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Abstract 

Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor 

survival of patients with PDA has been attributed to a high rate of early metastasis and 

low efficacy of current therapies, which partly result from its complex immunosuppressive 

tumor microenvironment. Previous studies from our group and others have shown that 

tumor-associated macrophages (TAMs) are instrumental in maintaining 

immunosuppression in PDA. Here, we explored the role of Notch signaling, a key 

regulator of immune response, within the PDA microenvironment. We identified Notch 

pathway components in multiple immune cell types within human and mouse pancreatic 

cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, 

express high levels of Notch receptors with cognate ligands such as JAG1 expressed on 

tumor epithelial cells, endothelial cells and fibroblasts. TAMs with activated Notch 

signaling expressed higher levels of immunosuppressive mediators including arginase 1 

(Arg1) suggesting that Notch signaling plays a role in macrophage polarization within the 

PDA microenvironment. Combination of Notch inhibition with PD-1 blockade resulted in 

increased cytotoxic T cell infiltration, tumor cell apoptosis, and smaller tumor size. Our 

work implicates macrophage Notch signaling in the establishment of immunosuppression 

and indicates that targeting the Notch pathway may improve the efficacy of immune-

based therapies in PDA patients.  
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Introduction 

90% of pancreatic ductal adenocarcinoma (PDA) patients die within five years of their 

diagnosis (1). A key reason for this poor prognosis is resistance to existing therapies. 

This resistance is partly regulated by oncogenic KRAS signaling within the pancreatic 

tumor epithelium (2). Genetically engineered mouse models expressing oncogenic 

KRAS in the pancreas recapitulate the histologic progression of human PDA with 

formation of preneoplastic lesions including acinar-ductal metaplasia (ADM), Pancreatic 

Intraepithelial Neoplasia (PanIN), and pancreatic adenocarcinomas with metastases (3–

6). Based on the observations from these models and human patients, it has become 

clear that epithelial oncogenic KRAS signaling promotes the formation of a complex 

immunosuppressive fibroinflammatory stroma, which also contributes to treatment 

resistance (7). 

Notch signaling is one of the core pathways dysregulated in PDA downstream of 

oncogenic KRAS (8). The core components of Notch signaling in mammals include the 

Notch transmembrane receptors - Notch1-4 - and five membrane-bound ligands - 

Jagged1 and 2 and Delta-like ligand 1, 3, and 4 (9). Cell-cell contact and ligand–

receptor interaction between neighboring cells lead to a series of proteolytic events 

culminating in the γ-secretase-mediated cleavage of the intracellular Notch domain 

(NICD), which is then released from the plasma membrane and translocates into the 

nucleus where it binds to the DNA-binding protein CBF1/RBPJκ. This complex also 

recruits the transcriptional co-activator mastermind-like (MAML) and leads to 

transcriptional activation of Notch target genes including the Hes family of transcription 

factors (9). Notch epithelial signaling regulates pancreatic neoplastic progression in 
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genetically engineered mouse models (10–14) and inhibitors targeting γ-secretase 

activating Notch proteolytic cascade have been developed (15). Unfortunately, clinical 

trials based on these approaches have so far not yielded improved survival (16,17). 

One reason for this lack of efficacy is incomplete understanding of how Notch regulates 

the PDA tumor microenvironment.  

Notch pathway regulates multiple aspects of the tumor immune response including T 

cell differentiation and maturation and myeloid compartment functionality (18–20). In the 

context of the PDA TME, Notch inhibition via γ-secretase inhibition (GSI) led to 

increased intratumoral hypoxia and sensitivity of tumor epithelium to systemic therapy 

(21). In addition, Notch activation in vitro has been implicated in promoting M1-like, anti-

tumor macrophage polarization (22,23). Genetic approaches to activate or inhibit Notch 

signaling and transcriptional response in the myeloid compartment of an autochthonous 

mouse model of pancreatic cancer demonstrated increased productive cytotoxic T cell 

and macrophage anti-tumor response associated with Notch stimulation (23). However, 

contrary to this observation, breast cancer models with Notch activation within tumor-

associated macrophages (TAMs) demonstrated protumorigenic, M2-like TAM 

polarization, T cell inhibition, and a blunted anti-tumor immune response (24). The state 

of Notch signaling in the myeloid compartment of human PDA patients remains unclear. 

In our work, we address the activation state of Notch within multiple compartments of 

primary human and mouse PDA and how the myeloid compartment and tumor immune 

response is shaped in the presence of pharmacological Notch and immune checkpoint 

inhibition. 
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Materials and Methods 

Study design 

The objective of this project was to study the role of Notch signaling in TME on shaping 

the functional fate of tumor- associated macrophages of in male and female mice bearing 

pancreatic tumors and to provide insight into the role of Notch pathway in regulating 

immune treatment.  

Mice 

CBF:H2B-Venus mice (25) were gifts from Dr. Sunny Wang, University of Michigan. By 

using multiple CBF1 binding sites together with a subcellular-localized, genetically-

encoded fluorescent protein, H2B-Venus, the CBF:H2B-Venus transgenic strain of mice 

is capable of faithfully recapitulating Notch signaling at single-cell resolution (5). Venus 

mice were generated by crossing with C57BL/6 mice. Male and female mice were 

included equally. All animal studies were conducted in compliance with the guidelines of 

Institutional Committees on Use and Care of Animals at the University of Michigan. 

Animal experiments 

To establish the orthotopic pancreatic cancer model, 5x104 of 7940B cells (32) and 1X105  

mT3-2D cells (33), both derived from KPC mouse tumors (Pdx1-Cre; LSL-KrasG12D/+; 

LSL-Trp53R172H/+) in C57BL/6J background,  were injected into Venus mice. Cells were 

tested for mycoplasma free by MycoAlertTM PLUS Mycoplasma Detection Kit (Lonza) 

and passage 15-20 were used for all experiments. γ-secretase inhibitor (GSI) 

Crenigacestat (LY3039478, Selleckchem Chemicals, Houston, TX) was given at 8 mg/kg 

by oral gavage every another day for Notch inhibition. Anti-PD1 treatment: Purified anti-
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mPD-1 antibody (BioXcell #BE0033-2; clone J43) was used for in vivo PD-1 blockade at 

a dosage of 200 μg/mouse through i.p. injection, repeated twice per week. 

Cell culture 

All cells were cultured in IMDM supplemented with 10% FBS and 1% 

penicillin/streptomycin (Gibco). Mouse pancreatic cancer cell line 7940B was used to 

generate conditioned medium (CM). CM was filtered through 0.2 µm filter before use. For 

in vitro tumor-associated macrophage polarization, bone marrow derived myeloid cells 

(BMDM) were treated with CM (CM diluted 1:1 in fresh IMDM with 10% FBS) for 7 days 

for macrophage polarization; In addition, BMDM co-cultured with 7940B cells was used 

to polarize differentiated macrophages as previously described (34).  

Histopathological analysis 

Hematoxylin and eosin (H&E), immunohistochemical and immunofluorescent staining 

were performed on formalin-fixed, paraffin embedded mouse pancreatic tissues as 

described before (Zhang et al., 2013a). Antibodies used are listed in Supplementary file 

1. For immunofluorescence, Alexa Fluor (Invitrogen) secondary antibodies were used. 

Cell nuclei were counterstained with Prolong Gold with DAPI (Invitrogen). Images were 

taken with Olympus BX-51 microscope, Olympus DP71 digital camera, and DP Controller 

software. The immunofluorescent images were acquired using the Olympus IX-71 

confocal microscope and FluoView FV500/IX software.  

Flow cytometric analysis and sorting 

Single-cell suspensions of fresh spleen or pancreas were prepared as previously 

described (Zhang et al., 2013b) and stained with fluorescently conjugated antibodies 
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listed in Supplementary file 1. Flow cytometric analysis was performed on a Cyan ADP 

analyzer (Beckman Coulter) and data were analyzed with Summit 4.3 software. Cell 

sorting was performed using a MoFlo Astrio (Beckman Coulter). Myeloid cells (DAPI-

EGFP-CD45+CD11b+), epithelial cells (DAPI-EGFP+CD45-) and fibroblasts (DAPI-

EGFP-CD45-CD11b-CD31-CD3-) were sorted and lysed in RLT buffer (Qiagen). Total 

RNA was prepared using RNeasy (Qiagen) and reverse-transcripted using High Capacity 

cDNA Reverse Transcription kit (Applied Biosystems). 

Quantitative RT-PCR 

Samples for quantitative PCR were prepared with 1X SYBR Green PCR Master Mix 

(Applied Biosystems) and various primers (primer sequences are listed in Supplementary 

file 2). All primers were optimized for amplification under reaction conditions as follows: 

95°C 10mins, followed by 40 cycles of 95°C 15 secs and 60°C 1 min. Melt curve analysis 

was performed for all samples after the completion of the amplification protocol. 

Cyclophilin A was used as the housekeeping gene expression control. 

Single-cell RNA sequencing 

Single-cell suspensions of pancreatic tumors were derived as previously described (35). 

Dead cells were removed using MACS® Dead Cell Removal Kit (Miltenyi Biotec Inc.). 

Single-cell cDNA library was prepared and sequenced at the University of Michigan 

Sequencing Core using the 10x Genomics. Samples were run using paired end 50 cycle 

reads on HiSeq 4000 (Illumina) or the NovaSeq 6000 (Illumina) to the depth of 100,000 

reads per cell. The raw data were aligned to either mm10 or hg19 for mouse and human, 

respectively, then data were filtered using Cellranger count V3.0.0 with default settings at 
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the University of Michigan, Advanced Genomics Core. R Studio V3.5.1 and R package 

Seurat version V3.0 was used for downstream single cell RNA-seq data analysis similarly 

as previous described (24,36). Data were initially filtered to only include all cells with at 

least 200 genes and all genes in greater than 3 cells. Data were initially normalized using 

the NormalizeData function with a scale factor of 10,000 and the LogNormalize 

normalization method. Variable genes were identified using the FindVariableFeatures 

function. Data were assigned a cell cycle score using the CellCycleScoring function and 

a cell cycle difference was calculated by subtracting the S phase score from the G2M 

score. Data were scaled, centered and batch corrected using linear regression on the 

counts, the cell cycle score difference and run ID using the ScaleData function. Principal 

Component Analysis (PCA) was run with the RunPCA function using the previously 

defined variable genes. Violin plots were then used to filter data according to user-defined 

criteria. Cell clusters were identified via the FindClusters function. FindMarkers table was 

created, and clusters were defined by user-defined criteria. Raw KPC mouse data are 

available at the NCBI’s Gene Expression Omnibus database (GSM6127792) and were 

originally published in (26). Human scRNA-seq data were previously published (24). Raw 

human data are available at the National Institutes of Health (NIH) dbGaP database 

(phs002071.v1.p1) and processed data are available at NIH Gene Expression Omnibus 

(GEO) database (GSE155698). 

Statistical analysis 

Graphpad Prism six software was used for all statistical analysis. All data were presented 

as means ± standard error (SEM). Intergroup comparisons were performed using Two-

tailed unpaired t-test, and p<0.05 was considered statistically significant. 
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Study approval 

All animal studies were conducted in compliance with the guidelines of the Institutional 

Animal Care & Use Committee (IACUC) at the University of Michigan. Patient 

selection/sample procurement: patients over the age of 18 referred for diagnostic 

endoscopic ultrasound of a pancreas mass lesion suspected of PDAC were consented 

according to IRB HUM00041280. Up to 2 extra passes were taken for research after 

biopsy obtained for clinical use. Surgical specimens were obtained from patients referred 

for Whipple or distal pancreatectomy according to IRB HUM000025339. Written informed 

consent forms were obtained from the patients, and the studies were conducted in 

accordance with recognized ethical guidelines. Human patient studies were approved by 

Institutional Review Boards of the University of Michigan Medical School. 

Data availability statement 

All sequencing data used within this manuscript is publicly available on the Gene 

Expression Omnibus - GSM6127792 and GSE155698 – and in the NIH database of 

Genotypes and Phenotypes (dbGaP) for the raw human sample sequences - 

phs002071.v1.p1. 
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Results  

Single-cell RNA sequencing reveals Notch pathway component expression in the 

human and mouse pancreatic tumor microenvironment 

To explore Notch signaling pathway component expression in the human PDA 

microenvironment, we analyzed our previously published single cell RNA sequencing 

(RNA-seq) dataset of 16 human pancreatic cancer samples as well as 3 adjacent benign 

or normal pancreata (25). In this dataset, we captured 13 different cell populations in both 

PDA and adjacent/normal pancreata (Figure S1A). Gene expression profiling identified 

Notch signaling pathway components across all cell clusters at various levels except for 

acinar cells. In general, Notch signaling pathway gene expression was higher in PDA 

compared to adjacent/normal pancreata (Figure S1A). In particular, Notch receptors were 

highly expressed in cancer epithelial cells, endothelial cells, fibroblasts and subsets of 

immune cells including multiple myeloid populations (Figure S1A). The Notch pathway 

ligands such as JAG1 were mainly expressed by epithelial cells, endothelial cells and 

fibroblasts (Figure S1A). Notch pathway canonical target gene HES1 expression was 

enriched in epithelial cells, endothelial cells, fibroblasts, myeloid cells, and mast cells 

(Figure S1A). Co-immunofluorescent staining confirmed expression of HES1 in 

fibroblasts and macrophages in human PDA microenvironments (Figure S1B).   

To further map the Notch signaling pathway within the immune system, we focused on 

gene profiling in immune cells only. We clustered the immune cells in 9 clusters (Figure 

1A and S1C), containing multiple myeloid cell populations. Among those, monocytes, 

granulocytes and macrophages had high level of Notch receptors - primarily NOTCH 1 

and 2 (Figure 1B). The Notch target HES1 was expressed by mast cells and monocyte 
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and macrophage populations at relatively high levels compared to other immune cells 

(Figure 1B-C). In addition, HES1 expression was upregulated in immune cells from 

pancreatic tumors compared to those from adjacent/normal pancreata, indicating that 

activation of Notch signaling in the myeloid compartment may affect tumor 

microenvironment regulation in pancreatic cancer (Figure 1D). The myeloid compartment 

also contained high expression levels of the proteolytic enzymes (ADAM10, ADAM17) 

involved in the Notch proteolytic cascade as well as downstream Notch signaling 

components (MAML1/2, RBPJ) suggesting the presence of a fully reconstituted Notch 

pathway, which may play a role in shaping the myeloid compartment within the PDA 

microenvironment. 

To address if the existing mouse models of pancreatic cancer recapitulate our 

observations from human tumors, we performed similar single-cell RNA-seq analysis 

within the Ptf1aCre/+, KrasLSL-G12D/+, Tp53LSL-R172H/+ (KPC) mouse model (26) (Figure 1E). 

We observed high expression of Notch receptors, downstream signaling components, 

and Hes1 in cancer epithelial cells, endothelial cells, pericytes, fibroblasts and myeloid 

cells including dendritic cells and macrophages (Figure 1F). Co-immunofluorescent 

staining confirmed abundant expression of HES1 in fibroblasts, macrophages, and 

endothelial cells in the KPC tumor microenvironment (Figure 1G). Our results support 

presence of active Notch signaling within multiple components of the PDA TME including 

macrophages. 

Macrophages in the pancreatic tumor microenvironment have active Notch 

signaling.  

To evaluate Notch signaling activity, we crossed a Notch signaling reporter mouse 
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CBF:H2B-Venus (27) with two established mouse models of pancreatic cancer, KC 

(Ptf1aCre/+; KrasLSL-G12D/+) and KPC, to generate KC;CBF:H2B-Venus and KPC;CBF:H2B-

Venus mice. These models express the Venus fluorescent protein upon Notch signaling 

activation (Figure 2A and S2A). In the normal pancreas, Venus signal was detected in 

ductal epithelial cells and was co-localized with HES1, cleaved NOTCH1, and NOTCH2 

by immunofluorescent staining (Figure S2B). At very early stages of pancreatic 

tumorigenesis in 6-week-old KC pancreata, where acinar-ductal metaplasia (ADM) 

predominates, we observed Venus-expressing macrophages and fibroblasts in the 

stroma (Figure 2B) by co-immunofluorescent staining of GFP (to detect Venus on FFPE 

sections) and F4/80 or SMA. Later in 8- and 12-week-old KC and 11-week-old KPC mice 

we found Pancreatic Intraepithelial Neoplasia (PanIN), a precursor for invasive pancreatic 

cancer, and more macrophages and fibroblasts in the PanIN microenvironment 

expressed Venus signifying active Notch signaling (Figure 2C and S2C). Similarly, co-

immunofluorescent staining showed Venus-expressing macrophages and fibroblasts in 

mouse PDA in a 21-week-old KPC mouse (Figure 2D). Based on these observations, 

Notch signaling activation in the TME starts at the earliest stages of carcinogenesis and 

persists through disease initiation and progression. 

To expand our analysis to full-blown cancer, we orthotopically implanted two syngeneic 

mouse PDA cell lines, 7940B and MT3-2D (both derived from Pdx1-Cre; KrasLSL-G12D/+; 

Trp53LSL-R172H/+ tumors), into C57BL/6J:CBF:H2B-Venus mice and harvested the 

resulting tumors for flow cytometry analysis after three-weeks (Figure 3A). Venus 

expression was detected in multiple cell types from the tumor microenvironment including 

fibroblasts, macrophages, B cells, and T cells (Figure 3B-E). Macrophages comprised up 
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to ~60% of all immune cells (Figure 3C) and about half of the TAMs were Venus+, making 

them the largest Venus-expressing cell population within the TME (Figure 3C and 3F). In 

contrast, fibroblasts contributed ~20% of total cells and Venus-expressing fibroblasts 

were rare (Figure 3F and S3A). Corresponding spleen tissues from the tumor bearing 

mice were used as an internal control and Venus expression was also found in splenic 

macrophages, B cells and T cells (Figure S3B). To validate that Venus expression 

represents active Notch signaling we performed co-immunofluorescent staining on the 

orthotopic PDA sections and determined that F4/80+GFP+ macrophages were also HES1 

positive (Figure S3C).  Thus, Notch pathway component and target gene expression 

characterizes macrophages infiltrating precursor lesions and advanced pancreatic 

cancer, and Notch activity is reflected by expression of the Venus reporter.  

Notch signaling in tumor-associated macrophages correlates with 

immunosuppressive polarization. 

To functionally characterize the role of Notch signaling in tumor associated macrophages, 

we used fluorescence-activated cell sorting to isolate Venus+ and Venus- TAMs from the 

orthotopic 7940B tumors.  The Venus+ and Venus- TAM populations were similar in cell 

number (Figure 4A), consistent with co-immunofluorescent staining showing about half of 

the F4/80+ macrophages expressing Venus (Figure 4B). We then performed qRT-PCR to 

molecularly characterize them (Figure 4C). First, we confirmed that Hes1 expression, a 

measure of Notch signaling, was higher in Venus+ TAMs compared to Venus- TAMs. 

Interestingly, we also found that Wnt signaling target Lef1 and several alternative 

activated macrophage (M2-like) markers, including Arg1, Msr1 and Mrc1, were elevated 

in Venus+ TAMs (Figure 4C). Consistent with these findings, expression of 
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immunosuppressive cytokines and chemokines such as Il10 and Tgfβ1 was also higher 

in Venus+ TAMs. Finally, the classically activated macrophage (M1) marker Nos2 was 

lower in Venus+ TAMs and there were no significant differences in expression levels of 

Notch1, Axin2, Tnf⍺ and Chi3l3 between the two TAM subsets. Overall, gene expression 

analysis pointed to a positive correlation between Notch activation and M2-like 

polarization of TAMs. 

To validate our findings, we further analyzed the single-cell sequencing data obtained 

from the KPC model. We identified four subsets of macrophages (Figure 4D and S4A) 

and performed gene expression analysis for Notch pathway genes (Figure S4B). All four 

TAM subsets expressed Notch receptors at varying levels with highest expression noted 

for Notch1 and Notch2. The macrophage 4 population had the highest expression level 

of Hes1, indicating high levels of Notch signaling. The same macrophage 4 population 

also expressed several M2/tumor associated macrophage markers including Arg1, Marco 

and Chi3l3 and had the highest level of the immune checkpoint ligand Cd274 (PD-L1) 

(Figure 4E). We further analyzed single-cell RNAseq data from a publicly available KPC 

(Pdx1-Cre; KrasLSL-G12D/+; Trp53LSL-R172H/+) tumor dataset (28). In this case, the Hes1 high 

population also expressed the highest levels of Arg1 and Chi3l3 (Figure 4F and Figure 

S4C). 

To verify our findings in human PDA, we isolated myeloid cells including macrophages 

and granulocytes from our previously published human scRNA-seq immune dataset for 

an in-depth analysis (25). As in the mouse, HES1 was expressed in myeloid cells, and its 

expression is more abundant in PDA compared to adjacent and normal pancreata (Figure 

5A and 5B). Among the four identified TAM subsets in human PDA, CCR2+ classical 
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macrophages, resident macrophages and alternatively activated macrophages all had 

similar amount of HES1 expression, which in turn was higher compared to other myeloid 

subsets (Figure 5C). To seek a better understanding of the role of Notch signaling 

activation in TAMs we compared the gene expression profile between HES1-positive and 

HES1-negative macrophages from human patients. We discovered higher expression of 

complement genes C1QA, C1QB, alternatively activated macrophage markers CD163, 

MSR1, MRC1 and MARCO, and resident macrophage marker STAB1 in HES1-positive 

macrophages. We previously identified complement genes C1QA, C1QB, and TREM2 as 

part of a pancreatic tumor-specific signature in macrophages (29).  HES1-positive 

macrophages also have higher levels of HIF1A, potentially linking Notch signaling 

activation in macrophages to hypoxia in the TME (Figure 5D).  

To elucidate a potential causal link between Notch activation and immunosuppressive 

function of TAMs, we developed an in vitro co-culture system in which bone marrow 

derived myeloid cells (BMDM) are differentiated and polarized to TAMs by cancer 

conditioned media or direct co-culture with PDA cells (Figure 6A). Using BMDM derived 

from C57BL/6J:CBF:H2B-Venus mice we traced activation of Notch signaling by Venus 

expression. We observed Venus expression only in BMDM cells co-cultured with PDA 

cells directly and not with cancer conditioned media only, supporting the notion that direct 

physical contact between the tumor cells and myeloid cells is needed for Notch activation 

as expected (Figure 6B). The Venus expressing BMDM cells also expressed F4/80 and 

Arg1, markers of immunosuppressive macrophages (Figure 6C). Moreover, when BMDM 

co-cultured with PDA cells were treated with the γ-secretase inhibitor Crenigacestat (30) 

to inhibit the proteolytic signaling downstream of Notch receptors, the expression of Hes1, 
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Arg1, Chi3l3, Mrc1, Tgfβ1 or Il10 were down-regulated compared to vehicle-treated cells 

(Figure 6D and 6E). These results point to direct tumor epithelial/macrophage contact in 

the PDA microenvironment activating macrophage Notch signaling and resulting in 

polarization of TAMs to an immunosuppressive phenotype. 

Inhibition of Notch signaling synergizes with PD1 blockade to activate anti-tumor 

immune activity. 

Given our functional results implicating epithelial/macrophage crosstalk in Notch 

activation and immunosuppressive TAM polarization, we sought to investigate the 

therapeutic and immunomodulatory potential of Notch signaling inhibition in vivo. We 

implanted 7940B cells orthotopically into syngeneic C57BL/6J mice; a week later, tumor 

bearing mice were treated with either GSI, anti-PD1, or combination of both (Figure 7A). 

At harvest (day 19) we observed smaller tumors in the combination treatment cohort 

compared to the controls or either treatment alone (Figure 7B). Histology analysis of the 

orthotopic tumors revealed an increase in tumor-infiltrating CD8+ T cells along with 

increased levels of the T cell activation marker granzyme B in the combination treatment 

cohort (Figure 7C and quantification in Figure 7E). We also observed increased cell 

apoptosis by cleaved caspase 3 immunohistochemistry staining after GSI and anti-PD1 

combination treatment (Figure 7D and quantification in Figure 7F). Targeting Notch 

signaling alone (GSI group) also showed a trend in increase of tumor infiltrating CD8 T 

cells although there was no change in Granzyme B production or cell apoptosis compared 

to the control group. In contrast, the tumor infiltrating macrophage number remained 

unchanged in all conditions (Figure S5A and quantification in Figure S5B). These findings 

are consistent with activation of a productive anti-tumor immune response upon combined 
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treatment targeting Notch signaling and the PD1 checkpoint. The results also support the 

notion that native Notch signaling promotes immunosuppressive TAM polarization and 

targeting Notch may be a useful addition to immunotherapy approaches in pancreatic 

cancer. 

 

Discussion 

Immunotherapy has so far not been effective as a treatment option for pancreatic cancer 

(31,32). Specifically, targeting the PD1 immune checkpoint with a single agent provides 

no benefit to patients; effective combination approaches are thus needed. The complex 

immunosuppressive nature of the PDA tumor microenvironment is the direct cause of this 

and reflects the interplay of many different cell types (7). The tumor-associated 

macrophages play a key immunosuppressive role within this context in pancreatic cancer 

(33–36). 

Notch signaling has been previously implicated in myeloid development in the bone 

marrow as well as in local functional maturation in the tissue/tumor microenvironment 

(19,37). In addition, tumor epithelial Notch signaling alters the tumor secretome to 

promote an immunosuppressive response in the surrounding microenvironment (38). 

Role for direct Notch signaling in myeloid cells has been lacking in PDA despite evidence 

for it in other tumor types (18). Our paper demonstrates that Notch pathway components 

and active signaling are present in multiple cell populations in both human and murine 

tumors including the macrophages, T cells, fibroblasts, and the endothelium. We also use 

a non-invasive Notch pathway activity reporter to identify and characterize the phenotype 

and function of the myeloid cells in pancreatic tumors. Our data support the notion that 
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Notch-active myeloid cells are primarily tumor-associated macrophages with a more 

immunosuppressive M2-like/alternatively activated phenotype marked by higher 

expression of immunosuppressive cytokines, arginase 1, and immune checkpoint 

molecules. 

Contrary to our results, other investigators have found that Notch activation primarily 

drives an M1-like, tumor suppressive phenotype in macrophages (22,39). In addition, 

independent modulation of Notch signaling via Notch intracellular domain overexpression 

or deletion of Rbpj – a key transcriptional transducer of Notch signaling – in the myeloid 

compartment of an autochthonous mouse model of pancreatic neoplasia suggested that 

activation of Notch signaling in myeloid cells drives a stronger anti-tumor immune 

response (23). The discrepancy between these findings and our observations in myeloid 

cells with intact, native level of signaling is potentially at least partially explained by the 

modular and combinatorial nature of the Notch signaling pathway (40–44). Final Notch 

signaling response is a product of integration of both cis and trans cellular signaling and 

inhibition. In addition to this, different Notch ligands can evoke distinct quantitative and 

qualitative cellular responses (44). Work published prior to our manuscript often relied on 

high level of activation or inhibition of Notch signaling through isolated ligand or Notch 

intracellular domain overexpression or complete genetic abrogation of the Notch 

transcriptional response. In addition, many of these interventions were present throughout 

myeloid development, migration, and local microenvironment differentiation, which may 

lead to signaling and functional myeloid states that would not normally be seen in an intact 

in vivo context. In comparison, our work utilized a non-invasive functional fluorescent 

reporter of Notch activity to identify cells with native levels of Notch signaling activation. 
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This allowed us to isolate and molecularly and functionally characterize the myeloid cells 

with a productive Notch transcriptional response without disrupting any of the native 

activating and inhibitory receptor/ligand interactions. The immunosuppressive nature of 

these myeloid cells could be partially reversed by γ-secretase inhibition, which blocks the 

proteolytic activation of Notch signaling. As a final functional proof of concept, we 

demonstrated that combining γ-secretase inhibition with immune checkpoint inhibition 

leads to a productive anti-tumor immune response with increased infiltration of CD8+ 

cytotoxic T cells and increased tumor apoptosis. Overall, our data shows that the effects 

of Notch signaling in the PDA tumor microenvironment are highly ligand, receptor, and 

overall context-dependent. 

In addition to demonstrating direct Notch activation and function in the myeloid 

compartment, our work also implicates Notch in multiple other cell types in the PDA tumor 

microenvironment including T cells, fibroblasts, and the endothelium. Role of Notch in T 

cell maturation and function is well documented, but is less clear in the specific context 

of PDA (45,46). Notch signaling has also been shown to regulate fibroblast phenotype 

and function in the tumor microenvironment and other inflammatory contexts (47,48). In 

PDA, cancer-associated fibroblasts can be parsed into multiple coexisting subtypes 

regulating the tumor microenvironment and immune response (28,49–57). We and others 

have previously shown that dysregulation of Hedgehog signaling plays a key role in CAF 

function and immune polarization within the TME (49,51,58–60). How Notch integrates 

with Hedgehog and other signaling pathways in the CAFs and how this affects the tumor 

microenvironment remains an active area of study. Similarly, Notch ligands are also highly 

expressed on tumor-associated endothelium (47). Myeloid cells recruited to the tumor 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.11.523584doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.11.523584
http://creativecommons.org/licenses/by-nd/4.0/


22 

microenvironment have to traverse the endothelium as the first barrier during their 

extravasation into the tumor and endothelial Notch ligands may serve as the first relevant 

Notch signal that leading to myeloid polarization in the TME. Along these lines radiation-

induced increased expression of the Notch ligand Jagged1 in lung endothelium leads to 

alternative M2-like polarization of myeloid cells as they are recruited into the lung 

parenchyma (61). Similar mechanisms are potentially at play in the PDA TME. In 

summary our work implicates direct Notch signaling in immunosuppressive myeloid 

response polarization in pancreatic cancer and suggests the presence of a complex 

Notch-specific network of interactions between various cell types regulating this 

polarization. Further understanding of Notch signaling and its role in pancreatic cancer 

may provide future alternative means to redeploy already-developed Notch-modulating 

drugs in combination chemoimmunotherapy regimens. 
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Figure Legends 

Figure 1. Notch activation in the tumor microenvironment of PDA. 

(A) UMAP plot of immune cells identified from single-cell RNA sequencing analysis with 

human pancreatic cancer samples (n=16) and adjacent benign/normal tissues (n=3), 

color-coded by their associated cluster. (B) Dot plot showing expression of Notch pathway 

genes across all immune cell clusters identified in the single-cell RNA sequencing 

analysis of human pancreatic samples. Size of dots represents percentage of cells 

expressing a particular gene and intensity of color indicates level of mean expression. (C) 

Violin plot of single cell RNA sequencing analysis showing expression level of HES1 in 

different immune cell populations derived from human pancreatic cancer samples. (D) 

Violin plot of single cell RNA sequencing analysis comparing expression level of HES1 in 

all leukocytes between human pancreatic cancer samples and adjacent benign/normal 

tissues. (E) UMAP plot of cell populations identified from single-cell RNA sequencing 

analysis with KPC mouse pancreatic cancer, color-coded by their associated cluster. (F) 

Dot plot showing Notch pathway genes across all clusters identified in the single-cell 

analysis of mouse KPC tumor. Size of dots represents percentage of cells expressing a 

particular gene and intensity of color indicates level of mean expression. (G) Co-

immunofluorescent staining for HES1 (green), SMA, F4/80, CD31 or CD3 (red), E-cad 

(magenta) and DAPI (blue) in mouse KPC tumor sample. Scale bar 50 µm. 

Figure 2. Notch activation detected in the tumor microenvironment of mouse 

spontaneous PanIN and PDA. 
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(A) Genetic makeup of the KC; CBF:H2B-Venus and KPC; CBF:H2B-Venus mice. (B-D) 

Co-immunofluorescent staining for Venus (green), F4/80 (red), SMA (magenta) and DAPI 

(blue) in pancreata harvested from KC; CBF:H2B-Venus and KPC; CBF:H2B-Venus mice 

at indicated age. Scale bar 50 µm. White arrows show Venus expression in F4/80 positive 

cells and yellow arrows show Venus expression in SMA positive fibroblasts. 

Figure 3. Notch signaling activation in multiple stromal cell types in mouse 

pancreatic orthotopic tumor.  

(A) Experimental design. (B) Representative dot plots of flow cytometry analysis of Venus 

expression in CD45-EpCAM-PDGFR𝛼𝛼+ fibroblasts, (C) in CD45+CD11b+F4/80 + 

macrophages, (D) in CD45+D19+ B cells, (E) in CD45+CD3+CD4+ or CD8+ T cells derived 

from spleens or pancreatic tumors harvested from PDA bearing mice. (F) Venus positive 

or negative fibroblasts (CD45-EpCAM-PDGFR𝛼𝛼+), macrophages (CD45+CD11b+F4/80+), 

B (CD45+CD19+), CD4 T (CD45+CD3+CD4+) and CD8 T (CD45+CD3+CD8+) cells in 

pancreatic tumors were measured by flow cytometry. Data represent mean ± SEM.  

Figure 4. Notch signaling activation is prevalent in alternatively activated TAMs. 

(A) Fluorescence-activated cell sorting for Venus positive or negative tumor associated 

macrophages. Data represent mean ± SEM. (B) Co-immunofluorescent staining for 

Venus (green), and F4/80 (red) in pancreata harvested from orthotopic PDA. Scale bar 

50 µm. (C) qRT-PCR for Hes1, Notch1, Axin2, Lef1, Nos2, Tnf⍺, Arg1, Msr1, Mrc1, 

Chi3l3, Il10 and Tgfβ1 expression in Venus negative or positive tumor associated 

macrophages. Data represent mean ± SEM, n=5. The statistical difference was 

determined by two-tailed t-tests. (D) UMAP plot of four macrophage sub-populations 
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identified from single-cell RNA sequencing analysis with KPC mouse pancreatic cancer, 

color-coded by their associated cluster. (E) Violin plots of single cell RNA sequencing 

analysis showing expression levels of Hes1, Arg1, Marco, Chil3 and Cd274 in different 

macrophage subsets derived from mouse pancreatic cancer sample. (F) UMAP plot of 

four macrophage sub-populations identified from a second single-cell RNA sequencing 

dataset (E Elyada, 2019 dataset) of KPC mouse pancreatic cancer, and Violin plots of 

expression of Hes1, Arg1 and Chil3.  

Figure 5. Notch signaling activation in human TAMs correlates with tumor-

specific gene signature.  

(A) UMAP plot showing six myeloid cell sub-populations identified from single-cell RNA 

sequencing analysis with human pancreatic cancer samples (n=16) and adjacent 

benign/normal tissues (n=3), color-coded by their associated cluster. (B) Violin plot of 

single cell RNA sequencing analysis comparing expression level of HES1 in myeloid cells 

between human pancreatic cancer samples and adjacent benign/normal tissues. (C) 

Feature plot and Violin plot of single cell RNA sequencing analysis showing expression 

level of HES1 in myeloid cells derived from human pancreatic cancer samples and 

adjacent benign/normal tissues. (D) Dot plots of single cell RNA sequencing analysis 

showing differentially expressed genes of C1QA, C1QB, CD163, MSR1, MRC1, STAB1 

and HIF1A between HES1-positive and HES1-negative macrophage subsets derived 

from human pancreatic samples.  

Figure 6. γ-secretase inhibitor reduced immunosuppressive markers expression in 

TAM. 
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(A) Experimental design of bone marrow derived macrophage (BMDM) co-cultured with 

PDA cancer cells. (B) Bright field and fluorescent microscopy images of bone marrow 

(BM) cells in culture with cancer cell conditioned medium (CM) or cancer cells 7940B. (C) 

Venus (green) and co-immunofluorescent staining for F4/80 (red) and Arg1 (magenta) in 

BMDM co-cultured with 7940B cancer cells. Scale bar 50 µm. (C) Experimental design of 

bone marrow derived macrophage (BMDM) co-cultured with PDA cancer cells and treated 

with γ-secretase inhibitor (GSI). (D) qRT-PCR for Hes1, Arg1, Chi3l3, Mrc1, Tgfβ1 and 

Il10 expression in vehicle or GSI (Crenigacestat at 0.5 nM or 5 nM) treated BMDM co-

cultured with PDA cells 7940B and mT32D. Data represent mean ± SEM, n=3. The 

statistical difference was determined by two-tailed t-tests.  

Figure 7. Inhibition of Notch signaling combined with PD1 blockade increases anti-

tumor immune activity.  

(A) Experimental design of orthotopic implantation of pancreatic cancer cells 7940B. (B) 

Tumor weights of orthotopic PDA harvested from mice that received vehicle/IgG as 

control, or GSI, or anti-PD1 or combination of GSI and anti-PD1. Data represent mean ± 

SEM, n=6. The statistical difference was determined by two-tailed t-tests. (C) Co-

immunofluorescent staining for CD8 (green), E-cad (red) and DAPI (blue), and 

immunohistochemical staining for Granzyme B in orthotopic PDA tumors. Scale bar 50 

µm. (D) Quantification of CD8, Granzyme B positive area (%). Data represent mean ± 

SEM, n=3~6. The statistical difference was determined by two-tailed t-tests. (E) 

Immunohistochemical staining for Cleaved caspase 3 in orthotopic PDA tumors. Scale 

bar 50 µm. (F) Quantification of Cleaved caspase 3 (CC3) positive area (%). Data 
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represent mean ± SEM, n=3~6. The statistical difference was determined by two-tailed t-

tests.  
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Figure 3. Notch signaling activation in multiple stromal cell types in mouse pancreatic orthotopic tumor.
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