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ARTICLE INFO ABSTRACT

Keywords: Novel Coronavirus with its highly transmittable characteristics is rapidly spreading, endangering millions of
COVID-19 human lives and the global economy. To expel the chain of alteration and subversive expansion, early and
Pneumonia

effective diagnosis of infected patients is immensely important. Unfortunately, there is a lack of testing equip-
Functional semantic similarity matrix ment in many countries as compared with the number of infected patients. It would be desirable to have a swift
Machine learning diagnosis with identification of COVID-19 from disease genes or from CT or X-Ray images. COVID-19 causes flus,
CNN cough, pneumonia, and lung infection in patients, wherein massive alveolar damage and progressive respiratory
failure can lead to death. This paper proposes two different detection methods - the first is a Gene-based
screening method to detect Corona diseases (Middle East respiratory syndrome-related coronavirus, Severe
acute respiratory syndrome coronavirus 2, and Human coronavirus HKU1) and differentiate it from Pneumonia.
This novel approach to healthcare utilizes disease genes to build functional semantic similarity among genes.
Different machine learning algorithms - eXtreme Gradient Boosting, Naive Bayes, Regularized Random Forest,
Random Forest Rule-Based Model, Random Ferns, C5.0 and Multi-Layer Perceptron, are trained and tested on the
semantic similarities to classify Corona and Pneumonia diseases. The best performing models are then ensem-
bled, yielding an accuracy of nearly 93%. The second diagnosis technique proposed herein is an automated
COVID-19 diagnostic method which uses chest X-ray images to classify Normal versus COVID-19 and Pneumonia
versus COVID-19 images using the deep-CNN technique, achieving 99.87% and 99.48% test accuracy. Thus, this
research can be an assistance for providing better treatment against COVID-19.

Gene-based screening

data, over 21 million people have been infected, with over 0.76M deaths
[3]. This pandemic has become a grim figure as the new cases have

1. Introduction

COVID-19 caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) is a highly contagious disease. The Coronaviruses were
thought to infect only animals until the world witnessed a severe acute
respiratory syndrome (SARS) outbreak caused by SARS-CoV, 2002 in
Guangdong, China [1]. In 2005, the human coronavirus HKU1 was first
discovered. Almost a decade later, another endemic coronavirus known
as Middle East respiratory syndrome coronavirus (MERS CoV) appeared
in Middle Eastern countries. We have now seen the onset of COVID-19.
Emerging from Wuhan, China in December 2019, COVID-19 spread
rapidly around the world, affecting the people of approximately 215
countries. On 12 February 2020, the WHO warned that due to
COVID-19, millions would die if it remained uncontrolled, and declared
it as a Pandemic on March 11, 2020 [2]. According to the Worldometers

increased exponentially. Social distancing and contact tracing are two
effective techniques proposed by the World Health Organization (WHO)
to control the spread of this viral infection [4]. Thus, to avoid fast
transmission of the virus, most countries made lockdown compulsory,
which disrupted daily life and socio-economic conditions. Still, the sit-
uation is not entirely controlled.

Effective screening of infected patients helps them so as to become
isolated and receive immediate treatment and care to mitigate the
spread of the virus [5]. The reverse-transcription polymerase chain re-
action (RT-PCR) is the accepted standard diagnostic method of
COVID-19 [6]. However, because the number of RT-PCR testing Kkits,
testing reagents, proper lab environment, PPE, and expertise is inade-
quate to meet demand, contaminated rates are rapidly increasing.
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Hence, researchers are trying to develop alternative detection tech-
niques. Currently, Machine Learning and Deep Learning are used as
successful Al techniques for effective diagnosis of diseases. The X-ray
radiography method is easier and more cost-effective than CT scan im-
ages. Therefore, most researchers prefer the use of X-ray images rather
than CT images.

Almost all of the Corona diseases start with cold-like symptoms and
then advance to Pneumonia. COVID-19 Symptoms can be mild to severe,
including fever, cough, and dyspnea to pneumonia, severe acute respi-
ratory syndrome, septic shock, multi-organ failure and death in more
serious cases [7]. From a report of [3] among the active cases, 2% of
patients are critical and 98% are mild. Studies have found that the
symptoms are changing gradually as the virus slightly changes its ge-
netic makeup. In some current cases, corona-positive patients are found
without any symptoms. For these reasons, the gene-based COVID-19
detection method can be a great alternative to the other methods. To
mitigate the risk of developing certain diseases and to detect these dis-
eases at an earlier stage, the knowledge of an individual’s genetic
make-up can be used [8]. Given a set of disease genes associated with a
disease, they can be used to find further candidate genes for the disease
[9] and also to detect and distinguish it from other diseases.

This study aims to mitigate the limitations of the traditional COVID-
19 diagnostic method by demonstrating two fast and effective diagnostic
techniques, a Gene-based Corona disease detection method and an
automated computer-aided diagnosis (CAD) tool for the diagnosis of
COVID-19, to differentiate it from pneumonia and healthy via from chest
X-ray imagery. Genes and chest X-ray images associated with the dis-
eases are first collected and pre-processed. Several techniques are
applied to the disease genes to calculate the functional similarity mea-
sure matrices among them. The National Center for Biotechnology In-
formation (NCBI) and Gene Ontology (GO) online databases are used for
these purposes. Afterward, different machine learning algorithms are
applied to the matrices for successful prediction. The X-ray images are
incorporated by using a pre-trained CheXNet deep convolutional neural
network (CNN) with model weights [10] to diagnose COVID-19 from
Pneumonia versus Normal healthy images.

The main contributions of this paper are:

> A new approach to diagnose Corona diseases from disease genes with
excellent performance.

> An extensive experimentation was done to select the best performing
machine learning (ML) model on the best gene functional similarity
measures.

> An ensemble technique of ML models was utilized to increase clas-
sification accuracy.

> An automated computer-aided method of COVID-19 detection was
developed to be used with from Chest X-ray imagery with a transfer
learned deep CNN model.

> A relative study was done of different image preprocessing tech-
niques to achieve the best classification accuracy.

> An empirical study on different image augmentation techniques was
employed to work with limited datasets and resolve the CNN model’s
overfitting problem.

The remainder of the paper is organized as follows: Related Works
demonstrating the literature review can be found in section 2. Section 3
captures the proposed materials and methods of this study. Section 4
describes and discusses the results. Finally, the conclusion and future
work of this research can be found in section 5.

2. Related works

Modern technology has made diagnosis and treatment easier and
more convenient than ever before. The availability of large datasets and
the success of deep learning have made the results of diagnostics tasks
more accurate. This section highlights the studies and works done by
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other groups related to this research.

As of this writing, Coronavirus is still spreading, which causes danger
to millions of people. To control the spread of the COVID-19, screening
large numbers of suspected cases for appropriate quarantine and treat-
ment measures is a priority. Yet, the RT-PCR testing process is time-
consuming and also sometimes shows false-negative results, so re-
searchers are trying to develop alternative detection techniques.

Paper [11] uses gene functional similarity to identify disease genes.
Jianpeng Zhang et al. developed a deep learning model to detect
COVID-19 from Chest X-ray images with high sensitivity for active cases
[6]. In article [12], different online Chest X-ray datasets are combined,
rearranged and then transfer learning methods are used for this disease
detection. Paper [7,13] also developed an automated deep CNN model
for detecting and distinguishing COVID-19 from Pneumonia using
X-rays. Lin Li et al. proposes a deep learning neural network model
called COVNet for COVID-19 detection and differentiates it from pneu-
monia and other lung diseases using CT scan images [14].

Hemdan et al. [15] proposed COVIDX-Net with seven different CNN
models- VGG19, DenseNet201, ResNetV2, InceptionV3, InceptionRes-
NetV2, Xception, MobileNetV2 to diagnose COVID-19 using 25
COVID-19 positive and 25 normal X-ray images. The model obtained the
best accuracy of 90% for VGG19 and DenseNet201. A deep CNN model
called DeCoVNet is proposed by Zheng et al. [16] to detect COVID-19
from non-COVID-19 normal CT images with 90.1% accuracy. The
model of Sarhan A.M. et al. [17] proposed a fusion of Wavelet and SVM
model to differentiate COVID-19 from Normal X-ray image acquiring
94.5% accuracy. Nasrin et al. [7] performed a binary classification of 50
COVID-19 vs 50 Normal images and obtained the highest classification
accuracy of 98% using ResNet50. DarkCovidNet proposed by Ozturk
et al. [18] obtained an accuracy of 98.08% for binary and 87.02% for
three classes.

Wang et al. [19] uses CT images to classify COVID-19 from Pneu-
monia using the modified Inception (M-Inception) deep model. The
model achieved a classification accuracy of 82.9%. Ying et al. performed
two binary classification tasks- COVID-19 vs Pneumonia achieving 86%
accuracy and COVID-19 vs Normal obtaining 94% accuracy using CT
images with the DRE-Net model [20]. Sethy and Behera [21] proposed a
model which is the fusion of ResNet50 features with an SVM classifier
and achieved 95.38% accuracy for COVID-19 vs Pneumonia classifica-
tion. They extracted the features of the pre-trained CNN model and then
used an SVM classifier as the final layer.

Some other models are also employed for the purpose of multi-class
classification. Xu et al. [22] achieved an 86.7% performance accuracy in
detecting COVID-19 from Influenza-A viral pneumonia (IAVP) and
healthy cases using pulmonary CT images. CovidAID by Mangal et al.
[23] uses pre-trained CheXNet model and achieves a performance ac-
curacy of 90.5%. COVID-Net, a deep CNN model by Wang and Wong [5]
achieved a 93.3% accuracy for classifying COVID-19, Non-COVID-19
and Normal images. Asif et al. [24] used pre-trained Inception V3 model
to diagnose COVID-19 from three-class classifications with 96% test
accuracy from chest X-rays. Kumar R. [25] et al. proposed a model that
classifies X-ray images to COVID-19, Normal and Pneumonia images
with 97.7% accuracy.

Pneumonia is a contagious lung disease that creates breathing dif-
ficulty and severe respiratory problems with inflammation in lung
alveoli. One of the major symptoms of COVID-19 is Pneumonia. Hence,
it is very difficult to differentiate between Pneumonia and COVID-19.
Identifying COVID-19 disease genes from Pneumonia disease genes
appropriately, in turn means identifying COVID-19 from Pneumonia.
ML classifiers trained on gene semantic similarity scores can differen-
tiate disease genes by inferring hidden semantic similarities among
genes. As Al and ML tools show efficient performance in diagnosing
Pneumonia, they can be also applied to diagnose COVID-19 successfully.

To suppress the rapid transmission of the coronavirus, it is necessary
to screen all suspected cases, quarantine them and provide immediate
treatment. This study proposed a new diagnostic technique for Corona
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Disease that uses disease genes and performs well in distinguishing
Corona disease from Pneumonia. Also, a fine-tuned CheXNet CNN model
is proposed here that is pre-trained on the Pneumonia dataset [26] for
the diagnosis of COVID-19 from X-ray images that serves two classifi-
cations tasks-COVID-19 vs Pneumonia and COVID-19 vs Normal images.

3. Proposed material and methods

The proposed method demonstrated different steps from data
collection to Corona detection using the Gene-based method and CAD
method. The diagram of Fig. 1 displays the schematic representation of
the proposed methodology.

3.1. Data source

Two different screening methods have been developed here for the
diagnosing of Corona diseases and COVID-19 from diseases genes and
chest X-ray images. For this purpose, associated genes for all types of
Coronavirus and Pneumonia for Homo sapiens are collected from NCBI
Gene databases. As COVID-19 is a new term, there are only a few genes
available online. So, Gene-based diagnostic study focuses on three types
of Coronavirus diseases such as- Middle East respiratory syndrome-
related coronavirus, Severe acute respiratory syndrome coronavirus 2
and human coronavirus HKU1. The National Center for Biotechnology
Information (NCBI) [27,28] is a branch of the National Institutes of
Health (NIH) and is part of the United States National Library of Med-
icine (NLM) containing a series of databases. The NCBI Gene database is
a freely accessible online database with a huge collection of known and
predicted genes.

The online ‘COVID-19 Radiography Dataset’ [29] by Tawsifur Rah-
man, which is the ‘Winner of COVID-19 Dataset Award by Kaggle’ is
used here for the CNN-based CAD method. This dataset collects
COVID-19 images from Cohen JP [30] and different publications and
Pneumonia and Normal images from the Kaggle pneumonia dataset of
Paul M [31]. The dataset consists of 1200 COVID-19 images, 1341
Normal images and 1345 viral Pneumonia images. Fig. 2 summarizes the
X-ray dataset.

3.2. Data preparation

Data preprocessing is one of the vital steps to enhance the quality of

Gene Preprocessing & Mining

ENTREZID  Class
177 Pneumonia
185 Pneumonia

EBTREZID  Class
100 CoronaVirus
Gene Collection 290 CoronaVirus
Tte 476 CoronaVirus
ﬁ:‘ 538 CoronaVirus

23 Preumonia
355 Preumonia

684 CoronaVirus 472 Preumonia

Gene-based Screening Method

X-ray Image Collection

Preprocessed Image

Deep CNN-based Screening Method
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data and transform the raw data into a more suitable and efficient
format. Collected Coronavirus and Pneumonia genes are rearranged
according to their weight values as high-weighted genes are on top and
sorted accordingly. Genes are collected in a summary format containing
extensive information. The Genes are mined by removing irrelevant
information and a dataframe combining genes from both classes with
only gene id and disease class column is created. There are 108 genes
found for Coronavirus and 252 for Pneumonia cases. Among the
collected genes, 24 are common for both diseases. These common 24
genes are removed from both of the disease genes, resulting in 84 genes
for Corona Disease and 228 genes for Pneumonia. As there exist more
Pneumonia genes than Corona Disease genes, ML models can be slightly
biased towards Pneumonia. So, to avoid the model’s biasness, 84 top-
weighted genes for both of the diseases are used for further process-
ing. Table 1 shows the number of genes before and after preprocessing
and gene mining.

The X-ray images are rescaled to 0-1 ranges to make the training
faster. Different image preprocessing and enhancement techniques such
as- Histogram Equalization (HE), Adaptive Histogram Equalization
(AHE), Gabor Filtering (GF), Histograms of Oriented Gradients (HOGs)
and Local Binary Patterns (LBPs) are applied to the collected X-ray im-
ages. Among the techniques, AHE as an image contrast enhancement
technique performs well. The images are then resized to 224 x 224 as
the proposed CNN model accepts images of size 224 x 224 only.

3.3. Gene functional similarity matrix calculation

Gene functional similarity covers a wide area of biological and bio-
informatics research including gene clustering, disease gene prediction,
protein-protein interaction etc. Functional similarity between and
among genes is the quantitative measure of the semantic relationships of
their terms. It conveys more information about gene functions and se-
mantic relationships and can be stored as a matrix. Gene expression
profiles, Protein-Protein Interactions (PPI) networks or Gene Ontology
(GO) can be used to identify the functional similarity of genes and their
products. This study determines functional similarities based on GO
annotations. Gene Ontology (GO) is the most frequently used vocabulary
for representing gene functions with a well-defined structure and
manual curation [32]. The Gene Ontology (GO) terms are structured as a
hierarchical Directed Acyclic Graph (DAG). Biological Process (BP),
Molecular Function (MF), and Cellular Component (CC) are the three

Gene Semantic Similarity Measures

Training & Classification
Training and Testing of
Machine Learning Models on
Gene Similarity Matrix.
Trairing and Testing Using
Ensembled Models.
Genebased method achieved

92.86% Accuracy.

Classification

COVID-19 vs
Preumonia
96.80%

Train Test Split of X-ray Images and
Train Image Augmentation Using

»  RotationRange of 15
> Nearest Fill Mcde

Training & Classification
Trairing Deep CNN Model

Fig. 1. Schematic representation of corona detection methods.
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(3886 Images)
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1341 1345

COVID-19

y
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Fig. 2. X-ray dataset for COVID-19 detection.

Table 1
Gene dataset summary.
Disease No. of Common Genes after No. of Genes after
Class Collected Genes ignoring the Preprocessing and
Genes Common Mining
Genes
Corona 108 24 84 84
Disease
Pneumonia 252 228 84

orthogonal ontologies provided by GO. All of the five semantic similarity
measures Resnik [33], Jiang [34], Lin [35], Schlicker [36] and Wang
[37]1 methods are employed here with Maximum (max) and Best Match
Average Strategy (BMA) combining strategy as a quantitative measure of
gene functional similarities. The Resnik, Jiang, Lin and Schlicker mea-
sures are information content (IC) based methods and Wang is a
Graph-based method. IC-based methods compute a semantic score be-
tween two GO terms based on the IC of their Most Informative Common
Ancestor (MICA) term [11] and can be defined as- IC(t) = -log(p(t));
where, p(t) be the probability of usage of GO term t being used in a given
GO corpus. Whereas, the Wang semantic similarity measure uses hier-
archical DAG structure to estimate semantic similarity between genes.
The above semantic similarity measures can be represented as [38]-
Resnik method

The Resnik method can be defined as: simResnik (11, 12) =IC (MICA)
@
Lin method

2IC (MICA)
IC(11) + 1C(12)
()

The Lin method can be defined as: simLin (11, 12) =

Rel method.
The Relevance method, which was proposed by Schlicker, combines
Resnik’s and Lin’s method and can be defined as:

2IC (MICA) (1 — p (MICA))

imR 1, 2)=
simRel (t1, 12) iC) 1 1C(2) (©)]
Jiang method.
The Jiang and Conrath’s method can be defined as:
simJiang (11, 2) =1 —min (1, IC(t1 )+ IC(£2) —2IC (MICA)) “4)

Wang method.
Given two GO terms A and B, the semantic similarity between these

two terms can be defined as:

Y re (TANTB)SA(r) + SB(1)

simWang (A, B) = SV(A) + SV(B) ©

where SA(t) is the S-value of GO term t related to term A and SB(t) is the
S-value of GO term t related to term B. SV(A) and SV(B) are the semantic
values of GO terms A and B.

Assume that g1 and g2 are two distinct genes annotated by the GO
terms sets GO1 = {go11, go12:--golm} and GO2 = {go21, go22---go2n}.
To find the semantic similarity score of two genes gl and g2, semantic
similarity scores of their GO terms sets GO1 and GO2 are used. There are
four methods-max, avg, rcmax, and BMA to combine semantic similarity
scores of multiple GO terms implemented by GOSemSim package of R.
The max semantic similarity combining technique calculates the
maximum semantic similarity score over all possible pairs of GO terms
{gol1, gol2---golm} and {go21, go22---go2n} between these two GO
term sets, GO1 and GO2. For example, it finds the semantic similarity
between all pairs (goll, go21), (gol1, go22), (gol1, ... go2n), (gol2,
g021), (gol2, go22), (gol2, ... go2n), ... ... (golm, ... .... go2n) and then
selects the max value as the semantic similarity value between gene gl
and g2 as like the equation below-

(6)

The BMA method also finds the pair wise semantic similarity values
and computes the average of all maximum similarities on each row and
column and is defined as:

SiMma (81, 82) =max;<i<m1<j<nsim(goli, go2j)

izl{rﬁl;lgy;stm(golz, g02j) + Z[:llrggnstm(golt, 802j)

simpya (g1, g2) = e

@)
3.4. Machine learning models construction and evaluation

Supervised machine learning methods are capable of training hidden
gene-relationships from a given dataset and then using that learned
knowledge to discriminate disease genes from non-disease genes. The
gene functional similarity returns 169 x 172 matrices for all of the Res,
Lin, Rel, Jiang and Wang measures. For representing biological con-
cepts, more than 40 thousand GO terms are used. But, still GO semantic
similarity returns null values for some genes that lack GO information.
As semantic similarity only returns a value between 0 and 1, the null
values need to be removed instead of replacing with 0. For Res, Lin, Rel
and Jiang measures, 32 genes and for Wang measure 31 genes found
with null values resulting in 137 x 140 and 138 x 141 matrixes
respectively. Thus, the remaining final genes are 138 for the Wang
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measure with 140 feature columns and 1 label column and 137 genes
with 139 features and 1 label column for all of the other measures. The
gene dataset is then split into training and testing datasets using 80% of
data as training data and 20% as test data. The following Table 2 shows
the total number of available genes for each measure.

The machine learning algorithms-eXtreme Gradient Boosting
(xgbLinear), Naive Bayes (NB), Regularized Random Forest (RRF),
Random Forest Rule-Based Model (rfRules), Random Ferns (rFerns),
C5.0 (C5) and Multi-Layer Perceptron (MLP) are then trained on the
training gene dataset with five-fold cross-validation and tested on the
remaining 20% test dataset. Among the models, xgbLinear and RRF
perform best on the Wang measures with max combining technique and
achieve 82.14% test accuracy. Contrarily, MLP gives the best perfor-
mance on the Rel measure with BMA combining technique of about
89.29%.

xgbLinear is a method of eXtreme Gradient Boosting that can be
used for both classification and regression using the xgboost library. To
find the best tree model, it uses a specific Gradient Boosting method
using more accurate and successful approximations.

NB is a supervised classification algorithm based on the Bayes’
Theorem. It predicts the best class in a way like the Bayes Theorem finds
the best hypothesis from given prior knowledge.

RRF implements a regularized random forest algorithm that can be
used for both classification and regression. It applies the tree regulari-
zation framework to RF and can select a compact feature subset [39] of
relevant and non-redundant features.

rfRules acts as both a classification and regression model. It gener-
ates a series of “if-then” rules to effectively classify classes.

rFerns is a machine learning classification algorithm that extends
the Naive Bayes algorithm. It can be considered as a constrained deci-
sion tree where at each level of the tree the same binary test is
performed.

C5.0 is a classification algorithm that is well-known for producing
decision trees. It can be used for both small and large datasets and its
decision trees are relatively easy to understand and deploy.

MLP is a supervised classification and regression algorithm which is
widely used in image and speech recognition. It is a multilayer feed-
forward artificial neural network generating a set of outputs from a set of
inputs. MLP uses backpropagation.

To obtain more accurate classification results, the machine learning
models are ensembled using the stacking ensembled technique. Stacking
ensemble is a technique that works with two levels of models. The base
level or bottom level ensembles all of the base models using the original
dataset as input and the meta level or top level contains a model that
uses the base level’s outputs as inputs. In this research, xgbLinear, NB,
RRF, rfRules, rFerns, C5 models are used as base models and MLP is used
as a top-level model. The top-level model makes a prediction on the
diseases, whether it is corona disease or pneumonia. Wang measures
with the max combining technique were chosen for the ensemble
because they produced the best classification result for all of the seven

Table 2
Available gene data.

Semantic Similarity Total Genes 80% Training Gene 20% Test Gene

Measures = Data = Data =
Corona Genes + Pneumonia Genes

Res 137 =54 + 109 = 44 + 65 28=10+18
83

Lin 137 =54 + 109 = 44 + 65 28 =10+18
83

Rel 137 =54 + 109 = 44 + 65 28=10+18
83

Jiang 137 =54 + 109 = 44 + 65 28 =10 +18
83

Wang 138 = 54 + 110 = 44 + 66 28 =11+17
83
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classifiers. Fig. 3 displays the schematic representation of the stacking
ensemble model.

3.5. Image augmentation

Two binary classification tasks- COVID-19 vs Normal and COVID-19
vs Pneumonia are performed in the CNN-based CAD method. After
preprocessing of chest X-ray images, they are labeled as 0 and 1 where 1
represents COVID-19 image and O represents the other class image-
Normal or Pneumonia for both of the classification tasks. The images are
then divided into training and testing datasets using a 7:3 ratio. Thus,
there are 836 COVID-19, 942 Normal training images and 364 COVID-
19, 399 Normal test images for COVID-19 vs Normal classification.
And for COVID-19 vs Pneumonia image classification, there are 836
COVID-19 and 945 Pneumonia training images and 364 COVID-19, 400
Pneumonia test images. Training a deep CNN model with a limited
number of data may cause the model to overfit. Thus, the model may
perform well on training data but fails to generalize. So, to artificially
increase the amount of training data and overcome the overfitting
problem, augmentation is applied to the training dataset only. The
training images are augmented using a rotation range of 15° and the
nearest fill_mode.

3.6. CNN model construction

This research uses the CheXNet CNN model, which is the fine-tuned
and transfer learned CheXNet model that was previously used by
Ref. [10] & [45] for Pneumonia Detection. The original CheXNet model
was proposed by the researchers from Stanford University [40] is a
121-layer DenseNet architecture. CheXNet was at first pre-trained on the
ImageNet dataset and then trained on the CXR dataset of [41]. In our
previous Pneumonia detection research, the fine-tuned CheXNet model
was trained on [26] dataset. Here, the transfer learned CheXNet model is
used with Softmax activation function at the final layer for binary
classification and ReLU activation function for all other activation
layers. Fig. 4(a) represents the CheXNet model architecture and Fig. 4(b)
shows the proposed CheXNet model architecture with pre-trained
weights and fine tuning. The model uses Adam optimizer and binary
cross entropy loss function and is trained end-to-end with a mini batch
size of 32. During fine-tuning, the 1% to 409" layers kept freezing while
the remaining 410™ to 437t layers are trained. Before flattening, Max
Pooling with 20% dropout is used for COVID-19 vs Normal classifier and
Global Average Pooling with 20% dropout is used for COVID-19 vs
Pneumonia classifier. The fully connected dense layers consist of 512,
128 and 64 neurons with a 10% dropout rate before the final layer. After
training the CNN model with a training dataset several times with 40
epochs, the testing dataset is tested on the model and a prediction is
made.

4. Results and discussion

This section provides the result and discusses the output of each step
of the proposed methods and materials of the current research project.
The results are described in the following subsections.

4.1. Data collection and preparation

The collected gene data from NCBI Gene repositories are two sum-
mary type text files, one for Corona disease and the other for Pneumonia.
There are 24 common genes found between Corona and Pneumonia
diseases. They are removed from both files and 84 top-weighted genes
from both classes are selected to maintain a balanced, unbiased dataset.
After preprocessing and mining genes from the collected gene data files,
a dataframe is created containing ENTREZID and Class column. The
head of the dataframe is shown in Fig. 5 below-

All processes in the Gene-based screening method are carried out in
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Fig. 3. Stacking ensemble model.

Normal COVID-19

(a)

Transition Blocks
(Conv + Pooling)
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Flatten + Fully Connected Layers

1x1x512 1x1x128 Ix1x64
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Fig. 4. (). Architectural design of CheXNet model.
(b). Proposed fine-tuned CheXNet model with pre-trained weights.

the R programming language in windows 10, 64-bit environment. The remaining 30% of images are used for testing the CNN model.
In the CNN-based CAD method, collected X-ray images are pre-
processed using the AHE contrast enhancement technique. The
enhanced COVID-19, Normal and Pneumonia images are shown in 4.2. Gene functional semantic similarity measures calculation
Fig. 6.
g70% of images are now used as training images and augmentation is Semantic Similarity can be used to measure the functional closeness
applied on them to artificially increase the number of training images. of Gene Ontology (GO). The R packages org.Hs.eg.db [42] and
GOSemSim [43] are used for the gene semantic similarity matrix
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EBTREZID Class
1 100 CoronavVirus
2 133 Pneumonia
3 177 Pneumonia
4 185 Pneumonia
S 213 Pneumonia
o 290 CoronavVirus

Fig. 5. Head of the gene input dataframe.

estimation. As COVID-19 is a new term, some of the gene information of
Corona disease and very few of Pneumonia lack GO information which
returns null semantic similarity scores. Semantic similarity only returns
a value between 0 and 1, thus null values need to be removed. Then the
training and testing datasets are constructed using an 8:2 ratio. Among
the semantic similarity measure methods (Resnik, Lin, Rel, Jiang and
Wang), the Wang method achieves the best results with the max
combining technique.

4.3. Classification using gene-based screening

To determine the hidden functional similarities between Corona
disease genes and Pneumonia genes, xgbLinear, NB, RRF, rfRules,
rFerns, C5 and MLP machine learning classifiers are trained and tested
on Corona and Pneumonia gene functional similarities. The performance
of any machine learning algorithm depends highly on the amount of
data available. Huge data can make the algorithm more accurate than
limited data. This is the main shortcoming of our study. Because of the
unavailability of a large amount of gene data for coronavirus and
updated GO information, the Machine Learning (ML) model accuracy
got negatively affected. The above seven ML models are trained using a
5-fold cross-validation technique on each of the five-similarity matrices
of training dataset with two combining techniques resulting in a total of
70 classifiers and make a prediction on the test dataset. Sensitivity and
Specificity are also calculated for each of the ML models. Tables 3 and 4
show the performance of various machine learning classifiers built over
functional similarities scores using the max and BMA combining tech-
niques, respectively.

Tables 3 and 4 show that among the xgbLinear, NB, RRF, rfRules,
rFerns, C5 and MLP models with Resnik, Lin, Rel, Jiang and Wang
measures and max and BMA technique, MLP with Rel provides the best
classification results of 89.29% for the BMA technique. In comparison,
the other models performed poorly on the Rel measure. Moreover, all of
the models perform well on the Wang measure for max technique.
Hence, the Wang measure with max combining technique was selected
for further processing. Fig. 7 represents the confusion matrix for all of
the seven ML models for Wang measure with max technique.

Some other ML models, i.e., random forest, cforest, gamboost, bstsm,
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bstTree, xgbTree, SVM, C5.0Cost were also applied to the gene func-
tional similarity measures. But these models were ignored because of
their lower performances during ensemble. To achieve more accurate
performance from the ML models, the models (xgbLinear, NB, RRF,
rfRules, rFerns, C5 and MLP) are ensembled using the stacking ensemble
technique. MLP acts as a top layer model on the stack and predicts based
on all the other base models’ responses. The stacking ensemble method
improved the classification accuracy from 82.14% to 92.86%.

Fig. 8 shows the confusion matrix of the ensembled model with
sensitivity and specificity score. The model achieves 90.91% sensitivity
and 94.12% specificity.

Authors of [11] obtained 80% AUC values on the Gene-based
screening method to identify ASD disease candidate genes. As this
technique was not yet applied by other researchers for the Corona
detection task, the proposed model could be an ideal supporting model
for Corona Disease and Pneumonia Detection with approximately 93%
classification accuracy.

4.4. Performances of CNN model

All tasks for the CNN-based CAD method, including training and

Table 3

Average accuracy of xgbLinear, NB, RRF, rfRules, rFerns, C5 and MLP models on
identifying Corona disease on Resnik, Lin, Rel, Jiang and Wang measures using
max technique.

ML Models Average Accuracy from
Resnik Rel Lin Jiang Wang
xgbLinear 64.29% 64.29% 53.57% 46.43% 82.14%
NB 64.29% 60.71% 57.14% 57.14% 78.57%
RRF 64.29% 53.57% 53.57% 53.57% 82.14%
rfRules 57.14% 57.14% 53.57% 53.57% 71.43%
rFerns 60.71% 60.71% 64.29% 64.29% 75%
Cc5 53.57% 64.29% 71.43% 75% 75%
MLP 60.71% 64.29% 60.71% 57.14% 75%
Table 4

Average accuracy of xgbLinear, NB, RRF, rfRules, rFerns, C5 and MLP models on
identifying Corona disease on Resnik, Lin, Rel, Jiang and Wang measures using
BMA technique.

ML Models Average Accuracy from
Resnik Rel Lin Jiang Wang

xgbLinear 71.43% 57.14% 64.29% 64.29% 64.29%
NB 64.29% 53.57% 53.57% 64.29% 75%
RRF 67.86% 57.14% 53.57% 57.14% 67.86%
rfRules 60.71% 53.57% 57.14% 67.86% 71.43%
rFerns 50% 53.57% 53.57% 64.29% 71.43%
C5 71.43% 60.71% 67.86% 67.86% 71.43%
MLP 78.57% 89.29% 71.43% 75% 75%

Fig. 6. Enhanced COVID-19, normal, pneumonia image.
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Fig. 7. Confusion matrix of (a) xgbLinear (b) NB (c) RRF (d) rfRules (e) rFerns (f) C5 and (g) MLP models on the Wang measure with max combining technique.
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Fig. 8. Confusion matrix of the stacked ensembled model.

testing were completed in python on a mac operating system with
Google colab gpu and keras framework (using TensorFlow backend).
The augmented training chest X-ray image dataset with a fixed image
input size of 224 x 224 is fed to the pre-trained CheXNet model for
training. The model is trained several times for 40 epochs and then
tested on the test dataset. For the COVID-19 vs Normal image classifi-
cation, the model achieves test accuracy of 99.87% and for the COVID-
19 vs Pneumonia classification, the obtained accuracy is 99.48%. The
following Fig. 9 and Fig. 10 below represent the confusion matrix with
performance parameters- Accuracy, Precision, Recall, Sensitivity and
F1-score for both of the classification tasks.

Learning curves are used to demonstrate the model performances
during training over each epoch. The accuracy and loss learning curves
for both of the proposed classifiers (COVID-19 vs Normal and COVID-19
vs Pneumonia) during different epochs are reported in Fig. 11 and
Fig. 12.
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Fig. 9. Confusion matrix with performance parameters for COVID-19 vs Normal classification.
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[ © 400]]

TEST METRICS
Accuracy: 99.48%
Precision: 99.01%
Recall: 100.00%

Specifity: 98.90%
Fl—-score: 99.50%

Fig. 10. Confusion matrix with performance parameters for COVID-19 vs Pneumonia classification.

4.5. Comparison with different models

This section is designed to compare the proposed CNN-based COVID-
19 detection model with the existing models. The transfer learned, fine-
tuned CheXNet model is used in this research as it shows better per-
formances in classifying both COVID-19 vs Normal and COVID-19 vs
Pneumonia images.

Six different pre-trained models are trained, validated and tested on
the same COVID-19 Radiography Dataset [29] on the same mac oper-
ating system using Google colab gpu with keras framework (using
TensorFlow backend) in python. The models VGG-16, VGG-19,
Resnet50, EfficientNet, MobileNetV2 models are pre-trained on Image-
Net dataset and the CheXNet model pre-trained on CXR dataset [41] are
used here for comparison. Tables 5 and 6 depict the experimental results
of these six models with the proposed CheXNet (pre-trained on pneu-
monia dataset) model for COVID-19 vs Normal image classification and

Training and Validation accuracy

100

0.98

096

Accuracy

094

= Taining accuracy
092 — validation accuracy

T T T T T T T T T
0 5 10 15 20 25 30 35 40
Epochs

COVID-19 vs Pneumonia image classification respectively.

From Tables 5 and 6, it is clear that the proposed model provides
better performances than the existing models on the same dataset of
Tawsifur [29]. Tawsifur et al. also proposed a model classifying Normal
and COVID-19 images having an accuracy of 99.7% [44]. Diagnosis of
COVID-19 can be either from CT scan images or from chest X-ray images.
Comparison results of the proposed model with other binary and
multi-class classification models on the different datasets also prove that
the proposed model outperforms other state-of-the-art models for the
diagnosis of COVID-19. Table 7 summarizes the comparative perfor-
mances of different models on different datasets to our proposed model
performance.

The above comparison stated that the proposed binary COVID-19
diagnosis model performs superior to the compared binary and multi-
class model. Thus, it could become a great supporting tool for fighting
the COVID-19 pandemic.

Training and Validation loss

025 = Taining loss
= validation loss

020

015

Loss

010

0.05

0.00

0 5 10 15 20 5 30 33 40
Epochs

Fig. 11. Accuracy and loss curve for COVID-19 vs Normal classification model.
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Fig. 12. Accuracy and loss curve for COVID-19 vs Pneumonia classification model.

Table 5

Experimental results of different models on the same dataset for COVID-19 vs Normal classification.

CNN Models Accuracy Precision Recall Specificity F1-score Confusion Matrix
CheXNet 99.21% 98.52% 100% 98.35% 99.25% 358 6
0399
Resnet50 99.34% 98.76% 100% 98.63% 99.38% 3595
0399
VGG-19 99.61% 99.25% 100% 99.18% 99.63% 361 3
0399
MobileNetV2 99.61% 99.25% 100% 99.17% 99.62% 3613
0399
VGG-16 99.74% 99.75% 99.74% 99.73% 99.74% 3631
1398
EfficientNet 99.74% 99.50% 100% 99.45% 99.75% 362 2
0399
Proposed Model 99.87% 99.75% 100% 99.73% 99.87% 3631
0399
Table 6
Experimental results of different models on the same dataset for COVID-19 vs Pneumonia classification.
CNN Models Accuracy Precision Recall Specificity F1-score Confusion Matrix
CheXNet 99.08% 98.76% 99.50% 98.63% 99.13% 3595
2398
Resnet50 98.43% 97.32% 99.75% 96.98% 98.52% 35311
1399
VGG-19 99.35% 99.50% 99.25% 99.45% 99.37% 362 2
3397
MobileNetV2 99.08% 98.28% 100% 98.08% 99.13% 3577
0 400
VGG-16 99.35% 99.26% 99.50% 99.17% 99.38% 3593
2400
EfficientNet 99.35% 98.77% 100% 98.63% 99.38% 3595
0 400
Proposed Model 99.48% 99.01% 100% 98.90% 99.50% 3631
0399

5. Conclusion

As Pneumonia is a major symptom of COVID-19, it is very difficult to
differentiate COVID-19 or Corona diseases from Pneumonia. In this
study, two cost-effective, rapid, and automatic Corona disease diag-
nostic methods were demonstrated. Gene Ontology (GO) is the most
frequently used term by researchers to calculate gene functional simi-
larity. Genes with higher functional similarity may belong to the same
hierarchical path of GO with higher semantic terms. The identification
of disease from associated genes through GO-based gene similarity
measures can open a new era in complex disease diagnosis. ML classi-
fiers with a large gene dataset may help to obtain improved accuracy. In
the gene-based detection method, ML classifiers are applied in identi-
fying and predicting the Corona disease from gene functional similarities
calculated using different semantic similarity measures. Stacking en-
sembles of different machine learning models improve performance

10

accuracy. Chest X-ray imagery is readily available, and the cost-effective
images conveys potential information to assist radiologists in diagnosis
disease. The proposed CNN-based CAD method provides a simple model
that demonstrates superior results in diagnosing COVID-19 from X-ray
imagery. In the future, the authors will try to overcome the data shortage
limitation and optimize the model to classify more diseases with an
effective result.
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Table 7
Comparison of different models with proposed model.
CNN Models Image Classification Type Accuracy
Type
Hemdan et al. [15] X-ray COVID-19 vs Normal 90%
Zheng et al. [16] CT COVID-19 vs Normal 90.1%
Ying et al. [20] CT COVID-19 vs Normal 94%
Sarhan A.M et al. X-ray COVID-19 vs Normal 94.5%
[17]
Narin et al. [7] X-ray COVID-19 vs Normal 98%
Ozturk et al. [18] X-ray COVID-19 vs Normal 98.08%
Tawsifur R [44]. X-ray COVID-19 vs Normal 99.7%
Wang et al. [19] CT COVID-19 vs Pneumonia 82.9%
Ying et al. [20] CT COVID-19 vs Pneumonia 86%
Sethy and Behera X-ray COVID-19 vs Pneumonia 95.38%
[21]
Xu et al. [22] CT COVID-19 vs IAVP vs Normal 86.7%
Mangal et al. [23] X-ray COVID-19 vs Normal vs 90.5%
Pneumonia
Wang and Wong X-ray COVID-19 vs Non-COVID-19 vs 93.3%
[5] Normal
Asif et al. [24] X-ray COVID-19 vs Normal vs 96%
Pneumonia
Kumar R [25]. X-ray COVID-19 vs Normal vs 97.7%
Pneumonia
Tawsifur R [44]. X-ray COVID-19 vs Normal vs 97.9%
Pneumonia
Proposed Model X-ray COVID-19 vs Pneumonia 99.48%
COVID-19 vs Normal 99.87%
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