.

coli genome are evolving in the LTEE. Our goal is to develop testable hypotheses for which

genetic modules and biochemical pathways underlie the ongoing fitness gains observed in the
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LTEE [37]. We examined three different module decompositions of the E. coli genome. The

first partitioned the E. coli proteome into sectors based on quantitative mass spectrometry

[24]; the second reported sets of genes (“eigengenes”) whose expression best predicted E. coli
growth rates [26]; while the third partitioned the gene regulatory network into independent

components based on gene expression [25].

Fig 7. Gold-standard genes under positive selection. Each panel shows the cumulative number of mutations in the gold standard set of genes

under positive selection (black) in the 12 LTEE populations. These genes are the 50 genes with the strongest signal of parallel evolution in clones

isolated from the six nonmutator populations, as scored by Tenaillon and colleagues [15]. For comparison, random sets of 50 genes were sampled

1,000 times, and the cumulative number of mutations in those random gene sets, normalized by gene length, were calculated. The middle 95% of

this null distribution is shown in gray. The top six panels are the nonmutator populations and the bottom six panels are the hypermutator

populations.

https://doi.org/10.1371/journal.pgen.1010324.g007
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Two proteome sectors show evidence of purifying selection. We examined proteome

sectors that were identified by quantitative mass spectroscopy during carbon-, nitrogen-, and

ribosome-limiting growth conditions [24]. S6 Fig shows our findings. One proteome sector

was significantly depleted in mutations in Ara−1, Ara+3, and Ara+6, suggesting purifying

selection (two-tailed bootstrap: Bonferroni-corrected p = 0.0014 for Ara−1; Bonferroni-cor-

rected p = 0.0002 for Ara+3; p< 0.0002 for Ara+6), and also shows evidence of positive selec-

tion in Ara+5 (two-tailed bootstrap: Bonferroni-corrected p = 0.0198 for Ara+5). This one,

called the U-sector (green), contains genes that were not upregulated by any of the growth-

limitation treatments in [24]. Rather, the expression of the proteins in the U-sector show a

generic positive correlation with growth rate across all of the conditions tested by Hui and col-

leagues [24]. When STIMS is applied to these modules, considering mutations summed across

all LTEE populations, we also see an overall depletion of mutations in proteins in the R-sector

(yellow; S7 Fig), as the R-sector shows a strong signal of purifying selection in Ara+6 (two-

tailed bootstrap: Bonferroni-corrected p< 0.0002 for Ara+6) and weaker signals of purifying

selection in Ara−2 and Ara−3 (two-tailed bootstrap: Bonferroni-corrected p = 0.0084 for Ara

−2; Bonferroni-corrected p = 0.0496 for Ara−3). Proteins in the R-sector are upregulated

under ribosome-limiting growth conditions, and are associated with translation [24].

No evidence of selection on E. coli eigengenes. We examined the sets of genes (called

eigengenes), that were most predictive of E. coli’s growth rate (and presumably fitness under

LTEE conditions), using different E. coli strains and growth environments [26]. No eigengenes

showed any evidence of selection in the LTEE (S8 and S9 Figs).

Regulators of I-modulons are under positive selection. Sastry and colleagues [25] used

independent component analysis on the E. coli transcriptome, sampled across diverse condi-

tions and strains, to infer 92 independent modules (called I-modulons) in the E. coli gene regu-

latory network (GRN). 61 of the 92 I-modulons correspond to known transcription factors

and regulators in the E. coli K-12 MG1655 GRN. After mapping K-12 I-modulon regulators to

the set of genes in the LTEE ancestral strain REL606 that pass quality filters for metagenomic

variant calling, we found 56 genes encoding transcriptional regulators of the 92 I-modulons.

We asked two questions: first, is there a difference between how the regulators and regulated

genes in the I-modulons evolve in the LTEE? Second, are any I-modulons enriched with or

depleted of mutations in the LTEE?

We find that transcriptional regulators of the I-modulons are under strong positive selec-

tion in the LTEE, while the genes within I-modulons are under much weaker selection (Fig 8).

In all 12 populations, regulators of I-modulons are under stronger selection than the genes in

the I-modulons themselves. I-modulon regulators are under very strong selection in all 6 non-

mutator populations (one-tailed bootstrap: p< 0.001 in all nonmutator populations), and

show evidence of ongoing positive selection in some hypermutator populations as well (one-

tailed bootstrap: p = 0.047 in Ara−3, p = 0.0003 in Ara+3; p = 0.0001 in Ara+6). By contrast,

the evolution of genes within I-modulons fits the null distribution in most populations,

although Ara−4 and Ara+3 trend toward purifying selection. When mutations across all LTEE

populations are considered, genes regulated within I-modulons show an overall signal of puri-

fying selection (S10 Fig). Together, these results indicate that the upper levels of the regulatory

hierarchy of the E. coli GRN are under strong selection in the LTEE, while the effector genes at

the lower levels of the gene regulatory hierarchy are under weaker selection.

Fig 8 also shows that the tempo of I-modulon regulator evolution is quite variable across

populations. Consider the number of mutations in I-modulon regulators in the nonmutator

populations. Between 40,000 and 60,000 generations, Ara+1 has 5, Ara+2 has 4, Ara+4 has 2,

and Ara+5 has 1, while Ara−5 and Ara−6 have none. Variation in the tempo of evolution of I-

modulon regulators is also seen in the hypermutator populations, in particular the strong
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signal of ongoing positive selection found in Ara+3 and Ara+6, in contrast with the complete

lack of signal in Ara−4.

10 of the 56 I-modulon regulators are among the 50 genes with the strongest signatures of

parallel evolution in the nonmutator populations (Fig 7). In rank order, these are: iclR, malT,

arcA, argR, atoC, lrp, crp, cpxR, glpR, and nagC. Given this overlap, it is possible that the

Fig 8. I-modulon regulators evolve under strong positive selection, while genes regulated within I-modulon evolve under weaker selection.

Each panel shows the cumulative number of mutations in 56 I-modulon regulators (black) and in 1,061 genes regulated within I-modulons (red)

in the 12 LTEE populations. For comparison to the I-modulon regulators, random sets of 56 genes were sampled 1,000 times, and the cumulative

number of mutations in those random gene sets, normalized by gene length, were calculated. The middle 95% of the null distribution for I-

modulon regulators is shown in gray. A similar procedure was used with random sets of 1,061 genes to make a null distribution in pink to

compare to the genes regulated within I-modulons. The top six panels are the nonmutator populations and the bottom six panels are the

hypermutator populations.

https://doi.org/10.1371/journal.pgen.1010324.g008
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signature of positive selection that we see on I-modulon regulators is largely driven by the

known signature of selection on these individual genes. To test this hypothesis, we re-ran

STIMS on the remaining 46 I-modulon regulators. Two hypermutator populations, Ara+3 and

Ara+6, still show evidence of positive selection (one-tailed bootstrap: p = 0.026 in Ara+3;

p = 0.0092 in Ara+6). Therefore, 10 genes account for most, but not all, of the positive selection

observed on I-modulon regulators in the LTEE.

While I-modulons tend to evolve at background rates within individual populations (Fig 8),

some specific I-modulons show evidence of idiosyncratic selection in the hypermutator popu-

lations. We hypothesize that some of these cases represent historical contingency and epistasis

in the LTEE; these hypotheses could be tested in future studies. The results for all I-modulons

are provided in S1 and S2 Files, while particular I-modulons of interest are listed in S3 Table.

Summary of module decomposition results. Altogether, we find that the protein-coding

genes with the strongest transcriptional response to changing conditions show little to no evi-

dence of selection in the LTEE. By contrast, top-level transcriptional regulators showed strong

signatures of positive selection in all nonmutator populations, as well as in some hypermutator

populations. Based on these findings, we hypothesize that the genes that show the strongest

transcriptional response to changing conditions tend to be at the lower levels of the gene regu-

latory network, while natural selection in the LTEE is largely operating on regulators of those

genes.

Cis-regulatory regions of key regulators show significantly more parallel

evolution than the cis-regulatory regions of downstream targets

If upper levels of the gene regulatory network are under stronger selection in the LTEE, then

cis-regulatory regions of I-modulon regulators should also show more evidence of positive

selection than the genes within I-modulons. We tested this prediction by examining non-cod-

ing mutations associated with I-modulon regulators and their downstream targets. These non-

coding mutations occurred within the promoter regions (up to 100 bp upstream) of their

annotated gene [16]. There are 48 non-coding mutations associated with 70 I-modulon regula-

tors, and 542 non-coding mutations associated with 1394 genes regulated within I-modulons.

These data are consistent with our prediction (Binomial test with 48 successes out of 590 trials

and expected probability of success = 70/1464: p = 0.0005).

Application of STIMS to hypermutator populations of Pseudomonas
aeruginosa evolving under antibiotic selection

We wanted to know whether STIMS could be applied beyond the LTEE. Unlike the LTEE,

however, most evolution experiments do not have genomic, let alone metagenomic, data span-

ning 30+ years of evolutionary history. We sourced the metagenomic time series data reported

by Mehta and colleagues [8], in which replicate populations of Pseudomonas aeruginosa
adapted to subinhibitory concentrations of colistin in continuous chemostat culture for one

month. We reasoned that the Mehta dataset would be ideal for applying STIMS since both rep-

licate populations in that experiment rapidly evolved hypermutator phenotypes. We asked

whether annotated regulatory genes in the P. aeruginosa PAO11 genome showed evidence of

positive selection in this evolution experiment (Figs 9, S11); indeed, STIMS reveals a clear sig-

nal of positive selection on the pre-specified set of 424 regulatory genes (one-tailed bootstrap:

p< 0.001). This finding reveals that STIMS has the power to detect gene sets under strong pos-

itive selection, even when applied to metagenomic time series which span relatively short time

periods.
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Discussion

We show that signals of both positive and purifying selection can be detected in metagenomic

time series of large asexual haploid populations, including Escherichia coli from Lenski’s long-

term evolution experiment (LTEE) and a clinically relevant pathogen, Pseudomonas aerugi-
nosa, in a short-term evolution experiment under antibiotic selection.

In contrast to previous studies, which examined global patterns in the tempo and mode of

evolution in the LTEE [13,15,16], our analysis focuses on functional modules encoded by the

Fig 9. Regulatory genes are under positive selection in hypermutator Pseudomonas aeruginosa populations evolving under subinhibitory

concentrations of colistin. The cumulative number of mutations in 424 annotated regulatory genes in two replicate populations of

hypermutator P. aeruginosa is shown in black. For comparison, random sets of 424 genes were sampled 1,000 times, and the cumulative number

of mutations in those random gene sets, normalized by gene length, were calculated. The middle 95% of this null distribution is shown in gray.

https://doi.org/10.1371/journal.pgen.1010324.g009
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E. coli genome. We find that the tempo of evolution in particular molecular subsystems gives

us insight into the mode of evolution acting on those modules (i.e., relaxed, purifying, or posi-

tive selection). We ran simulations to demonstrate that STIMS works in an idealized system in

which selection pressures and the genomic DFE can be pre-specified a priori, and we ran

computational positive control experiments to confirm that STIMS works on genes with prior

evidence of relaxed (Fig 5), purifying (Fig 6), and positive selection (Fig 7).

Our findings indicate that the accelerated pace of genomic evolution in the hypermutators,

combined with the detailed record of molecular evolution provided by metagenomic time

series, may open new opportunities for understanding the genomic basis of adaptive evolution,

even though the signal of selection is obscured in hypermutator genomes due to genomic draft

[6]. First, the vast number of nearly neutral hitchhikers that are observed in hypermutator

populations provides insight into how mutations in modifier alleles affect genome-wide and

local mutation rates and biases [33]. Second, regions of the genome that are highly depleted in

mutations in the hypermutator populations are strong candidates for purifying selection.

Third and most importantly—metagenomic sequencing gives deep sampling of genetic varia-

tion off the (eventual) line of descent.

We found compelling evidence of purifying selection in the hypermutator populations of

the LTEE. Many of the strongest candidate genes for purifying selection are deeply conserved

over evolutionary time, such as those encoding ribosomal subunits. The action of purifying

selection on the hypermutator populations is also consistent with the observation that antimu-

tator alleles have fixed in several populations of the LTEE [33,38], and with the experimental

finding that overexpressing RNA chaperones in some hypermutator LTEE strains reduces the

mutation load in those strains [39]. Together, these observations suggest that hypermutator

lineages are accumulating some deleterious passenger mutations, even as their fitness contin-

ues to increase. In any case, our analysis shows that the depletion of mutations in particular

genes is not due to the evolution of antimutator alleles: by bootstrapping a null distribution of

background rates, STIMS controls for the genome- and population-wide effects of antimutator

alleles over time.

The resampling approach used by STIMS can also take the effects of local mutation biases

into account [40]. For instance, one can control for local mutation biases by constructing null

distributions that directly model chromosomal variation in mutation rates and biases. This

can be somewhat complicated, given that mutational biases [6] and regional mutation rates

over the chromosome have evolved idiosyncratically across the replicate LTEE populations

[33]. Our implementation of STIMS samples gene sets uniformly over the E. coli genome: we

also implemented a sampling procedure that take the wave pattern of mutation rate variation

over the E. coli chromosome into account [33,41,42], but this more complicated procedure

produced the same results as sampling genes uniformly over the chromosome (Materials and

Methods).

When we applied STIMS to different module decompositions of the E. coli genome, we

found compelling evidence of strong positive selection on key global regulators of the E. coli
gene regulatory network, especially in comparison to the genes that they regulate. Further-

more, we found an excess of mutations in the cis-regulatory regions of those regulators in com-

parison to the genes that they regulate. One explanation could be that mutations that affect the

cis-regulation and structure of global regulators at higher levels of the GRN cause a cascade of

effects on downstream targets, and so are more effective targets for fine-tuning the E. coli
GRN. Strikingly, we found evidence of continued strong positive selection on key regulatory

genes in the two populations with the most mutations in the LTEE: Ara+3 and Ara+6 (Fig 8).

By contrast, two nonmutator populations, Ara−5 and Ara−6, showed no mutations at all in I-

modulon regulators in the last 20,000 generations of the time course. This suggests that the

PLOS GENETICS Positive and purifying selection in hypermutators

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010324 August 18, 2022 17 / 28

https://doi.org/10.1371/journal.pgen.1010324


GRN may initially evolve close to some local fitness maximum (subject to pleiotropic con-

straints), but then evolve further to compensate for the effects of mutations elsewhere in the

genome.

Further work will be needed to test the hypothesis that ongoing evolution of I-modulon

regulators is related to compensatory evolution. It is possible that the hypermutator popula-

tions are evolving to compensate for an increasing mutation load of deleterious hitchhiker

mutations [8]. The appearance of multiple antimutator alleles in the LTEE suggests that that

hypermutability has a hidden cost [15,33,38], but the magnitude of any mutation load in the

LTEE populations remains unknown. Ongoing positive selection on the E. coli GRN could

also be due to compensatory evolution that is not specifically for hitchhiking deleterious muta-

tions. For instance, it is possible that early beneficial mutations become deleterious due to fur-

ther mutations [43,44]. Furthermore, natural selection may greedily favor mutationally

accessible but suboptimal trajectories [45,46] that then open new, idiosyncratic paths for fur-

ther refinement [47].

Our work has some limitations. By using STIMS to examine the tempo of GRN evolution

in the LTEE using the same dataset, we find a number of patterns with an unknown rate of

false positives. Therefore, future work is needed to test the specific hypotheses that we have

generated, either by using additional time-course data from the LTEE, by analyzing related

evolution experiments, or by experimental validation. An important caveat is that deletions

that fix in the LTEE can lead to spurious inferences of purifying selection, if they are not taken

into account, since deleted genes cannot accumulate mutations. By that same token, gene

duplications, amplifications, or other forms of copy number variation could lead to spurious

inferences of positive selection, or elevated mutation rates [48,49]. Those types of mutations

appear to be rare in these data, in comparison to the point mutations, indels, and transposon

insertions that we count. The complications induced by copy number variation may need to

be considered (or safely ignored), depending on the context in which STIMS is used. Another

limitation of STIMS is that any given set of genes may be composed of subsets of genes evolv-

ing under very different selection pressures. For instance, a query set of 200 genes may be com-

posed of 100 genes evolving under positive selection, and 100 genes evolving under purifying

selection. Depending on the relative strength of selection on the underlying sets of genes

within the query, STIMS might show no signal, positive selection, or negative selection on

aggregate. Statistically rigorous approaches to solving this problem are needed; this is one

direction for future research. Finally, STIMS is computationally intensive due to its use of

bootstrapping. Often equivalent statistical results can be derived much faster, using exact tests

like the binomial test or Fisher’s exact test [8], or by using tests based on the Poisson distribu-

tion [36,50]. The advantage of STIMS is that it provides greater biological insight, by visualiz-

ing how statistical signatures of positive and purifying selection change in an evolving

population over time.

In addition, we caution researchers using STIMS that with great statistical power comes

great statistical responsibility. We recommend that researchers use STIMS to test pre-specified

hypotheses, with query gene sets that are chosen a priori based on independent considerations.

For instance, we hypothesized that I-modulon regulators would show different patterns of evo-

lution than genes regulated within I-modulons, and then used STIMS to test this hypothesis.

Researchers can also use STIMS to find patterns in data, because new observations are the

foundation for new hypotheses. However, we emphasize that any patterns discovered with

STIMS should be validated using additional, independent datasets, before claiming biological

significance. For instance, by using STIMS to examine the evolutionary tempo of each E. coli

I-modulon in the LTEE, we find a number of patterns with an unknown rate of false positives

(S3 Table and S1 File). Additional work is needed to test these specific hypotheses, either by
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using additional time-course data from the LTEE, by analyzing related evolution experiments,

or by experimental validation. It is also important to keep in mind that if one uses STIMS as a

data mining tool by testing many gene sets, then multiple testing is a potentially serious issue,

especially if those gene sets overlap with each other.

Overall, our work provides greater insight into the mechanistic connection between geno-

typic and phenotypic evolution in evolution experiments like the LTEE. The genetic architec-

ture underlying fitness improvements in the LTEE likely involves a relatively small number of

loci that control global aspects of cellular physiology [15,16,23,51]. These factors may control

many downstream pathways, which are being modulated in response to selection in the LTEE.

Hence, we hypothesize that the regulation of these pathways is being rewired during the LTEE,

often without significantly changing their downstream effectors. This would explain why the

modules that show the strongest changes in expression, and best predict growth rate and fit-

ness in response to environmental conditions [24–26] show little evidence of adaptive evolu-

tion in the LTEE. Overall, the genotype-phenotype map of E. coli, at least in the context of the

LTEE, resembles the hierarchical “supervisor-worker” gene architecture proposed by Chen

and colleagues [52] to explain the genetic architecture of quantitative traits in Saccharomyces
cerevisiae.

As the costs of protein production exerts a strong contrast on cellular energetics, the proper

allocation of proteome resources in order to maximize growth, rather the evolution of particu-

lar genetic modules, may be the cellular phenotype under strongest selection in the LTEE [53–

56]. Future work could test this hypothesis by trying to mimic evolutionary changes in the

LTEE by directly perturbing the balance of global physiological and metabolic state variables

(chromosome conformation, ppGpp, cAMP levels and redox potential) to maximize growth in

the ancestral REL606 strain. Coevolution between the function of those proteome resources,

pleiotropic constraints on optimal allocation, as well as feedback with the environment could

all play a part in causing the open-ended increases in fitness seen in the LTEE [20,37].

Finally, we expect our methodology will be broadly useful, especially for workers in the

experimental evolution field. To demonstrate the generality of STIMS, we reanalyzed data

from a second evolution experiment in which two replicate hypermutator populations of P.

aeruginosa adapted to subinhibitory concentrations of colistin [8]. Our finding of positive

selection on regulatory genes in this experiment validates STIMS as a general method and

indicates that the rapid evolution of bacterial gene regulatory networks may be a general mech-

anism for adaptation during experimental evolution, and perhaps during adaptation to novel

environments in general. We expect that our basic idea could be more rigorously justified by

deeper theoretical work, and further extended to study evolving populations and communities

in both the laboratory and in the wild. Purifying selection is of particular interest in the study

of viruses and cancers, for the sake of finding conserved and effective drug targets [57–60]. In

particular, we anticipate that STIMS could be applied to clinical time series, such as genomic

sampling from cystic fibrosis patients [61,62], in order to discover gene modules that are

under selection in pathogens as they adapt to their host [63,64].

Materials and methods

The STIMS algorithm

In brief, STIMS counts the cumulative number of mutations occurring over time in a module

of interest, and compares that number to a null distribution that is constructed by subsampling

random sets of genes over the genome, in which the cardinality of these random gene sets is

fixed to the cardinality of the module of interest. We normalize the number of observed muta-

tions in a gene set by the total length of that gene set in base-pairs.
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In this work, we specifically counted point mutations, small insertions and deletions

(indels), and transposon insertions (structural variants) that were detected in metagenomic

time series using the breseq pipeline [8, 16, 65]. Nonetheless, STIMS does not depend on any

specific variant calling software, nor does it specifically require metagenomic time series

(genomic time series would suffice). STIMS only requires a list of observed de novo mutations

over time (i.e. information about the location of each mutation, and the time at which each

was first observed in the population).

By bootstrapping a null distribution based on random gene sets, STIMS implicitly controls

for genome-wide variation in the mutation rate (since this will affect all genes). In order to

control for local variations in mutation rate [33,41,42], we subsampled random modules from

the same chromosomal neighborhood as the module of interest (dividing the REL606 genome

into 46 bins, roughly ~100,000 bp each), under the assumption that nearby genes have similar

mutation rates. This approach gave the same results as sampling genes uniformly across the

genome, despite a higher computational cost. For this reason, the results reported here use the

simplest method to construct the null distribution, in which genes are sampled without con-

sidering their position on the chromosome.

Bootstrapped p-values were calculated separately for each population. p-values for one-

sided tests are exact estimates of the relevant tail of the null distribution, where p is the upper-

tail (or lower-tail) probability of the event of sampling a normalized cumulative number of

mutations under the null distribution that is greater than (or less than) the normalized cumu-

lative number of mutations of the module of interest. Two-tailed tests against the bootstrapped

null distribution were calculated with a false-positive (type I error) probability α = 0.025 to

account for both tails; this is equivalent to multiplying p-values by a factor of 2, in a Bonferroni

correction for two statistical tests (i.e., on the upper tail and on the lower tail of the null distri-

bution). In the visualizations shown in the figures, the top 2.5% and bottom 2.5% of points in

the null distribution are omitted, such that each panel can be directly interpreted as a randomi-

zation test with a false-positive (type I error) probability α = 0.05.

Our implementation of STIMS uses multi-threaded parallelism in Julia (www.github.com/

rohanmaddamsetti/STIMS) and takes about 90 seconds to run on LTEE data, using a laptop

with 2 CPU cores and 8GB of RAM.

Filtering of genes in REL606 genome

We analyzed the pre-processed LTEE metagenomics data published by [16], and so we applied

filters to exclude regions of the REL606 genome that were omitted from that analysis. In par-

ticular, pseudogenes and genes in repetitive regions of the genome were excluded. A site was

marked as repetitive if (1) it was annotated as a repeat region in the REL606 reference, (2) it

was present in the set of masked regions compiled by [15], or (3) it fell within the putative pro-

phage at REL606 genome coordinates 880528–904682.

Essential genes excluded from purifying selection control experiment

We excluded essential genes that showed parallel evolution in [15]. In that work, a G-score

was calculated to measure parallel evolution. G-scores were calculated separately for the non-

mutator and hypermutator populations. We ranked all genes in REL606 that passed our filters

by their nonmutator and hypermutator G-scores. Essential genes that were in the top 50 of

either list were excluded from the purifying selection control experiment. 21 out of the top 50

G-scoring nonmutator genes were essential in REL606, based on the transposon mutagenesis

and sequencing experiments carried out by Couce and colleagues [6]. These genes were: arcA,

arcB, crp, fabF, ftsI, hflB, infB, infC, mrdA, mreB, mreC, mreD, nusA, rne, rplF, rpoB, rpsD,
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sapF, spoT, topA, and yabB. 3 out of the top 50 G-scoring hypermutator genes were essential in

REL606. These genes were: sapA, tilS, and yhbH.

Analysis of regulatory genes in the month-long hypermutator P.

aeruginosa evolution experiment

We analyzed the pre-processed metagenomics data from the hypermutator P. aeruginosa evo-

lution experiment published by Mehta and colleagues [8]. We excluded the Pf4 bacteriophage

in the P. aeruginosa PAO11 reference genome used by Mehta and colleagues from the STIMS

analysis; this region was also omitted from the statistical analysis in the original report [8].

We used the keywords “regulator”, “regulatory”, and “regulation” to search for regulatory

genes in the PAO11 genome to identify de novo mutations arising in their evolution experi-

ment. This search resulted in a set of 424 regulatory genes, which we then analyzed using

STIMS.

Implementation of a test for selection based on the Poisson distribution

We implemented the Poisson method described by Kinnersley and colleagues [36]. We

summed all mutations (including indels and structural variants) across the LTEE associated

with genes that passed our filters, and divided by the total length of those genes to calculate the

background density of mutations per site, λ. For each gene g in the genome, we scale λ by the

length of g, to calculate the expected number of mutations at gene g: λg. The same calculation

holds for a set of genes: by multiplying λ by the total length of genes in the set, we can calculate

the expected number of mutations in the gene set, λset. Suppose x mutations were counted in

the gene set of interest. Then, a one-tailed test for purifying selection in this gene set can be

done by calculating a p-value from the lower-tail of the Poisson distribution:

P X � xð Þ ¼
Pk¼x

k¼0

lkset
k! e

� lset . Similarly, a one-tailed test for positive selection in the gene set can

be done by directly calculating a p-value from the upper-tail of the Poisson distribution:

P X � xð Þ ¼
Pk¼1

k¼x
lkset
k! e

� lset . When multiple genes or gene sets were tested for positive or

purifying selection, we applied a Benjamini-Hochberg correction for multiple-testing, and

report those false-discovery-rate (FDR) corrected p-values.

Wright-Fisher simulations of microbial evolution

We implemented Wright-Fisher evolutionary simulations of asexual haploid populations in

SLiM [66]. We simulated populations of 1 million cells, each containing a genome of 4,000

contiguous genes. We tested STIMS in two scenarios: the evolution of a nonmutator popula-

tions with a point-mutation rate of 10−10 per base-pair per generation, and the evolution of a

hypermutator populations with a 100-fold increase in mutation rate: 10−8 per base-pair per

generation. These population genetic parameters are comparable to the effective population

size (3.3 × 107) and the ancestral mutation rate (8.9 × 10−11) of Lenski’s LTEE [31], and the

100-fold evolved increases in mutation rates observed in the LTEE [33]. Our simulations

assume a background genomic distribution of mutation fitness effects (DFE) in which the vast

majority of mutations are nearly neutral, with a long tail of deleterious mutations, based on

high-throughput measurements of the DFE in E. coli in microfluidic mutation accumulation

experiments [67]. We assume that 100 genes are evolving under positive selection, such that

10% of mutations occurring in those genes are beneficial. This assumption implies that 0.0025

of mutations are beneficial in our model, which is comparable to the experimental estimate

that 1 out of 150 newly arising mutations in E. coli are beneficial in laboratory conditions [68].

Following recent simulations of adaptive evolution in the LTEE, we draw beneficial mutations
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from an exponential DFE with mean 0.01578 [31]. We further assume that 100 genes are evolv-

ing completely neutrally such that mutations in these genes have no fitness effect, and assume

that another set of 100 genes are evolving under purifying selection, such that 40% of muta-

tions in those genes cause a 30% decrease in fitness. This last assumption matches the finding

that 1% of new mutations in E. coli are lethal under laboratory conditions [67].

Ten replicate simulations were run for both the nonmutator and hypermutator popula-

tions, and all mutations in each simulation were saved at 100-generation intervals. Mutations

were filtered based on a 1% allele frequency threshold, to simulate metagenomic sequencing:

this is equivalent to uniform 100× short-read sequencing coverage across the genome per

sequencing sample, with no sequencing errors. We then ran STIMS on the 100 genes under

positive selection, the 100 genes under relaxed selection (those evolving completely neutrally),

and the 100 genes under purifying selection. We examined the sensitivity and specificity of

STIMS by varying the allele frequency detection threshold, the number of genes sampled per

module, the sampling interval in the time series, and the length of the time series, holding all

other setting to their default values. Four values of the allele frequency detection limit were

examined: 0.01%, 1%, 5%, 10%. The number of genes sampled per module was varied between

1, 25, 50, and 100 genes. The sampling interval was either 100- or 500-generation intervals.

The length of the time series was 500, 1000, 2000, or 5000 generations. True positives and false

negatives were counted by the number of STIMS tests on the genes evolving under positive or

purifying selection that passed a one-sided p-value significance threshold of 0.05. False posi-

tives and true negatives were counted by the number of STIMS tests on the genes evolving

neutrally that nevertheless passed the same p-value significance threshold. Sensitivity (also

known as the true positive rate, or as statistical power) was calculated as the number of true

positives divided by the sum of true positives and false negatives, out of the 10 tests on the 10

replicate datasets. Specificity (also known as the true negative rate) was calculated as the num-

ber of true negatives divided by the sum of true negatives and false positives, out of the 10 tests

on the 10 replicate datasets.
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S3 Table. I-modulons showing evidence of selection, historical contingency and epistasis

in the LTEE, using STIMS.
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S4 Table. I-modulons showing evidence of selection across all LTEE populations based on

the Poisson method, at a FDR-corrected p-value threshold of 0.01.

(DOCX)

S1 Fig. Gold-standard genes under relaxed selection. Each panel shows the cumulative num-

ber of mutations in the gold-standard neutral genes (black) in all 12 LTEE populations. For

comparison, random sets of 57 genes were sampled 1,000 times, and the cumulative number

of mutations in those random gene sets, normalized by gene length, were calculated. The mid-

dle 95% of this null distribution is shown in gray, in order to show a two-tailed statistical com-

parison of the cumulative number of mutations in the gold-standard neutral gene set to the

null distribution at α = 0.05.

(JPG)

S2 Fig. Gold-standard genes under purifying selection. Each panel shows the cumulative

number of mutations in the gold standard set of genes under purifying selection (black) in all

12 LTEE populations. For comparison, random sets of 490 genes were sampled 1,000 times,

and the cumulative number of mutations in those random gene sets, normalized by gene

length, were calculated. The middle 95% of this null distribution is shown in gray.

(JPG)

S3 Fig. Gold-standard genes under positive selection. Each panel shows the cumulative

number of mutations in the gold standard set of genes under positive selection (black) in all 12

LTEE populations. These genes are the 50 genes with the strongest signal of parallel evolution

in clones isolated from the six nonmutator populations, as scored by Tenaillon and colleagues

[15]. For comparison, random sets of 50 genes were sampled 1,000 times, and the cumulative

number of mutations in those random gene sets, normalized by gene length, were calculated.

The middle 95% of this null distribution is shown in gray.

(JPG)

S4 Fig. Genes evolving in parallel in hypermutator populations. Each panel shows the

cumulative number of mutations in the 50 genes with the strongest signal of parallel evolution

in clones isolated from the six hypermutator populations, as scored by Tenaillon and col-

leagues [15], in the 12 LTEE populations. These curves are drawn in black. For comparison,

random sets of 50 genes were sampled 1,000 times, and the cumulative number of mutations

in those random gene sets, normalized by gene length, were calculated. The middle 95% of this

null distribution is shown in gray. The top six panels are the nonmutator populations and the

bottom six panels are the hypermutator populations.

(JPG)

S5 Fig. Genes evolving in parallel in hypermutator populations. Each panel shows the

cumulative number of mutations in the 50 genes with the strongest signal of parallel evolution

in clones isolated from the six hypermutator populations, as scored by Tenaillon and col-

leagues [15], in all 12 LTEE populations. These curves are drawn in black. For comparison,

random sets of 50 genes were sampled 1,000 times, and the cumulative number of mutations

in those random gene sets, normalized by gene length, were calculated. The middle 95% of this

null distribution is shown in gray.

(JPG)

PLOS GENETICS Positive and purifying selection in hypermutators

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010324 August 18, 2022 23 / 28

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010324.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010324.s008
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010324.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010324.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010324.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010324.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010324.s013
https://doi.org/10.1371/journal.pgen.1010324


S6 Fig. Purifying selection on the proteome U-sector. Each panel shows the cumulative

number of mutations in the A-sector (black), S-sector (red), O-sector (blue), U-sector (green),

R-sector (yellow), and C-sector (orange) in the 12 LTEE populations. For comparison, random

sets of 92 genes (i.e. the smallest proteome sector cardinality) were sampled 1,000 times, and

the cumulative number of mutations in those random gene sets, normalized by gene length,

were calculated. The middle 95% of this null distribution is shown in gray. The top six panels

are the nonmutator populations and the bottom six panels are the hypermutator populations.

(JPG)

S7 Fig. Purifying selection on the proteome U-sector and R-sector. Each panel shows the

cumulative number of mutations in the A-sector (black), S-sector (red), O-sector (blue), U-

sector (green), R-sector (yellow), and C-sector (orange) in all 12 LTEE populations. For com-

parison, random sets of 92 genes (i.e. the smallest proteome sector cardinality) were sampled

1,000 times, and the cumulative number of mutations in those random gene sets, normalized

by gene length, were calculated. The middle 95% of this null distribution is shown in gray.

(JPG)

S8 Fig. No evidence of selection on E. coli eigengenes. Each panel shows the cumulative

number of mutations in eigengene 1 (red), eigengene 2 (orange), eigengene 3 (yellow), eigen-

gene 4 (green), eigengene 5 (cyan), eigengene 6 (blue), eigengene 7 (violet), eigengene 8

(pink), and eigengene 9 (black) in the 12 LTEE populations. For comparison, random sets of

15 genes (i.e. the smallest eigengene cardinality) were sampled 1,000 times, and the cumulative

number of mutations in those random gene sets, normalized by gene length, were calculated.

The middle 95% of this null distribution is shown in gray. The top six panels are the nonmuta-

tor populations and the bottom six panels are the hypermutator populations.

(JPG)

S9 Fig. No evidence of selection on E. coli eigengenes. Each panel shows the cumulative

number of mutations in eigengene 1 (red), eigengene 2 (orange), eigengene 3 (yellow), eigen-

gene 4 (green), eigengene 5 (cyan), eigengene 6 (blue), eigengene 7 (violet), eigengene 8

(pink), and eigengene 9 (black) in the 12 LTEE populations. For comparison, random sets of

15 genes (i.e. the smallest eigengene cardinality) were sampled 1,000 times, and the cumulative

number of mutations in those random gene sets, normalized by gene length, were calculated.

(JPG)

S10 Fig. I-modulon regulators evolve under strong positive selection, while genes regulated

within I-modulon evolve under purifying selection. Each panel shows the cumulative num-

ber of mutations in 56 I-modulon regulators (black) and in 1,061 genes regulated by I-modu-

lon regulators (red) in the 12 LTEE populations. For comparison to the I-modulon regulators,

random sets of 56 genes were sampled 1,000 times, and the cumulative number of mutations

in those random gene sets, normalized by gene length, were calculated. The middle 95% of this

null distribution is shown in gray. A similar procedure was used with random sets of 1,061

genes to make a comparable distribution in pink to compare to the genes regulated by I-modu-

lon regulators.

(JPG)

S11 Fig. Regulatory genes are under positive selection in hypermutator Pseudomonas aeru-
ginosa populations evolving under subinhibitory concentrations of colistin. Each panel

shows the cumulative number of mutations in 424 annotated regulatory genes (black), in two

replicate populations of hypermutator P. aeruginosa. For comparison, random sets of 424
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genes were sampled 1,000 times, and the cumulative number of mutations in those random

gene sets, normalized by gene length, were calculated. The middle 95% of this null distribution

is shown in gray.

(JPG)
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