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Abstract

Bayesian networks can be used to identify possible causal relationships between variables

based on their conditional dependencies and independencies, which can be particularly

useful in complex biological scenarios with many measured variables. Here we propose two

improvements to an existing method for Bayesian network analysis, designed to increase

the power to detect potential causal relationships between variables (including potentially a

mixture of both discrete and continuous variables). Our first improvement relates to the

treatment of missing data. When there is missing data, the standard approach is to remove

every individual with any missing data before performing analysis. This can be wasteful and

undesirable when there are many individuals with missing data, perhaps with only one or a

few variables missing. This motivates the use of imputation. We present a new imputation

method that uses a version of nearest neighbour imputation, whereby missing data from

one individual is replaced with data from another individual, their nearest neighbour. For

each individual with missing data, the subsets of variables to be used to select the nearest

neighbour are chosen by sampling without replacement the complete data and estimating a

best fit Bayesian network. We show that this approach leads to marked improvements in the

recall and precision of directed edges in the final network identified, and we illustrate the

approach through application to data from a recent study investigating the causal relation-

ship between methylation and gene expression in early inflammatory arthritis patients. We

also describe a second improvement in the form of a pseudo-Bayesian approach for

upweighting certain network edges, which can be useful when there is prior evidence con-

cerning their directions.
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Author summary

Data analysis using Bayesian networks can help identify possible causal relationships

between measured biological variables. Here we propose two improvements to an existing

method for Bayesian network analysis. Our first improvement relates to the treatment of

missing data. When there is missing data, the standard approach is to remove every indi-

vidual with any missing data before performing analysis, even if only one or a few vari-

ables are missing. This is undesirable as it can reduce the ability of the approach to infer

correct relationships. We propose a new method to instead fill in (impute) the missing

data prior to analysis. We show through computer simulations that our method improves

the reliability of the results obtained, and we illustrate the proposed approach by applying

it to data from a recent study in early inflammatory arthritis. We also describe a second

improvement involving the upweighting of certain network edges, which can be useful

when there is prior evidence concerning their directions.

Introduction

Genome-wide association studies (GWAS) have had considerable success in detecting genetic

variants (typically single nucleotide polymorphisms, SNPs) associated with phenotypic out-

comes. There is now considerable interest in using integrative analysis with additional data

types (such as measures of gene expression, DNA methylation or protein levels) to better

understand the biological mechanisms underpinning these results. One possible analysis

approach is to use Bayesian Networks (BNs), whereby potential causal relationships between

many different genetic, biological and phenotypic variables may be explored, taking advantage

of the fact that genetic variables can act as instruments to help orient the directions of relation-

ships between other variables. This approach has been shown to perform competitively with

other causal inference methods [1] and in some cases to even have advantages over competing

approaches such as Mendelian Randomisation (MR) and its extensions [2].

BNs were first formalized and developed by Pearl [3, 4] in relation to encoding expert

knowledge in the context of artificial intelligence (AI), and they have now become widely

applied in the social and natural sciences. A BN comprises a graphical model known as a

directed acyclic graph (DAG) and an accompanying joint probability which describes the con-

ditional dependencies of the variables [5]. Variables are represented by nodes and their condi-

tional relationships by directed edges (arrows). The terms “node” and “variable” are used

interchangeably throughout this manuscript. The joint probability of the DAG is decomposed

as a product of local probabilities where the local probability of each “child” variable is deter-

mined by its conditional dependencies on the “parental” variables immediately directed

towards it [6]. The local probability distributions can be defined in many ways, but a popular

approach, which we use throughout, is for discrete variables to take a multinomial distribution

and continuous variables to take a multivariate normal distribution.

In recent years it has become popular [7, 8] to emphasize that, strictly speaking, BNs are

defined purely in terms of their encoding of conditional independence relationships between

variables, without any implication that these should represent causal relationships. Effectively,

a Bayesian network can be considered to be “nothing more than a compact representation of a

huge probability table” [8]. However, it is not clear that this is how they were originally envis-

aged. Pearl (1985) [3] stated “Bayes Networks are directed acyclic graphs in which the nodes

represent propositions (or variables), the arcs signify the existence of direct causal influences
between the linked propositions”, while Pearl (1988) [4] stated “a Bayesian network is a

PLOS GENETICS A Bayesian network approach incorporating imputation of missing data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009811 September 29, 2021 2 / 28

simulations and the BN and CIT analysis of the

processed DNA methylation and gene expression

data from Clark et al. (2020) may be found at

https://github.com/drhowey/BayesNetty/blob/main/

docs/scripts.zip. The original DNA methylation data

from CD4 and B cells used in this study, together

with paired transcriptome data, are available in the

GeneExpression Omnibus database (accession no.

GSE137634; http://www.ncbi.nlm.nih.gov/geo).

Annotated scripts used for the processing and CIT

analysis of these data as performed by Clark et al.

(2020), together with the input file used for the

current work, may be found at https://github.com/

aclark5/Lymphocyte_meQTL.

Funding: This research was funded in whole, or in

part, by the Wellcome Trust [Grant numbers

102858/Z/13/Z and 219424/Z/19/Z] (RH, HJC). For

the purpose of open access, the author has applied

a CC BY public copyright licence to any Author

Accepted Manuscript version arising from this

submission. This work was also supported by a

grant from JGW Patterson Foundation (https://

jgwpattersonfoundation.co.uk/) 30015.088.036/P/

IXS (AGP). The funders had no role in study

design, data collection, analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pgen.1009811
https://github.com/drhowey/BayesNetty/blob/main/docs/scripts.zip
https://github.com/drhowey/BayesNetty/blob/main/docs/scripts.zip
http://www.ncbi.nlm.nih.gov/geo
https://github.com/aclark5/Lymphocyte_meQTL
https://github.com/aclark5/Lymphocyte_meQTL
https://jgwpattersonfoundation.co.uk/
https://jgwpattersonfoundation.co.uk/


directed acyclic graph whose arrows represent causal influences or class-property relation-

ships” and “Bayesian networks are DAGs in which the nodes represent variables, the arcs sig-

nify the existence of direct causal influences between the linked variables” (our emphasis

added). As pointed out by Heckerman et al. [9], “in practice, Bayesian networks are typically

constructed using notions of cause and effect” and “learning a network structure is useful,

because we can sometimes use structure to infer causal relationships in a domain, and conse-

quently predict the effects of interventions”. Di Zio et al. [10] state, in relation to using BNs for

imputation, “The direction of the edges is usually interpreted as a causal relationship between

the two variables”, although they go on to point out that “this interpretation sometimes is

quite severe” and “is not necessary for our purposes”.

Effectively, the difference between an acausal BN and a causal BN is in the meaning and

interpretation ascribed to it: in an acausal BN, the directed arcs or arrows between variables

represent purely conditional independence relationships, while in a causal BN they represent

direct functional relationships among the corresponding variables [11], such that an interven-

tion on (or manipulation of) the value of a parent variable will result in a corresponding

change in the probability distribution of a child variable [5]. Heckerman [12] uses the termi-

nology “responsiveness” to encapsulate this idea of the probability distribution for one variable

being determined by (or responsive to changes in) the value of another variable. We note that

this definition of causality (in terms of the probability distribution of one variable being deter-

mined by, or responsive to, the value of another) is a population-level concept that differs from

the concept of individual-level chains of causation [8], which can be potentially identified

using methods that operate on more general causal diagrams, such as structural causal models

[11, 13].

As pointed out by Pearl and Mackenzie [8], all the probabilistic properties of BNs remain

valid in causal diagrams, and Pearl (2009) [11] notes that “Probabilistic relationships, such as

marginal and conditional independencies, may be helpful in hypothesizing initial causal struc-

tures from uncontrolled observations”. To the extent that a causal diagram implies a set of

probabilistic relationships, and a BN encodes a set of probabilistic relationships, we consider

that the search for BNs that are well-supported by observed data can also be considered as a

search for potential causal relationships that are well supported by the observed data. Spirtes

[5] points out that “In order to use samples from probability densities to make causal infer-

ences, some assumptions relating causal relations to probability densities need to be made”.

The reasonableness of (and/or justification for) such assumptions is likely to be domain spe-

cific, but the three assumptions most typically made [5, 11] are 1) the causal Markov assump-

tion, 2) the causal faithfulness assumption, and 3) the causal sufficiency assumption. The

causal Markov assumption states that a variable is independent of all other variables, except for

its effect or descendent (“child”/“grandchild” etc.) variables, conditional on its direct causal

(or “parent”) variables [5, 6, 14]. The causal faithfulness assumption (also known as “stability”

[11]) states that the network structure and the causal Markov relations assumed represent all

(and the only existing) conditional independence relationships among variables [5, 15]. The

causal sufficiency assumption (which actually follows from the first two assumptions [7]) cor-

responds to asserting there are no external variables which are causes of two or more variables

within the model, implying that all causes of the variables are included in the data and there

are no unobserved confounding variables [5, 15, 16].

A variety of different algorithms have been proposed to search for causal models and/or

BNs that are well-supported by a given set of data. These include constraint-based methods

such as the PC algorithm [17] and the Fast Causal Inference (FCI) algorithm [18], and score-

based methods, which can include both Bayesian [9] and frequentist approaches. (Note that

the term “Bayesian” within BNs does not imply the use of a Bayesian—as opposed to a
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frequentist—paradigm, but rather refers to the fact that certain calculations rely heavily on

Bayes’ theorem). Constraint-based methods generally start with a fully connected graph and

carry out a series of marginal and conditional independence tests to decide which edges to

remove. This approach can be considered non-parametric, as it focuses on testing conditional

independencies rather than requiring specification of a parametric likelihood. Score-based

methods require a likelihood and are thus parametric; the idea is to move around through net-

work space in order to determine the most plausible BN(s) (whose structure and parameter

values are most compatible with the observed data), i.e the BN(s) with the best score (highest

or lowest, depending on how the score function is defined), or the highest posterior probabil-

ity, out of all possible BNs. BNs that represent the same set of conditional independence rela-

tionships between the variables have the same score and cannot be distinguished from one

another; they are said to be observationally equivalent [11] and, in the absence of any other

information to choose between them, may be considered equally plausible.

One advantage of BNs is their ability to model large complex data sets in a flexible manner.

This is useful when modelling many causal relationships in “omics scale” biological data sets

[19], such as in studies of DNA methylation and gene expression [20] or metabolites [21].

However, this advantage does have a cost in terms of the large computational power required

to find the best fit network when there are many variables. As the number of variables

increases, the number of potential networks increases super-exponentially, and therefore it is

necessary to search through network space rather than evaluate every possibility. Also, to fit a

network it is necessary to have individual-level data rather than summary data, which is a dis-

advantage compared to some other causal inference methods such as MR.

A weakness of almost any statistical analysis is how missing data is handled, and for many

analyses this simply amounts to deleting any observations that have any variables with missing

data. This is the usual approach with BNs. Here we present a new data imputation method

designed to handle missing data in order to improve identification of the best fit network (or

networks) in the context of BNs. We note that this is a different goal from trying to obtain the

most accurate imputation of missing data; although one might hope that accurate imputation

of missing data would result in accurate identification of the best fit network, it is the latter

(accurate identification of the best fit network) rather than the former (accurate imputation of

missing data) that is our primary goal. This is a non-trivial task as the overall structure of the

data must be maintained so that false relationships are not induced between variables. We

present a fast, efficient, user-friendly implementation of our method with freely available open

source code (and working examples). Further speed-ups may be achieved by the use of parallel

computing. Our software package, BayesNetty [2, 22] uses the (frequentist) score-based algo-

rithm from the R package bnlearn [7] as a basis, which is then extended to encompass our

imputation approach. We also propose a novel addition that takes advantage of existing

knowledge about relationships between variables to define soft constraints, whereby the direc-

tions of certain edges are up- or down- weighted through the assignment of prior probabilities,

in a pseudo-Bayesian approach.

Although the primary envisaged aim of our software is for application to genetic and associ-

ated multi-omics data, in principle it may be applied to any suitable data types, and we include

demonstration of our imputation method to several non-genetic data sets. An advantage of

using genetic data in this type of analysis is the fact that genes are assigned at birth, and so can

act as “causal anchors”, whereby arrows (interpreted as causal relationships) should only be

directed outwards from genetic variables towards the non-genetic variables that they influence.

This constraint provides a practical way to choose between BNs that are observationally equiv-

alent; if an acausal BN is supposed to reflect the independencies implied by the corresponding

causal BN, then it makes sense to only consider BNs that obey the desired constraint. Our
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software package, BayesNetty, specifically enforces this constraint by only considering BNs

that have arrows coming out from (rather than going into) any variables that have been

labelled as genetic variables. In addition, it is possible within BayesNetty to “blacklist” certain

arrows such that edges between specified nodes are not allowed to exist, effectively constrain-

ing the direction that any arrow between these nodes can take.

Previous work has used BNs to impute missing values in data sets when the network is

known (or has been estimated) by using the resulting probability distribution for child nodes,

conditional on their parental nodes, to substitute in the expected values [10, 23]. Our imputa-

tion method operates very differently from these approaches; we use an estimated BN to select

individuals that are subsequently used to perform “nearest neighbour” imputation [24],

whereby the missing value of a variable in one (target) individual is substituted by the observed

value from another individual that is deemed sufficiently “similar” to the target individual.

Our method has some similarities with an approach proposed by Miyakoshi and Kato [25]

which uses the weighted contribution of k nearest neighbours (chosen based on an estimated

BN) to inform the imputation of a target individual. However, Miyakoshi and Kato focus pri-

marily on (a) assessing imputation accuracy and (b) using the resultant complete data set for

classification, whereas we propose using the resultant complete data set for carrying out fur-

ther BN analysis.

There also exist methods that aim to learn the structure of a BN while accounting for miss-

ing data [26–30] but, again, most only handle discrete data. As far as we are aware, ours is the

first method that can handle general mixed discrete/continuous data. Our main interest is in

continuous data for application to genetic and multi-omics data sets, which thus forms the

focus of the examples in this manuscript, but we do also consider discrete variables in our

applications to early inflammatory arthritis and to a couple of benchmark discrete BN data

sets.

Results

Computer simulations to explore the performance of our proposed

imputation approach

Imputation of small networks (3 or 5 variables respectively). We start by using com-

puter simulations (see S1 Text) to investigate the performance of our imputation algorithm

(along with other approaches) when applied to small, very simple networks. A larger network

will, in effect, be composed of many smaller sub-network structures, and so it is of interest ini-

tially to see how well our approach performs without the support of the extra information that

may be acquired from imputing variables elsewhere in a larger network.

Fig 1 shows the proportion of best fit networks that correctly identified the network struc-

ture used in the simulation model (or an observationally equivalent network) when there are

only three variables, one of which has 90% missing data. (See S1 Text for details of the simula-

tion models). Observationally equivalent networks, representing the same dependencies/inde-

pendencies between variables, cannot be distinguished and are all considered as “correct”. We

compare results from our two imputation approaches—our default algorithm (“Imputed”)

and the imputation with complete training data (“Imputed CT”) algorithm (see Methods)—

with those obtained (i) when there is no missing data (“Full”) (this could also be described as a

“complete case” scenario), (ii) when any observations with missing data are removed

(“Reduced”), (iii) when missing data is replaced by random values drawn from the same vari-

able (“Random”), (iv) when the missing values are imputed using the expectation-maximisa-

tion (EM) algorithm implemented in the bnlearn R software package [26], (v) using simple

mean imputation, (vi) using our default imputation approach but with all variables (rather
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Fig 1. Line graphs showing the proportion of simulation replicates in which BayesNetty (and alternative approaches) recovered the simulation network (or an

observationally equivalent network) for different data sets. The title of each plot shows the simulating model and the asterisk denotes which variable or variables are

missing in 1800 missing individuals from a total of 2000 individuals (only one variable is missing for each individual). The parameter β denotes the model strength that

was used to simulate the data. Full: the data consisted of the original simulation data with no missing values. Imputed: the data was imputed using our default algorithm.

Reduced: the data was reduced to the 200 individuals with no missing values. Imputed CT: the data was imputed with complete data training. EM: the data was imputed

with an expectation-maximisation algorithm in R. Random: missing data was replaced by random values drawn from the same variable. Mean: missing data was replaced

by the mean value of the same variable. All NN: the data was imputed using our default algorithm but with all variables used to inform the choice of nearest neighbour.

MICE: the data was imputed using the multivariate imputation by chained equations approach.

https://doi.org/10.1371/journal.pgen.1009811.g001
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than a selected set as used in our default and CT algorithms) used to inform the choice of near-

est neighbour (“All NN”), and (vii) using the multivariate imputation by chained equations

(MICE) approach [31] for imputing missing data.

Fig 1 illustrates that the Imputed CT algorithm is generally effective at correctly identifying

the network structure, showing either similar power or slightly outperforming the strategy of

using the reduced data set. The EM algorithm is also quite effective for simulation scenarios

(A), (C) and (D) but quite poor for simulation scenarios (B), (E) and (F). Replacing missing

data by random values drawn from the same variable does not perform well. Mean imputation

works well in scenarios (C)-(F) but very poorly in scenarios (A) and (B). The “All NN” and

MICE methods outperform the Imputed CT algorithm in scenarios (A) and (B) but do not

perform as well in scenarios (C), (D) and (F). The default imputation algorithm does not per-

form well when only one variable is missing, simulation scenarios (A)-(D), but performs better

when the missing data is spread between different variables as seen in simulation scenarios (E)

and (F); our default imputation method is really designed for larger networks ideally with

sparser missing data. In larger networks, when missing data is replaced with random data

(which forms the first step of our default imputation algorithm), we can obtain a fairly accurate

initial BN, which leads to better overall performance, as demonstrated in the following

paragraphs.

Fig 2 shows recall and precision for the 5 variable model, A! B C! D E, where

either B and D or A and E (indicated by asterisks) have a complex missing data pattern (see S1

Text). Recall (also known as sensitivity) is the proportion of true edges that were actually

retrieved in the best fit network, while precision (also called positive predictive value) is the

proportion of true edges among the retrieved edges. Our default imputation method shows

overall the highest recall and precision, considerably outperforming using the reduced data set

and also outperforming the “All NN”, MICE and Imputed CT algorithms. When variables A
and E are the ones with missing data, the mean imputation, “Random” and “EM” methods

also perform quite well, but their performance is not quite as good as either our default impu-

tation method or the Imputed CT algorithm when variables B and D are the ones with missing

data. Results for a different 5 variable model, A! B! C! D! E, are shown in S1 Fig, with

broadly similar conclusions.

Imputation of networks from the Bayesian Network Repository. We also applied the

same methods to one continuous and two discrete data simulation networks taken from the

bnlearn BN repository, whose structure and generating parameters are known, containing

46, 37 and 27 nodes respectively (see S1 Text). S2 Fig shows recall and precision for the best fit

network, where the percentage of missing data in 450 of the 500 individuals is given on the

horizontal axis (except for the green lines, which relate to analysing the full data and so illus-

trate the maximum value achievable). Our default imputation method shows a clear improve-

ment over using the reduced data set (with the improvement reducing as the proportion of

missing data increases), with the Imputed CT algorithm seen to be just slightly less effective.

The EM algorithm also shows an improvement over using the reduced data set except for the

“ecoli70” network when there is 30% or 40% missing data. However, it is clearly less effective

than our own imputation method except perhaps for the “alarm” network with 40% missing

data. The other imputation methods considered (mean imputation, “All NN” and MICE)

show similar recall but lower precision than our approaches for the continuous data set,

“ecoli70”. For the other two discrete data sets, where mean imputation does not apply, “All

NN” and MICE outperform our proposed approaches. This suggests that, for purely discrete

data sets, our approaches may not be strictly optimal, although our main concern is with con-

tinuous data.

PLOS GENETICS A Bayesian network approach incorporating imputation of missing data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009811 September 29, 2021 7 / 28

https://doi.org/10.1371/journal.pgen.1009811


Imputation of networks with many variables. We next simulated data from a network

with 31 variables (see Fig 3A), where the 10 expression data variables, prefixed with “ex”, have

data values set to missing with a 20% probability. The missing data were filled in either as a

random sample from the observed data (see S1 Text) or using our imputation approaches. It

was not possible to use the EM implementation in the bnlearn R software package in this

case, as it does not deal with mixed (discrete and continuous) data. (BayesNetty can deal with

Fig 2. Line graphs showing the recall and precision of the best fit network found by BayesNetty (and alternative approaches)

when the simulation network was A! B C!D E for different data sets. The asterisks denote which variables had missing

values for 1800 individuals from a total of 2000 individuals. The parameter β denotes the model strength that was used to simulate

the data. Full: the data consisted of the original simulation data with no missing values. Imputed: the data was imputed using our

default algorithm. Reduced: the data was reduced to the 200 individuals with no missing values. Imputed CT: the data was imputed

with complete data training. EM: the data was imputed with an expectation-maximisation algorithm in R. Random: missing data

was replaced by random values drawn from the same variable. Mean: missing data was replaced by the mean value of the same

variable. All NN: the data was imputed using our default algorithm but with all variables used to inform the choice of nearest

neighbour. MICE: the data was imputed using the multivariate imputation by chained equations approach.

https://doi.org/10.1371/journal.pgen.1009811.g002
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Fig 3. Graphs showing the networks for (A) the simulation network; (B) the best fit network using the full data

with no missing values; (C) the best fit network using data reduced to the individuals with no missing values; (D)

the best fit network using randomly imputed data; (E) the best fit network using imputed data (imputed CT

algorithm); (F) the best fit network using imputed data (default algorithm). Graphs (B)-(F) show best fit networks

for one typical data simulation when β = 0.3. The green arrows show edges that are present in the simulation network,
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mixed data, although in this case we chose to code the discrete genetic variables as continuous

allele dosages, however the EM implementation in the bnlearn R software package did not

permit this functionality).

Fig 3(B)–3(F) show the best fit networks for one typical data simulation when the network

strength parameter, β (see S1 Text), was set to 0.3. Fig 3B shows the best fit network for the full

data, which recovers most of the edges and adds one incorrect edge, whereas the best fit net-

work using the reduced data (Fig 3C) is missing many edges, adds six incorrect edges and two

edges are in the incorrect direction. Fig 3(D)–3(F) show the best fit network using either ran-

domly imputed data or our imputation approaches. All three methods are successful in detect-

ing most true edges with the identification of a few incorrect edges. The recall and precision of

directed edges of the best fit BN over 100 simulation replicates achieved using our methods (in

comparison to other approaches) are shown in Fig 4. It can be seen that there is a substantial

increase in both recall and precision when using imputation compared to using the reduced

data. The default imputation algorithm and the Imputed CT algorithm perform fairly simi-

larly, with the default algorithm showing a slight advantage with respect to recall and the

Imputed CT algorithm showing a slight advantage with respect to precision. The recall and

precision for either randomly replaced or mean imputed data is also substantially better than

when using the reduced data, although the precision decreases slightly for large values of β.

This shows the benefit of recovering non-missing data from individuals that have missing data

even by simple methods for replacement of missing values. The “All NN” and MICE methods

also perform well in terms of recall, but show less good performance in terms of precision,

compared to the other imputation methods considered.

red arrows edges that are not present, purple arrows edges that are in the reverse direction and light grey (almost

invisible) arrows edges that are missing in the best fit network. Light blue nodes represent genetic factors, yellow nodes

represent gene expression measures and the pink node represents the trait. The thicknesses of the arrows are scaled to

show the significance of the edges (between a minimum and maximum thickness), based on a χ2 value for each edge,

which is obtained by removing the edge and comparing the log likelihoods of the network scores with and without the

edge using a likelihood-ratio test.

https://doi.org/10.1371/journal.pgen.1009811.g003

Fig 4. Line graphs showing the recall and precision of the best fit network found by BayesNetty and alternative

approaches when the simulation network is set to the one shown in Fig 3A for different data sets. Expression data

was set to be missing with a 20% probability. The parameter β denotes the model strength that was used to simulate the

data.

https://doi.org/10.1371/journal.pgen.1009811.g004
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Utility of applying soft constraints. We next investigated the utility of using prior knowl-

edge (see S1 Text) to improve detection of certain directed edges in a network. The rationale for

including this option was the idea that it might improve power in the situation where the exis-

tence of such directed edges is well-supported by prior evidence (or scientific theory), without

seriously biasing the results if the belief turned out to be misplaced (as the prior would be over-

come by the data). We note that methods for assigning such priors are likely to be context/appli-

cation specific, although there exists a literature on expert elicitation of Bayesian priors [32].

We start with a simple investigation of varying the prior probabilities of edges within a

3-variable or 4-variable network. See S1 Text, S3 and S4 Figs and the S4 Fig legend for full

details.

We also used a simulation from a more complex network (Fig 5A) to demonstrate the effects

of varying the prior probabilities of some edges on the ability to detect other edges that were not

assigned prior probabilities in the best fit models. Fig 5B shows the proportion of times each

edge is detected for different assumed prior probabilities of the red edges (labelled with p). Nat-

urally the power for the red edges is affected the most, whereby higher prior probabilities result

in higher probabilities of detection. The power for detection of the cyan edges (labelled with x)

also increases when the prior probabilities of the red edges are increased, since, when the red

edges are orientated in the correct direction, it helps to better resolve the correct direction for

the cyan edges as they are connected to the same nodes as the red edges. When the prior proba-

bilities of the red edges are set to less than 0.5 (so in the incorrect direction), the proportion of

the cyan edges detected decreases, but not by too much as there are other edges in the network

that aid the resolution of the correct direction. The blue edges (labelled by +) also have increased

detection probabilities when the prior probabilities of the red edges are increased, but not to the

same extent as the cyan edges, as there are fewer other edges connected to these edges. The

detection proportion of the blue edges also decreases by more than the cyan edges when the

prior probability of the red edges is in the incorrect direction. The detection proportion of the

black (labelled with o) and green (labelled with*) edges are not much affected due to their

weak simulated effect sizes. The overall average recall and precision is shown in Fig 5C and 5D;

both show an increase when the prior probability of the red edges is increased.

Computational feasibility and timings

For an exploration of the computational feasibility and timings for carrying out analysis using

our BayesNetty software, please see S2 Text.

Results of application to an early inflammatory arthritis data set

As an illustrative example of applying BNs to a real data set, we consider our recent study [33]

investigating DNA methylation as a potential mediator via which genetic variants associated

with rheumatoid arthritis (RA) might confer disease risk by influencing gene expression in cir-

culating CD4+ and B lymphocytes. In that work we applied the causal inference test (CIT) [34]

to many candidate variable triplets consisting of SNP, methylation and gene expression vari-

ables, focussing on SNPs with prior evidence of association with RA. We applied BN analyses

to the same data set, exploring the same candidate variable triplets as well as making use of

additional individual-level data for gender, age and RA status. This provided an opportunity to

compare our BN results with the original CIT analyses. We also investigated the benefit of

modelling multiple variables simultaneously in one large complex network. We additionally

used the final fitted network as a basis for further computer simulations investigating the per-

formance of our imputation method compared to the usual method of discarding individuals

with missing data.
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The early inflammatory arthritis dataset (see Methods) comprised 141 individuals with

paired genotype and DNA methylation data for CD4+ T and/or B cells (from an original

cohort of 280). Of these 141 individuals, only 68 had no missing data; the other 73 typically

only had data for either CD4+ T cells or B cells; overall there was 16.9% missing data. The orig-

inal raw data for methylation and gene expression was adjusted for batch effects and normal-

ised as previously described [33].

CIT and BN results. Fig 6 plots the BN results for T cells against the CIT results, compar-

ing the nominal CIT p-values (for an effect of methylation on gene expression) against the BN

Fig 5. Plots showing the results of 10,000 network simulations: (A) the simulation network; (B) the proportion of times each

simulation edge appears in the best fit networks; (C) the average network recall; (D) the average network precision. The effects

of changing the prior probabilities of the red edges (labelled with p) in the plotted direction are shown in plots (B)-(D). The dashed

vertical lines show when the prior probabilities are 0.5, that is, no preference in either direction. The green edges (labelled with*)

are constrained to be in the shown direction. The colours and labels in plot (A) correspond to those in plot (B).

https://doi.org/10.1371/journal.pgen.1009811.g005
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Fig 6. T cell results. Plots comparing the nominal −log10 CIT p-values with BN average network posteriors of a methylation to gene expression causal effect, where each

point represents a separate triplet of variables. Specific triplets are indicated by the same colour and shape in the different plots to aid in interpretation. Vertical dashed

lines show a nominal p-value of 0.05. The left column shows the probability of the direction of the edge from methylation to gene expression given that it exists. A

probability of less than 0.5 indicates that it is in the opposite direction. The middle column shows the strength of edges between methylation and gene expression. The

right column shows the probability of the BN having a directed edge from methylation to gene expression. The top row (non-imputed data) and middle row (imputed

data) show results for small BNs consisting of variable triplets plus variables for age, diagnosis and gender. The third row (non-imputed data) and fourth row (imputed

data) show BN results from one large network. The squared Pearson correlation coefficient (r2) is shown for each plot.

https://doi.org/10.1371/journal.pgen.1009811.g006
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direction, strength and directed edge probability between the methylation and gene expression

variables (as obtained from the average network, see Methods). The top row, panels (A), (B)

and (C), shows the results for each variable triplet when analysed by discarding every individ-

ual with missing data. Panel (A) shows a weak relationship between the CIT p-values and the

BN direction of the edges, although many are in the opposite direction (as the direction value

is less than 0.5). The vertical line shows the nominally significant p-value threshold, 0.05. As

the significance of the p-value increases the direction probability also increases. The relation-

ship between CIT p-value and edge strength shown in Fig 6B is clearly much stronger. In Fig

6C, the directed edge probability combines the direction and strength and shows a clear rela-

tionship. As both methods use the same data, and are both effectively based on linear regres-

sion, we would expect some agreement in the results. However, the variable triplets that are

considered significant by CIT do not give highly convincing causal relationships according to

the BN analyses. If, for example, we were to consider that the direction value should be greater

than 0.8 to be considered causal, then there would be only seven variable triplets identified

(compared to 24 CIT results that are below the nominal p-value threshold). If we were to con-

sider the overall directed edge probability, then only one variable triplet is above 0.8. This may

be a reflection of limited available sample sizes for our purpose (albeit large for a study of this

kind). Reassuringly, Table 1 shows that the BN results for the most significant triplets identi-

fied by Clark et al. [33] do largely corroborate the findings from the CIT (particularly when

one uses a more relaxed threshold, such as BN edge probability > 0.65, and when CIT signifi-

cance is assessed using a permutation-based method to calculate the FDR, which effectively

provides an adjustment for multiple testing). In particular, the BN results for the three cis-
meQTL effects that were subsequently experimentally validated by Clark et al. [33]

(cg21124310/ANKRD55, cg07522171/JAZF1, and cg17134153/FCRL3) are amongst the most

convincing.

Fig 6(D)–6(F) show a comparison of the nominal CIT p-value with the BN results obtained

by applying our imputation method to each triplet separately. There are typically only a few

individuals to impute for each variable triplet so the results are similar to when no imputation

is used. As expected, the correlation with the CIT results is not quite as strong now that slightly

different data is being used.

The plots shown in Fig 6(G)–6(I) compare the nominal CIT p-values with the BN results

obtained using a large average BN fitted to all 100 variables (SNPs, T cell methylation and

expression, B cell methylation and expression, gender, age and RA status) without using impu-

tation. These results are again likely to be impacted by the small sample size and large number

of variables; there are only 68 individuals with data for all 100 variables. This can result in a

large number of false positive edges, which is reflected in panel (H) where every edge has

strength of at least 0.2, as even the least significant relationships have inflated strength due to

regularly appearing as (most probably false) positives. The direction is also more difficult to

resolve and is shown by more methylation to gene expression edges having a direction value

near to 0.5. However, there is still a weak correlation between the CIT results and the BN

results. Ideally analysing all the variables together would have helped to better orientate the

direction of the edges, however the resulting reduction in sample size and the large amount of

variables in this particular example seem to outweigh this potential benefit.

The plots shown in Fig 6(J)–6(L) show the BN results when our imputation method is used

to fit a large average BN to all 100 variables. (See S5 and S6 Figs for a visualisation of the result-

ing network, when the strength threshold for plotting edges is set at either 0.499 (as suggested

by the formula given by Scutari and Denis [7]) or 0.6 (to achieve a sparser network)). A benefit

of imputation is that it increases the sample size from 68 to 141 individuals. We would expect

the correlation with CIT results to be weaker as we are effectively using different data and
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using all the variables together. The BN results do not show compelling evidence for many

causal relationships between methylation and gene expression, with only three triplets having

a direction value above 0.8 and only one with a directed edge probability above 0.8.

The B cell results are shown in Fig 7 and provide similar conclusions as the T cell results.

The main difference is that there are more variable triplets with a causal relationship suggested

in the direction of gene expression to methylation, as shown in the bottom left corner of panels

(A), (D), (G) and (J).

Overall, both the T cell and B cell analyses illustrate a reasonably high correlation between

the results from CIT and BN analysis when applied to exactly the same data (Figs 6C and 7C)

but less correlation when our imputation approach is used to fill in the missing data, particu-

larly when using a large average network. As this is a real data set, it is obviously not possible

to say which relationships have been correctly identified, which identified relationships are

false positives, and indeed which true relationships may have been missed. Further work will

Table 1. Results for the causal inference test (CIT) in CD4+ T cells and B cells as reported in Table II of Clark et al. [33] when any nominal p-value was less than

0.05 (but focussing on those triplets also satisfying the CIT permutation false-discovery rate (FDR) threshold of 0.05, so effectively providing an adjustment for

multiple testing). When there are multiple gene expression probes for the same SNP and methylation, the most statistically significant probe was reported. Here along

with the CIT p-value and CIT permutation FDR, we report the results from the BN analyses of the same data triplets with no imputation (specifically, the direction,

strength and edge probabilities as calculated from the average best-fitting network).

Gene CpG Lead meQTL SNP Locus CIT p-value CIT Permutation FDR BN Direction BN Strength BN Edge Probability

CD4+ T cell

ANKRD55 cg21124310 rs6859219 5q11.2 1.11 × 10−4 7.06 × 10−4 0.726 1 0.726

cg10404427 rs6859219 0.0057 0.0044 0.467 0.998 0.466

cg23343972 rs6859219 0.0062 0.0069 0.467 0.991 0.463

cg15431103 rs6859219 0.0496 0.0319 0.285 0.995 0.284

JAZF1 cg07522171 rs2189966 7p15.1 3.97 × 10−4 0.0035 0.69 0.956 0.66

cg11187739 rs4722758 0.0035 0.0044 0.887 0.808 0.716

cg16130019 rs917117 0.0529 0.0319 0.606 0.46 0.279

ORMDL3 cg18711369 rs12946510 17q12 4.46 × 10−4 0.0035 0.686 0.975 0.669

cg10909506 rs12946510 0.0016 0.0044 0.583 0.995 0.58

FCRL3 cg17134153 rs2210913 1q23.1 0.0027 0.0044 0.707 0.783 0.554

cg01045635 rs2210913 0.012 0.0296 0.564 0.707 0.398

IL6ST cg15431103 rs6859219 5q11.2 0.01 0.0296 0.828 0.747 0.619

cg15667493 rs6859219 0.0139 0.0296 0.558 0.744 0.415

cg10404427 rs6859219 0.0216 0.0305 0.765 0.641 0.491

cg21124310 rs6859219 0.0349 0.0305 0.85 0.574 0.488

cg23343972 rs6859219 0.0352 0.0305 0.766 0.553 0.424

C11orf10 cg16213375 rs61897793 11q12.2 0.0163 0.0296 0.977 0.901 0.88

TAX1BP1 cg11187739 rs4722758 7p15.1 0.047 0.0305 0.938 0.74 0.694

GSDMB cg18711369 rs12946510 17q12 0.0277 0.0305 0.561 0.697 0.391

cg10909506 rs12946510 0.0448 0.0305 0.494 0.588 0.291

B cell

FCRL3 cg19602479 rs2210913 1q23.1 4.69 × 10−4 0.042 0.793 0.963 0.764

cg01045635 rs7522061 5.49 × 10−4 0.042 0.589 0.98 0.577

CCR6 cg15222091 rs3093025 6q27 0.0101 0.0966 0.45 0.824 0.371

cg19954286 rs3093025 0.0258 0.133 0.44 0.664 0.292

cg05094429 rs3093025 0.0347 0.133 0.351 0.581 0.204

IKZF3 cg18691862 rs9903250 17q12 0.0249 0.133 0.732 0.6 0.439

ORMDL3 cg12749226 rs11557466 17q12 0.0249 0.133 0.413 0.56 0.232

https://doi.org/10.1371/journal.pgen.1009811.t001
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Fig 7. B cell results. Plots comparing the nominal −log10 CIT p-values with BN average network posteriors of a methylation to gene expression causal effect, where each

point represents a separate triplet of variables. Specific triplets are indicated by the same colour and shape in the different plots to aid in interpretation. Vertical dashed

lines show a nominal p-value of 0.05. The left column shows the probability of the direction of the edge from methylation to gene expression given that it exists. A

probability of less than 0.5 indicates that it is in the opposite direction. The middle column shows the strength of edges between methylation and gene expression. The

right column shows the probability of the BN having a directed edge from methylation to gene expression. The top row (non-imputed data) and middle row (imputed

data) show results for small BNs consisting of variable triplets plus variables for age, diagnosis and gender. The third row (non-imputed data) and fourth row (imputed

data) show BN results from one large network. The squared Pearson correlation coefficient (r2) is shown for each plot.

https://doi.org/10.1371/journal.pgen.1009811.g007
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be required to confirm (or not) the truth of the potential causal relationships identified by CIT

and/or BN.

Further computer simulations based on early inflammatory arthritis data

To provide a further comparison of the CIT and BN analysis, we simulated data to enable the

plotting of receiver operating characteristic (ROC) curves. We based our simulations on the

early arthritis data set [33] by first fitting a large Bayesian network to all of the methylation and

gene expression data in B and T cells together with relevant SNPs, gender, age and RA status.

Data were then simulated 1000 times using this best fit network as the generating model. In

each simulation replicate the number of individuals and the missing data pattern in the origi-

nal data was replicated, resulting in only 68 individuals with complete data from a total of 141.

Triplets consisting of a SNP, methylation and gene expression that were both tested in the

original study and also appeared in the best fit network were used to calculate a true positive

rate. This resulted in 6 triplets for T cells and only one triplet for B cells. The false positive rate

was calculated using triplets from the original study that had no direct edge between the meth-

ylation and gene expression variables in the best fit network, but where the SNP variable was

causal for the methylation variable. This resulted in 10 triplets for T cells and 37 triplets for B

cells. The calculated detection rates of edges were averaged over the relevant triplets and over

the 1000 simulations. The p-value threshold was changed over values between 0 and 1 to calcu-

late the true and false positive rates for CIT, whereas the probability threshold was varied

between 0 and 1 for the BN analysis. The BN analyses also included variables for gender, age

and RA status.

S7 Fig shows the ROC curves for the CIT and BN methods. It can be seen the BN analysis

performs better in this simulation study. The results for the T cells are fairly poor for both

methods which is not surprising given the small sample size. The B cell results are quite good

for BN but surprisingly poor for the CIT. For any given false positive rate, the BN analysis has

a higher true positive rate than the CIT.

Discussion

BN approaches have previously been proposed as a promising tool for investigating causal rela-

tionships between biological variables, particularly when incorporating genetic variables as

causal anchors [1, 2] to help resolve the directions of relationships between non-genetic vari-

ables. An appealing aspect of these approaches is their quantification of the strength of evi-

dence provided by the data for different relationships (and indeed for the entire network) via

calculation of the average network and the resulting implied strength of evidence for specific

relationships. Here we show how BN analysis in data sets with mixed discrete/continuous vari-

ables can be improved by accounting for missing data. Missing data can often occur in real

data sets due to cost or practical reasons. Thus, the use of imputation has great potential to

boost the power of BNs to identify possible causal relationships—a key consideration when

considering real-world datasets from human populations where sample sizes may be limited.

Computer simulations showed that the use of our proposed imputation approaches could

increase the power, in some cases dramatically, for detecting the correct causal relationships

between variables. Although no method was found to be consistently optimal across all simu-

lated scenarios, our proposed approaches generally matched or outperformed the other impu-

tation approaches that we considered.

The first step of our default imputation algorithm (see Methods) involves taking a 90% sub-

set of individuals and replacing any missing values in these individuals with randomly sampled

values from the set of non-missing values. (See S3 Text and S8 Fig for an exploration of different
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proportions rather than 90%). If there is a large amount of missing data for some variables, this

random replacement (without any regard to the true structure of the relationships between vari-

ables) might be considered sub-optimal, and so we proposed an alternative “Imputed CT”

method that takes the 90% subset from only the individuals that have complete data. We would

anticipate this to work well in the situation where a large proportion of the individuals have

complete data, but less well in the situation where there are many variables, and thus a high like-

lihood of every individual having one or more measurements missing. Careful examination of

the missing data pattern in any given real data set may help the practitioner decide whether the

default or Imputed CT algorithm would be most suitable in that particular instance. In our own

computer simulations, the default and Imputed CT algorithms performed quite similarly in sce-

narios with reasonably large numbers of variables with relatively sparse missing data patterns

that mimic the pattern we generally see in real multi-omic data sets.

Our proposed imputation approach has some superficial similarities with the multivariate

imputation by chained equations (MICE) approach [31] for imputing missing data. However,

from a theoretical standpoint, we do not consider our procedure to be closely related to MICE.

In particular, although there is an element of randomness in our algorithm (on account of tak-

ing a 90% subset of individuals as the first step in imputing the data for an index individual),

we do not perform multiple imputations of the missing data for any individual, i.e. in our algo-

rithm the data are imputed only once. This contrasts with MICE in which the imputations are

repeated multiple times, as the algorithm cycles over the missing data values. Within the

MICE procedure, a series of regression models are run whereby each variable with missing

data is modelled conditional upon the other variables in the data. This does have some similar-

ities with our procedure, in as much as we use other “nearby” variables in the data to deter-

mine the nearest neighbour individual who should be used to impute the values of a missing

variable in the index person. However, unlike MICE, we do not directly use these nearby vari-

ables to impute the value of the missing variable, but rather use them to help choose the most

appropriate nearest neighbour individual.

We also considered an extension to our BN approach in the form of soft constraints,

whereby a prior probability, p, can be assigned to any directed edge, with 1 − p automatically

assigned to the reverse direction. This is in addition to incorporating hard constraints in the

form of “white” directed edges which must be included in any BN and “black” directed edges

which must be excluded. (If the white list contains both directions between two nodes, then

the edge must be included but may be in any direction). The value of soft constraints is to

“nudge” the edges in the right direction (if our beliefs are in fact well-founded) when there is

either weak or no evidence for any direction, while allowing the data to largely overcome the

specified priors if the relationships that they indicate are not, in fact, well-supported.

In our previously reported efforts to discover instances where disease-associated genetic

variants might impact DNA methylation as a mechanism for altered gene expression in lym-

phocytes, we employed the causal inference testing (CIT) method of Millstein et al. [34] As

with established BN approaches, this relies upon availability of triplets of genotype, DNA

methylation and gene expression data for all individuals analysed. Although widely cited, and

selected for discovery purposes in our previous study with findings subject to experimental val-

idation, the CIT may be criticised for its susceptibility to measurement error and to the exis-

tence of unmeasured confounders such as common environmental effects [1]. It also requires

the postulated causal relationships to be stated a priori (for subsequent confirmation or rejec-

tion), rather than being naturally designed for an exploratory search through the space of pos-

sible causal configurations. When applied to the same complete-data triplets, results from BN

analysis and CIT were in general highly correlated. However, when BN analysis was applied

using a large average network, with missing data imputed using our proposed algorithm, the
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results were less concordant. In this regard our limited sample of 141 individuals, of which 73

have imputed data, may be too small to generate convincing results regarding the (possibly

weak) causal relationships that may be present in a large, complex network. A role for external

means to validate putative relationships identified in such settings (of the kind we have applied

previously [33]) is therefore emphasised.

A limitation of BNs is the fact that analysis must be performed on individual-level data,

and, unlike some competing approaches (such as MR), BN methods are not readily extended

to make use of summary-level data. Whether the imputation approaches outlined here could

be used as a starting point for allowing BNs to make better use of summary-level data would

represent an interesting topic for future investigation.

In conclusion, we have developed an imputation approach that can be used to better iden-

tify possible causal relationships between variables such as those generated in large-scale bio-

logical experiments, leading to marked improvements in the recall and precision of directed

edges in the final network of relationships identified. Our method is applicable to large, com-

plex networks containing potentially hundreds of variables, and we provide fast, efficient,

freely-available open source software implementing our proposed approach.
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Methods

Ethics statement

All patient participants gave written informed consent for inclusion in the study and all associ-

ated procedures; ethical approval was obtained from the Newcastle and North Tyneside 2

Research Ethics Committee, UK (reference 12/NE/0251).

BayesNetty software

All BN analysis in this manuscript is performed using our own software implementation,

BayesNetty [2, 22]. BayesNetty is implemented in C++ using an object orientated framework

for easy future development. The program and documentation with working examples are

open source and freely available on the BayesNetty website [22]. The software includes the

ability to plot graphs of the identified BNs using the R package igraph [35], as used for the

plots throughout this manuscript.

The starting point for our method is the algorithm implemented in the R package

bnlearn [7, 16]. The package can handle discrete, continuous and mixed discrete/continu-

ous data. For discrete variables a multinomial distribution is assumed and for continuous vari-

ables a multivariate normal (Gaussian) distribution. In a mixed discrete/continuous network,

a continuous node with discrete parents is handled by dividing the data into discrete groupings

and fitting separate Gaussian distributions for each group. This can be problematic if the data

set is small or some discrete categories are rare, as this may result in too little data to fit the net-

work properly. Mixed networks are restricted such that it is not possible to have a discrete

node with a continuous parent node.

Given a network structure in the form of a DAG, a network score can be calculated based

on the log likelihood of the data under the assumed network structure (maximised with respect

to the parameters of the assumed probability distributions). This score can be used as a mea-

sure of how well the network model describes the data, and is used to compare different net-

works when searching through models. In BayesNetty the network score may be set to be
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based on either the log likelihood, the Akaike Information Criterion (AIC) or the Bayesian

Information Criterion (BIC). We use the same definitions of scores based on the negative AIC

and BIC as bnlearn [7], so that network scores are always negative and the larger the value,

the better the fit of the network to the data.

If the number of variables (network nodes) is small, it is feasible to evaluate all possible net-

work structures and obtain the global best fit network. Otherwise, one must search through a

subset of possible network models and choose the one that fits best. BayesNetty uses a greedy

algorithm for searching through network models, with the additional options of random

restarts (running the algorithm a further number of times from a random starting network)

and/or jitter restarts (restarting at a network given by slightly modifying the current best fit

network) to avoid the algorithm sticking in a local maximum.

Average networks

An average network, as described by Scutari and Denis [7], is a useful device to account for

uncertainty in the direction of edges and in the network structure as a whole. To compute the

average network, the data is bootstrapped with replacement many times (throughout this man-

uscript we use 1000 bootstraps) and the best fit network is fitted at each iteration. The number

of times that an edge appears between two nodes in each best fit network is recorded, together

with the direction. This allows us to calculate the strength and direction values (between 0 and

1) for each pair of nodes, where the strength is defined as the probability (proportion of times)

that an edge appears between the two nodes and the direction is the proportion of times that

the edge is in a given direction, given that it exists. If an edge has a high direction value, then it

indicates that there may be a causal relationship in that direction, while, if it is near 0.5, this

suggests there is little evidence provided by the data for such a relationship. The resultant aver-

age network is given by a table listing all possible edges with their strengths and directions.

This typically has many unlikely edges which appeared in only a few bootstrap best fit net-

works and so have low strength. Thus, to plot the network while including only the most reli-

able edges, a strength threshold can be used to omit weak edges from the plot. Rather than

choosing an ad hoc threshold, a suitable (data set dependent) choice of threshold has been pro-

posed based upon statistical arguments [7, 36]. This choice of threshold is used as the default

when plotting the average graphs calculated using BayesNetty.

Data imputation

Here we present a new method to increase the accuracy of fitting a BN whilst accounting for

missing data, where the data is in general mixed discrete/continuous. This is achieved by first

imputing the missing data and then using the full (non-missing plus imputed) data to calculate

a best fit or average network. The purpose of our imputation algorithm is to enable generation

of the most accurate final network, which does not necessarily correspond to producing the

most accurate estimate of the missing data per se for any particular individual or variable.

The usual approach to imputing data is by assuming a fixed BN and replacing the missing

data values with their expected values. This is not possible in our context, as the “correct” BN

is not known (and, in fact, it is exactly the structure of this BN that we wish to estimate). Using

the (possibly small subset of) complete data to find a fixed BN with which to impute the miss-

ing values can be problematic, as this can create strong biases and artefacts in the imputed

data. This then results in incorrect structural learning of the data when a final BN is fitted to

the full (non-missing plus imputed) data. Therefore, our proposed imputation method aims to

limit these artefacts as much as possible while also accounting for any uncertainty in the struc-

ture of the data.
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We use nearest neighbour imputation, whereby missing data in one individual is replaced

with data from another individual, the nearest neighbour. Nearest neighbour imputation is a

popular method for imputing clinical data [24]. An advantage of this approach is that it does

not impose any direction on the relationships between variables. Another advantage is that it

can be used with mixed discrete/continuous data. The distance between individuals is calcu-

lated using a portion of the non-missing data that is assumed to be related to the missing data

of interest. One challenge in nearest neighbour imputation, when there are a large number of

variables, is how to select which variables to use when calculating these distances. We propose

our own solution to this problem, tailored for learning BN structures, as described in the next

section. To decide which variables to use for determining the nearest neighbour, we use a best

fit network calculated on training data comprising a 90% subsample of the data. In S3 Text we

explore the use of different fractions of the data in this step, but we still recommend using 90%

as default. To avoid using the same best fit network structure to inform the imputation for

every individual, we resample a new set of training data before imputing the missing data for

each individual that has missing data. This provides a way to incorporate model uncertainty in

the best fit network that is used to inform the imputation.

Data imputation algorithm. We assume that the missing data is missing at random

(MAR), that is, the missingness of a given variable is dependent only on the values of other

measured variables, with no biases in relation to the values that are missing (for example,

higher values are more likely to be missing). Missing data is imputed for each target “index”

individual separately using the following steps:

1. A 90% subset of individuals chosen from all the individuals (thus potentially including the

index case) is taken without replacement. The missing data values for each variable within

this subset are replaced with randomly sampled values (with replacement) from the set of

non-missing values.

2. A best fit BN is found using this data set. Any algorithm to find the best fit network can be

used and in this manuscript we use the greedy search algorithm with a Bayesian informa-

tion criterion (BIC) network score.

3. The missing data is imputed using our own version of nearest neighbour imputation with

the variables used to define the nearest neighbour selected on the basis of the best fit net-

work. For each variable with missing data, a list of all the other variables that have connect-

ing edges and have non-missing data for the index individual is constructed. These

variables are known as the nearby variables. These nearby variables are then used to calcu-

late the distance between the index individual and every other individual that has non-miss-

ing data for both these nearby variables and for the variable with missing data that needs to

be imputed. The individual with the smallest distance is designated as the nearest neigh-

bour; when there are multiple individuals with the same smallest distance one is randomly

chosen. The overall distance is calculated as the sum of distances from every nearby vari-

able. For continuous variables that distance is defined by the difference squared divided by

the variance of the variable, that is, the normalised difference. The variance is estimated

from the complete data for that variable. For discrete variables the difference is defined by 1

if the categories are different and 0 if they are the same. If an imputed variable has no

nearby variables, then a random individual (with non-missing data for this variable) is cho-

sen as the nearest neighbour.

4. The missing data for the relevant variable in the index case is replaced by the data for that

variable from the nearest neighbour.
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Modifications to the data imputation algorithm. As well as using a network to select the

nearby variables, another difference between our method and other nearest neighbour imple-

mentations relates to a modification not yet mentioned: in some instances a new variable

which is not in the original data is constructed and used as a nearby variable. Suppose a contin-

uous variable z has missing data and is a parent of continuous variable y which also has

another continuous parent variable x. A new nearby variable, v, is defined by v = y − βxx = β0 +

βzz where the βs are the regression coefficients given by y = β0 + βxx + βzz + �, when y is

regressed on x and z using standard linear regression. We then use variable v rather than y as a

nearby variable for informing the choice of nearest neighbour to impute the missing value of z,
since y depends on both x and z, whereas v depends mostly on z. The definition of the new

nearby variable is extended naturally if there are multiple continuous variables that are parents

of y. If any of the continuous parent variables of y have missing data for the individual that is

being imputed, then this variable is simply not used in the newly defined variable v, and so if

all continuous parent variables have missing data this means that y is used as the nearby vari-

able. If z is discrete, then it is imputed in the usual way, as it is not possible to perform the nec-

essary linear regression as the correct discrete partition of the data is unknown.

We also define an alternative version of our imputation method by making a change to the

first step. Specifically we take a 90% subset from the individuals that have complete data (and

we thus do not need to randomly replace any missing values). We refer to this alternative

method as “imputation with complete training data” and denote it by “Imputed CT” in figures.

The main disadvantage of this alternative method is that it requires sufficient individuals with

complete data, and thus the training data set can be much smaller, resulting in less accurate

imputation. The advantage comes when there is a large amount of missing data for some vari-

ables, and so we avoid weakening the strength of the edges connected to these variables in the

training data set, assuming enough complete data is available.

Computer simulations to evaluate performance

We carried out a number of different simulation studies to evaluate the performance of our

proposed approaches. For more details of these, please see S1 Text.

Soft constraints

There may be prior belief that the direction of causality between two variables is in a certain

direction. To take account of this, we can define a weighted network score based on the Bayes-

ian Information Criterion (BIC) score where each directed edge, e, between two specified

nodes is given a prior probability, p(e), with the reverse direction automatically set to 1 − p(e).
Define x to be the observed data, M the network and L̂ the maximised likelihood. The sample

size of the data set is given by n and k is the number of edges. From the derivation of the defini-

tion of the BIC we have:

� 2 ln pðxjMÞ � BIC ¼ � 2 ln L̂ þ kðln n � ln 2pÞ

ln pðxjMÞ � �
1

2
BIC ¼ ln L̂ �

k
2
ðln n � ln 2pÞ

pðxjMÞ �
L̂
n
2p

� �k
2

/
L̂
nk

2

Therefore, if we multiply the contribution that each edge, e, makes to the score by the prior
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probability that an edge exists in this direction, we have:

pðxjMÞ �
Y

e

pðeÞ /
L̂
nk

2

�
Y

e

pðeÞ

ln pðxjMÞ þ
X

e

pðeÞ ¼ ln L̂ �
k
2
ln nþ

X

e

ln pðeÞ þ constant

And so, using the usual definition of BIC as ln L̂ � k
2
ln n, we define our new weighted score

as:

Weighted Score ¼ BIC þ
X

e

ln pðeÞ

An edge with the prior probability of 0.5 will have no preference in either direction and the

best direction will be given by the usual BIC score, whereas an edge with a prior direction

probability of 0 will result in a score of minus infinity and the network being rejected. A score

strictly between 0.5 and 1 (not including 0.5 and 1) will favour an edge in a certain direction

but will allow it to be in the other direction if the data are sufficient to suggest otherwise.

Data application: Early inflammatory arthritis and intermediate biological

data

As an illustrative example of applying BN analysis to a real data set, we used data from a recent

study [33] of RA and the possible influences of methylation on gene expression in CD4+ T

cells and B cells.

Early inflammatory arthritis data. The RA data set comprised 141 individuals, of whom

only 68 had no missing data; the other 73 individuals typically only had data for either CD4+ T

cells or B cells. Raw data for methylation and gene expression was adjusted for batch effects

and normalised as described [33].

Variable triplets. For CD4+ T cells there were 42 variable triplets consisting of a SNP,

methylation of a CpG and a gene expression probe that were identified in the original study

[33] as being of interest based on instances in which CpG methylation was simultaneously cor-

related with risk variants (meQTLs) and transcript levels of genes in cis (eQTMs). For B cells

there were 65 such variable triplets. We applied BN analyses to each candidate variable

triplet along with the additional variables coding for gender, age and RA status. For each triplet

we applied BN analyses without imputation, so that only 68 individuals were used. We also

analysed the data using our imputation approach. For each triplet we removed every individual

who had neither methylation nor gene expression data, so that for the T cell data there were

typically around 103 individuals in total with only three individuals having missing data, while

for the B cells there were typically 113 individuals in total with only 10 individuals having miss-

ing data. We calculated an average BN giving estimates of the direction of causality between

methylation and gene expression variables.

Use of a large BN to model the candidate triplets. We also applied BN analysis using

every variable from the candidate variable triplets, together with gender, age and RA diagnosis,

which gave a total of 100 variables. We calculated an average BN with and without imputation.

The resultant average BNs were then used to estimate any causal relationships between the

candidate methylation and gene expression variables. In theory, the inclusion of all variables

simultaneously could help to better orientate the direction of causality of any relationships.
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Quantification of data underlying plots and graphs

We quantified the data underlying the various plots and graphs resulting from our analyses in

S1 Spreadsheet.

Supporting information

S1 Fig. Line graphs showing the recall and precision. Shown are results for the best fit net-

work found by BayesNetty (and alternative approaches) when the simulation network was

A! B! C! D! E for different data sets. The asterisks denote which variables had missing

values for 1800 individuals from a total of 2000 individuals. The parameter β denotes the

model strength that was used to simulate the data. Full: the data consisted of the original simu-

lation data with no missing values. Imputed: the data was imputed using our default algorithm.

Reduced: the data was reduced to the 200 individuals with no missing values. Imputed CT: the

data was imputed with complete data training. EM: the data was imputed with an expectation-

maximisation algorithm in R. Random: missing data was replaced by random values drawn

from the same variable. Mean: missing data was replaced by the mean value of the same vari-

able. All NN: the data was imputed using our default algorithm but with all variables used to

inform the choice of nearest neighbour. MICE: the data was imputed using the multivariate

imputation by chained equations approach.

(EPS)

S2 Fig. Line graphs showing the recall and precision. Shown are results for the best fit net-

work found by BayesNetty (and alternative approaches) when the simulation network was

given by three different networks in the bnlearn Bayesian Network Repository. Simulated

data consisted of 500 individuals of which 450 had each variable set to missing with various

probabilities as indicated on the horizontal axis. Full: The green line shows when the data con-

sisted of the original simulation data with no missing values, so the missing percentage does

not apply to this line. Imputed: the data was imputed using our default algorithm. Reduced:

the data was reduced to around 50 individuals with no missing values. Imputed CT: the data

was imputed with complete data training. EM: the data was imputed with an expectation-max-

imisation algorithm in R. Random: missing data was replaced by random values drawn from

the same variable. Mean: missing data was replaced by the mean value of the same variable. All

NN: the data was imputed using our default algorithm but with all variables used to inform the

choice of nearest neighbour. MICE: the data was imputed using the multivariate imputation

by chained equations approach.

(EPS)

S3 Fig. Plots showing the proportion of times the best fit BN has a directed edge from X to

Y. Shown are results from 1000 data simulations when the prior probability of a directed edge

from X to Y is varied. (A) The plot on the left shows a model with an effect from A to X to Y.

(B) The plot on the right an effect from A and Y to X. The effect size between X and Y is fixed

at 0.5. The different colour lines show how the results differ when the effect size is varied

between A and X (where a value of 0 gives no effect).

(EPS)

S4 Fig. Plots showing the proportion of times the best fit BN has a directed edge from B to

X (left column) or from X to Y (right column) for 1000 data simulations. The simulation

model has effects from A and B to X and from X to Y. The effect sizes from B to X and from X
to Y are fixed at 0.3. The effect size from A to X, a, is varied at values 0.1, 0.3 and 0.5 and

shown in different plots. The result of changing the prior probabilities of directed edges from

B to X and X to Y is shown in the plots. The white dashed lines show when the prior
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probabilities are 0.5, that is, no preference in either direction. In panel (A) we are detecting the

edge from X to Y for the weakest effect of edge A to X. Thus as the prior probability from X to

Y increases so does the proportion of times this edge is detected in the best fit BN. When the

prior probability of B to X increases we interestingly see that the proportion of times X to Y is

detected also increases even though it is a different edge. The edge from B to X helps to better

orientate the edge from X to Y, therefore when it is present the edge from X to Y is also more

likely to be present. When the prior probability for the edge B to X is in the opposite direction

this support is missing and so the proportion of times X to Y is detected decreases slightly,

although it does not approach 0 as there is still some evidence for an edge from X to Y. When

the strength of the edge from A to X is increased as shown in panels (C) and (E), the edge from

B to X becomes less relevant as the edge from A to X already provides a lot of support. The pro-

portion of times the edges X to Y is detected is then largely determined by the prior probability

of this edge. In panel (B) the proportion of times an edge is detected from B to X is shown for

the weakest setting of the edge from A to X. As expected when the prior probability of the edge

from B to X is increased the proportion of times the edge is detected also increases. Similar to

before it is interesting to observe that as the prior probability from X to Y increases the propor-

tion of times an edge from B to X is detected also increases. This shows that when edges are

correctly orientated they can help better orientate other edges in the network. As the strength

of the edge from A to X increases, shown in panels (D) and (F), the impact of the prior proba-

bility of X to Y is reduced as the edge A to X provides some support in orientating both X to Y
and B to X. Only when the prior probability of X to Y is set strongly in the wrong direction do

we see a large impact on the proportion of times B to X is detected.

(EPS)

S5 Fig. Average BN using imputed data of all variables from candidate variable triplets

together with variables for gender, age and RA diagnosis. A strength threshold (0.499) was

applied as suggested by the formula given by Scutari and Denis [7]. Edges are labelled with the

probability that they exist (strength), and in brackets the probability that they exist in the

shown direction (given that they exist). The thickness of the edges is proportional to the edge

strength. The nodes are such that: Dark blue (with gene name prefix) are B cell gene expres-

sion; dark pink (with gene name prefix) are T cell gene expression; light blue (with “b_” prefix)

are B cell methylation; light pink (and “t_” prefix) are T cell methylation; green are SNPs; red

is RA diagnosis; beige is age; and yellow is gender. With the large number of variables and low

number of individuals, it is unfortunately probably not very accurate as the section of the man-

uscript estimating the recall and precision shows. It can be seen that variables of the same kind

are generally connected to one another. For example, the gene expression measurements that

are prefixed with the same gene name tend to be connected, such as the FCRL3 B cell expres-

sion measures which are strongly connected together. The direction between these variables

are all around 0.5 suggesting they are not causal on one another.

(EPS)

S6 Fig. Average BN using imputed data of all variables from candidate variable triplets

together with variables for gender, age and RA diagnosis. A strong strength threshold (0.6)

was applied to reduce the number of edges shown. Edges are labelled with the probability that

they exist (strength), and in brackets the probability that they exist in the shown direction

(given that they exist). The thickness of the edges is proportional to the edge strength. The

nodes are such that: Dark blue (with gene name prefix) are B cell gene expression; dark pink

(with gene name prefix) are T cell gene expression; light blue (with “b_” prefix) are B cell

methylation; light pink (and “t_” prefix) are T cell methylation; green are SNPs; red is RA diag-

nosis; beige is age; and yellow is gender. There are less edges between different types of
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variables in this network plot compared to S5 Fig, suggesting that these edges are less likely to

be false positive edges.

(EPS)

S7 Fig. ROC curves for detecting a causal relationship from methylation to gene expres-

sion. CIT denotes the casual inference test and BN denotes Bayesian network analysis. Positive

and negative detection rates were calculated using averages taken from simulated data with

1000 replications.

(EPS)

S8 Fig. Plots showing the average recall and precision using random training data (RT)

and complete training data (CT) using 1000 simulations for each data point. Each line

shows the percentage of missing data in 450 individuals out of the 500 individuals.

(EPS)

S1 Spreadsheet. Quantification of data shown in the figures and supplementary figures.

(XLSX)

S1 Text. Computer simulations to evaluate performance.

(PDF)

S2 Text. Computational considerations and timings of BayesNetty, including use of the

Open Message Passing Interface (MPI) for parallel processing.

(PDF)

S3 Text. Exploration of the effect of varying the subset percentage size taken in step 1 of

the BayesNetty imputation algorithm.

(PDF)
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21. Myte R, Gylling B, Häggström J, Schneede J, Magne Ueland P, Hallmans G, et al. Untangling the role

of one-carbon metabolism in colorectal cancer risk: a comprehensive Bayesian network analysis. Sci-

entific Reports. 2017; 7:43434. https://doi.org/10.1038/srep43434 PMID: 28233834

22. Howey R. BayesNetty. Computer program package obtainable from http://www.staff.ncl.ac.uk/richard.

howey/bayesnetty/.

23. Hruschka ER Jr, Hruschka ER, Ebecken NFF. Bayesian networks for imputation in classification prob-

lems. J Intell Inf Syst. 2007; 29:231–252. https://doi.org/10.1007/s10844-006-0016-x

PLOS GENETICS A Bayesian network approach incorporating imputation of missing data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009811 September 29, 2021 27 / 28

https://doi.org/10.1002/gepi.22061
http://www.ncbi.nlm.nih.gov/pubmed/28691305
https://doi.org/10.1371/journal.pgen.1008198
https://doi.org/10.1371/journal.pgen.1008198
http://www.ncbi.nlm.nih.gov/pubmed/32119656
http://ftp.cs.ucla.edu/tech-report/198_-reports/850017.pdf
http://ftp.cs.ucla.edu/tech-report/198_-reports/850017.pdf
https://doi.org/10.1007/BF00994016
https://doi.org/10.1046/j.1467-985X.2003.00736.x
https://doi.org/10.1046/j.1467-985X.2003.00736.x
https://arxiv.org/abs/1302.4958v2
https://arxiv.org/abs/1302.4958v2
https://arxiv.org/pdf/1205.2615.pdf
https://doi.org/10.1111/1467-9973.00223
https://doi.org/10.1111/1467-9973.00223
https://doi.org/10.1177/089443939100900106
https://doi.org/10.1007/s13398-014-0173-7.2
https://doi.org/10.4238/gmr.15038987
http://www.ncbi.nlm.nih.gov/pubmed/27706596
https://doi.org/10.1038/srep43434
http://www.ncbi.nlm.nih.gov/pubmed/28233834
http://www.staff.ncl.ac.uk/richard.howey/bayesnetty/
http://www.staff.ncl.ac.uk/richard.howey/bayesnetty/
https://doi.org/10.1007/s10844-006-0016-x
https://doi.org/10.1371/journal.pgen.1009811


24. Beretta L, Santaniello A. Nearest neighbor imputation algorithms: a critical evaluation. BMC Medical

Informatics and Decision Making. 2016; 16 (Suppl 3):74. https://doi.org/10.1186/s12911-016-0318-z

PMID: 27454392

25. Miyakoshi Y, Kato S. A Missing Value Imputation Method Using a Bayesian Network with Weighted

Learning. Electronics and Communications in Japan. 2012; 95:1–9. https://doi.org/10.1002/ecj.11449

26. Scutari M. Bayesian network models for incomplete and dynamic data. Statistica Neerlandica. 2020; p.

1–23.

27. Friedman N. Learning Belief Networks in the Presence of Missing Values and Hidden Variables. In: Pro-

ceedings of the fourteenth international conference on machine learning (ICML97); 1997. p. 125–133.

28. Ramoni M, Sebastiani P. Robust Learning with Missing Data. Machine Learning. 2001; 45(2):147–170.

https://doi.org/10.1023/A:1010968702992

29. Riggelsen C, Feelders A. Learning Bayesian network models from incomplete data using importance

sampling. In: Proceedings of Artificial Intelligence and Statistics; 2005. p. 301–308.

30. Rancoita PMV, Zaffalon M, Zucca E, Bertoni F, de Campose CP. Bayesian network data imputation

with application to survival tree analysis. Computational Statistics and Data Analysis. 2016; 93:373–

387. https://doi.org/10.1016/j.csda.2014.12.008

31. Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how

does it work? International Journal of Methods in Psychiatric Research. 2011; 20:40–49. https://doi.org/

10.1002/mpr.329 PMID: 21499542

32. O’Hagan A, Buck CE, Daneshkhah A, Eiser JR, Garthwaite PH, Jenkinson DJ, et al. Uncertain Judge-

ments: Eliciting Experts’ Probabilities. John Wiley and Sons Ltd; 2006.

33. Clark AD, Nair N, Anderson AE, Thalayasingam N, Naamane N, Skelton AJ, et al. Lymphocyte DNA

methylation mediates genetic risk at shared immune-mediated disease loci. J Allergy Clin Immunol.

2020. https://doi.org/10.1016/j.jaci.2019.12.910 PMID: 31945409

34. Millstein J, Zhang B, Zhu J, Schadt EE. Disentangling molecular relationships with a causal inference

test. BMC Genetics. 2009; 10(23). https://doi.org/10.1186/1471-2156-10-23 PMID: 19473544

35. Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. 2006;

Complex Systems:1695.

36. Scutari M, Nagarajan R. Identifying significant edges in graphical models of molecular networks. Artifi-

cial Intelligence in Medicine. 2013; 57(3):207–2017. https://doi.org/10.1016/j.artmed.2012.12.006

PMID: 23395009

PLOS GENETICS A Bayesian network approach incorporating imputation of missing data

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009811 September 29, 2021 28 / 28

https://doi.org/10.1186/s12911-016-0318-z
http://www.ncbi.nlm.nih.gov/pubmed/27454392
https://doi.org/10.1002/ecj.11449
https://doi.org/10.1023/A:1010968702992
https://doi.org/10.1016/j.csda.2014.12.008
https://doi.org/10.1002/mpr.329
https://doi.org/10.1002/mpr.329
http://www.ncbi.nlm.nih.gov/pubmed/21499542
https://doi.org/10.1016/j.jaci.2019.12.910
http://www.ncbi.nlm.nih.gov/pubmed/31945409
https://doi.org/10.1186/1471-2156-10-23
http://www.ncbi.nlm.nih.gov/pubmed/19473544
https://doi.org/10.1016/j.artmed.2012.12.006
http://www.ncbi.nlm.nih.gov/pubmed/23395009
https://doi.org/10.1371/journal.pgen.1009811

