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Abstract

When the brain is awake, neurons in the cerebral cortex fire irregularly and the 

electroencephalogram (EEG) displays low amplitude, high frequency fluctuations. After falling 

asleep, neurons start oscillating between ON periods, when they fire as during wake, and OFF 

periods, when they stop firing altogether, and the EEG displays high amplitude slow waves. But 

what happens to neuronal firing after a long period of wake? We show here in freely behaving rats 

that, after prolonged wake, cortical neurons can go briefly “OFF line” as they do in sleep, 

accompanied by slower waves in the local EEG. Strikingly, neurons often go OFF line in one 

cortical area and not in another. During these periods of “local sleep”, whose incidence increases 

with wake duration, rats appear awake, active, and display a wake EEG. However, they are 

progressively impaired in a sugar pellet reaching task. Thus, though both the EEG and behavior 

indicate wakefulness, local populations of neurons in the cortex may be falling asleep, with 

negative consequences on performance.

Keywords

slow wave sleep; slow oscillations; EEG; cerebral cortex; multi-unit recording; reaching task; 
sleep deprivation

Everybody knows the difference between sleep and wake. During wake, the eyes are usually 

open, animals move around, and they respond to their surroundings. During sleep eyes close, 

behavior stops, and animals fail to respond to stimuli. Studies of brain activity also show 

major changes between wake and non-rapid eye movement (NREM) sleep, which makes up 

~80% of sleep. During wake neurons in the cerebral cortex fire irregularly, their membrane 

potential is tonically depolarized, and the EEG shows low voltage high frequency activity. 

During NREM sleep, due to a decrease in the level of neuromodulators, neurons become 
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bistable: their membrane potential oscillates between a depolarized up state similar to wake, 

and a hyperpolarized down state during which they cease firing altogether 1. These slow 

oscillations occur in the range between 0.1 and 6 Hz and they are visible both in multiunit 

(MUA) activity (ON and OFF periods) and in the EEG (slow waves) 2.

However, we also know that by staying awake too long one becomes tired, and many studies 

have demonstrated attention lapses, frequent mistakes in various cognitive tasks, and poor 

judgment, even when we may not feel particularly sleepy 2,3. Moreover, the EEG shows 

some trace of the sleep/wake history: the longer one has been awake, the higher the spectral 

power in the slow wave range (SWA, 0.5–4 Hz) of the EEG in subsequent sleep 4, 

corresponding to larger and more frequent slow waves, and to more intense and synchronous 

neuronal activity 2. Also, local variations in cortical activity during wake are associated with 

local sleep changes and sleep-dependent increase in task performance5–7. These changes are 

reversed progressively in the course of sleep 4. The wake EEG also shows changes that 

reflect the duration of previous wake, with power increasing in the theta range (5–7 

Hz) 8–10. Likewise, neuroimaging studies show blood flow and metabolic changes after 

sleep deprivation, with some brain regions undergoing decreases and other increases in 

activation 11. However, it is poorly understood how the underlying neuronal activity may be 

changing.

Neurons can go OFF-line during prolonged wake

To investigate this question, we implanted a group of adult rats (n=11) with 16-channel 

microwire arrays in deep layers of the frontal motor cortex and recorded both local field 

potentials (LFP) and local MUA 2 across spontaneous sleep and wake (Supplementary 

Information). As expected, the wake LFP was characterized by low amplitude fast and theta 

waves, accompanied by irregular, tonic MUA, and was readily distinguishable from the LFP 

of NREM sleep, when high amplitude slow waves occurred concomitantly with synchronous 

ON and OFF periods at the level of MUA (Fig. 1a,a′).

We then kept rats awake with novel objects for 4 hours starting at light onset 2. As expected, 

by the end of sleep deprivation the LFP showed an approximately 30% increase in spectral 

power in the slow/theta range between 2 and 6 Hz (Fig. 1b, Supplementary Fig. 1a). 

However, close inspection of the recordings revealed an occasional change in firing patterns 

(Fig. 1c): unlike at the beginning of sleep deprivation (SD1), towards the end (SD4) 

neuronal activity sporadically showed brief periods of silence, involving all or most of the 

recorded neurons. These short-lasting population OFF periods were often associated with 

slow/theta waves in the LFP. An opposite dynamic was observed during 6 hours of recovery 

sleep, when LFP showed a progressive decline of SWA (Fig. 1b′; Supplementary Fig. 1b). 

At the beginning of sleep (S1), large LFP slow waves were associated with synchronous 

ON-OFF oscillations in MUA (Fig. 1c′). At the end of recovery sleep (S6), large slow waves 

became infrequent and MUA became sparse and irregular. Thus, at the level of neuronal 

firing, wake under high sleep pressure occasionally resembles late NREM sleep, while low 

pressure sleep may occasionally resemble wake.
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Crucially, we found that the number of OFF periods in wake increased significantly by 

57.7±16.5% from SD1 to SD4 (Fig. 1d, left) suggesting that the tendency of neurons to enter 

a “sleep-like” mode increases with sleep pressure. The number of high amplitude LFP 2–6 

Hz waves also increased significantly by 23.3±5.2% (Fig. 1d, right). The initial number of 

OFF periods or LFP 2–6 Hz waves during SD1 correlated negatively with their increase 

from SD1 to SD4 (OFF periods, R=−0.53, p<0.1, LFP waves, R=−0.87, p<0.0001), 

consistent with a saturating increase of sleep pressure4. Again, an opposite dynamic was 

apparent during recovery sleep: sleep OFF periods and high amplitude LFP slow waves 

decreased significantly by 36.9±11.2 and 59.5±9.0%, respectively, from S1 to S6 (Fig. 1d′). 

Of note, OFF periods, as defined here, and 2–6 Hz LFP waves were also observed during 

baseline spontaneous wake in all rats, but their frequency was lower than that observed 

during the first hour of sleep deprivation (OFF periods: 7.1±4.1/1 min, p=0.023; 2–6 Hz 

waves: 25.05±8.1, p=0.06). Thus, high sleep pressure is associated with increased tendency 

of neurons to go “OFF line” in both wake and sleep, and MUA OFF periods underlie the 

macroscopic changes in LFP low frequency power.

Wake OFF periods occur asynchronously in distant cortical regions

Sleep is usually thought of as a global behavior and a global cortical/EEG state 12, raising 

the question of whether OFF periods can be detected simultaneously in distant cortical areas. 

In several animals (n=9), we implanted an additional microwire array in the deep layers of 

parietal cortex. We found that OFF periods in awake rats were also present in parietal cortex 

(average duration: 79.02±7.7 ms, incidence: 37.51±6.16/1min) and, similar to the frontal 

OFF periods, their occurrence increased from SD1 to SD4 (56.6±19.5%, n=9, F(1,17)=6.23, 

p=0.041). Moreover, during sleep deprivation we found instances in which all recorded 

neurons in frontal and parietal areas underwent OFF periods near simultaneously, consistent 

with a global phenomenon (Fig. 2a, left). However, often neurons recorded in one cortical 

area showed an OFF period, whereas in the other area they stayed ON, as they normally do 

during wake (Fig. 2a, right). Further analysis revealed that most OFF periods were local, e.g. 

observed only in one cortical region at a time (frontal: 76.9±2.9%, parietal: 82.8±3.1%; 

frontal vs parietal: F(1,27)=4.6, p=0.0981). Importantly, both global and local OFF periods 

increased from SD1 to SD4 (Fig. 2b, left and middle), but the former more than the latter 

(Fig. 2b, right). Consistent with the MUA findings, most wake 2–6 Hz waves occurred 

exclusively in the LFP from one of the two areas, while the remaining waves were seen 

near-simultaneously in both areas. Both local 2–6 Hz waves, and those occurring 

simultaneously in frontal and parietal areas, became more frequent from SD1 to SD4, but 

the relative proportion of global waves increased during SD4 compared to SD1 (Fig. 2c), 

suggesting tha,t as sleep pressure builds up, neuronal activity in wake becomes more 

synchronized, as it does in sleep.

Since in behaviorally awake animals during sleep deprivation distant brain areas can enter 

OFF periods independently, we asked next if nearby (~2 mm) neurons can also do so. We 

found that, even among units recorded with the same microelectrode array, a substantial 

fraction could stop firing together for up to hundreds of milliseconds, while the remaining 

neurons maintained their spiking activity at virtually unaltered or even elevated rates 

(Supplementary Fig. 2a). On average, while a subset of neurons ceased firing abruptly, the 
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remaining neurons increased firing transiently with a ~20 ms delay and then slowed down 

slightly (~15%, Supplementary Fig. 2b). Controls by shuffling units between subsets 

indicated that these “hyper-local” OFF periods were unlikely to be an artifact of different 

firing rates of cortical neurons (Supplementary Information). Hyper-local OFF periods 

increased by almost 40% from SD1 to SD4, suggesting that they too are related to sleep 

pressure (Supplementary Fig. 2c).

Having found evidence for local OFF periods during wake, we then asked if sleep OFF 

periods could also be local. Previous evidence has shown that sleep can be regulated 

locally13, as demonstrated by a local increase in SWA after manipulations that affect 

plasticity during wake 12,13. Moreover, high-density EEG studies in humans combined with 

source localization 14, as well as modeling studies 15, have suggested that sleep slow waves 

with multiple peaks may result from the summation or interference of separate slow waves 

originating at different locations. Finally, recent depth recordings in humans have provided 

evidence that sleep slow waves and OFF periods can be local16. As shown in Fig. 2a′ (left), 

we found that, in rats, OFF periods during NREM sleep occurred not only synchronously at 

frontal and parietal areas (Fig. 2a′, left), but also locally, in which case they were associated 

with local slow waves in the LFP (Fig. 2a′, right). The incidence of both global and local 

OFF periods in NREM sleep decreased significantly from S1 to S6 (Fig. 2b′, left and 

middle), accompanied by a relative reduction of global slow waves (Fig. 2b′, right). Thus, 

just like wake 2–6 Hz waves became more global from SD1 to SD4 (Fig. 2b, right), sleep 

slow waves became more local from S1 to S6 (Fig. 2b′, right), suggesting that populations of 

neurons are more easily recruited into synchronous slow oscillations when sleep pressure is 

high than when it has dissipated 17.

Local OFF periods in wake lead to behavioral deficits

It is common experience that tiredness following prolonged sleep loss can be manifested in 

“microsleeps”, brief episodes (3–15 seconds) during which a person appears suddenly asleep 

(eyes closed or closing), may not respond to stimuli, and the EEG shows sleep-like 

activity 18. Clearly, such microsleeps can be dangerous during tasks requiring alertness, and 

the detection of sleep-like behavior or EEG changes is being pursued to reduce risks 19. 

However, careful observation of our rats, which were exposed to a relatively short period of 

sleep deprivation, did not reveal any indication of sleep: their eyes were open, they 

responded to stimuli, and their EEG was unambiguously a wake EEG (Fig. 1a, 

Supplementary Information, Supplementary Figs. 3,4). Moreover, a retrospective analysis of 

video recordings showed no behavioral signs of sleep specifically during MUA OFF 

periods.

Given that the OFF periods we detected have no overt manifestations, are short-lasting, and 

are often local, can they have any impact on performance? To investigate potential 

consequences of neuronal “tiredness”, the rats were trained on a sugar pellet reaching task 13 

for 2 hours between SD1 and SD4 (Supplementary Information). Learning the reaching task 

engages a circumscribed cortical area within the motor cortex, leads to local plasticity in 

wake 20, and to increased SWA during subsequent sleep 13,20. To investigate directly 

whether increased incidence of neuronal OFF periods leads to impaired performance, in a 
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subset of animals (n=8) we performed simultaneous video and MUA recordings during the 

reaching attempts with high temporal resolution. Although the number of OFF periods 

decreased steadily towards each reaching attempt in both frontal and parietal cortex, 

possibly reflecting increased global arousal necessary for performing the reach, we found 

that the occurrence of an OFF period within several hundreds of ms before the reaching 

attempt was often associated with failure to successfully grasp a sugar pellet (Fig. 3a,b). 

Specifically, OFF periods occurred more frequently ~300–800 ms before an unsuccessful 

reaching attempt as compared to successful trials (Fig. 3c, left), and the probability of a 

successful reach decreased by 37.5% if there was at least one OFF period before the reach 

(OFF+: 26.1±6.3, OFF−: 41.8±4.1; F(1,11)= 15.6, p=0.01). Importantly, this effect was 

observed in frontal but not parietal cortex (Fig. 3c, right). We also found that the overall 

number of misses increased significantly across the training periods (p<0.05), and the 

behavior became progressively unstable. Thus, while at the beginning of the task hits and 

misses alternated regularly, as time progressed longer “clusters” of misses became more 

frequent and had increasingly variable duration (duration: F(2,32)= 4.69, p=0.021; variance: 

F(2,32)= 4.31, p=0.028, rANOVA). These results suggest that neuronal OFF periods and 

corresponding increases in low frequency LFP power may be associated with decreased 

behavioral performance as is typical of sleep deprived individuals.

Discussion

These findings reveal that, in animals kept awake beyond their normal sleep time, 

populations of neurons in different cortical areas can suddenly go ‘OFF line’ in a way that 

resembles the OFF periods of NREM sleep. The main differences are that during sleep 

virtually all cortical neurons show ON-OFF oscillations in the SWA frequency range, the 

EEG displays typical sleep slow waves and spindles, and the animal is behaviorally 

immobile, with eyes closed, and unresponsive. During prolonged wake, instead, only subsets 

of neurons enter OFF periods, usually for shorter durations, the EEG is typical of 

wakefulness, and the animal appears behaviorally awake, with eyes open, and responsive to 

stimuli. Also, the number of OFF periods increases with the duration of wakefulness, 

suggesting that the likelihood of subsets of neurons going OFF line in the context of an 

otherwise awake cortex increases with sleep pressure. As shown here, the progressive 

changes observed during sleep deprivation are the mirror-image of changes during recovery 

sleep: neuronal firing rates during ON periods, number and duration of OFF periods, number 

of neurons participating synchronously in the OFF periods, and low frequency content of the 

EEG, all increase during wake just as they decrease during sleep, in agreement with the 

concept of a homeostatic regulation of sleep need 4.

Perhaps the most striking result of this study is that, in the sleep deprived brain, subsets of 

neurons may enter an OFF period in one cortical area but not in another, and even within the 

same cortical area some neurons may be OFF while others are ON, seemingly in a 

piecemeal fashion. Based on this evidence, the wake behavior of a sleep deprived subject 

might be better characterized as a covert form of “dormiveglia” 21. Moreover, as shown here 

using a sugar pellet reaching task, the increasing occurrence of local OFF periods during 

prolonged wake was associated with worsening performance in the task. While paradigms 

should be developed to associate more precisely the occurrence of OFF periods in specific 
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subsets of neurons with specific performance failures, these initial findings raise the 

intriguing possibility that “local sleep” in an awake brain may be responsible for cognitive 

impairments due to sleep deprivation or restriction3,4,9. It is especially relevant that 

cognitive impairments, including defective judgment and irritability 22, may occur despite 

an outward impression of full-fledged wakefulness, the lack of subjective insight 4, and a 

wake EEG. The sporadic occurrence of local neuronal OFF periods in sleep deprived 

subjects may be analogous to the sporadic occurrence of local hypersynchronous discharges 

in partial epilepsy. Such local events can be detected with careful EEG recordings as 

interictal spikes and may cause momentary lapses (“absence”) without overt behavioral 

signs 23.

One can only speculate about the mechanisms underlying the local wake OFF periods. A 

spontaneous slow oscillation of membrane potentials can occur in mouse barrel cortex 

during quiet wake 24 and affect the amplitude of evoked responses 13, although it is not clear 

whether such down states occur during active behavior, are local, affect performance and, 

critically, reflect increasing sleep pressure. While we do not know if the wake OFF periods 

we observed in freely moving rats are associated with neuronal hyperpolarization, their 

overall similarity to sleep OFF periods, and the finding that they become more frequent with 

increasing sleep pressure, suggests that they may be an expression of increasing neuronal 

bistability 25. Thus, in addition to the global state instability that is a hallmark of sleep 

deprivation 26, there can also be a local instability, at least in the cerebral cortex. A 

bistability between ON and OFF periods could be triggered by decreasing levels of arousal-

promoting neuromodulators 27, especially since cho-linergic and noradrenergic neurons, for 

instance, do not always discharge in tight synchrony 30,31, and presynaptic release can be 

modulated locally 28,29.

Is local sleep in awake rats an adaptive or maladaptive response? In some cetaceans and 

birds, one hemisphere can remain awake while the other is in slow wave sleep, an adaptive 

response that permits them to continue swimming, flying, or monitoring the environment 30. 

The ability to actively control behavior with some neural circuits while others may be 

idling 31 could also be evolutionary advantageous. However, dissociated behavioral states, 

such as sleepwalking or REM sleep behavior disorder and other parasomnias, are clearly 

maladaptive 35,36. Since local wake OFF periods are associated with locally increased 

excitability after intensive training and with failures in performance, it is more likely that 

they represent a form of neuronal tiredness due to use-dependent factors, such as synaptic 

overload 32. A question for the future is whether local OFF periods during wake may also 

serve a functional role, from energy saving 37,38 to the initiation of a local restorative 

process.

METHODS SUMMARY

In male WKY rats, local field potentials (LFPs) and multiunit activity (MUA) were recorded 

from deep layers of frontal (n=11 rats) and/or parietal (n=9) cortex with 16-ch (2×8) 

polyimide-insulated tungsten microwire arrays. Rats were housed individually in transparent 

Plexiglas cages (light:dark 12:12, light on at 10am, 23±1°C; food and water ad libitum and 

replaced daily at 10am, except for the sugar pellet reaching task; see Supplementary 
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Information). Animal protocols followed the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals and were in accordance with institutional guidelines.

Data acquisition and online spike sorting were performed with the Multichannel 

Neurophysiology Recording and Stimulation System (Tucker-Davis Technologies Inc., 

TDT). MUA was collected continuously (25 kHz, 300 Hz – 5 kHz), concomitantly with the 

LFPs from the same electrodes and epidural EEGs (both 256 Hz, 0.1–100 Hz). Amplitude 

thresholds for online spike detection were set manually and allowed only crossings of spikes 

below −25uV. LFP power spectra were computed by a Fast Fourier Transform (FFT) routine 

for 4-sec epochs (Hanning window, 0.25 Hz resolution). Sleep stages were scored off-line 

by visual inspection of 4-sec epochs, where the EEG, LFP, EMG and spike activity were 

displayed. Spike sorting was performed by PCA followed by SMEM clustering algorithm. 

Population OFF periods in wake and NREM sleep were defined as periods with suppressed 

or absent neuronal activity. Recordings were performed continuously for 2–3 weeks. In each 

animal 2–4 experiments (at least 5 days apart) with 4h of sleep deprivation were performed, 

one of which combined with the sugar pellet reaching task. For details about the analysis of 

firing rates and neuronal population OFF periods, see Supplementary Information.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. OFF periods in sleep and wake
a, a ′, LFP records from frontal cortex and raster plots of corresponding multiunit activity 

(MUA; 6 putative neurons, each vertical line is a spike). b, time course of wake LFP slow/

theta power (2–6 Hz) for consecutive 5-min bins during 4h of sleep deprivation in one rat. b
′, time course of LFP slow wave activity (0.5–4 Hz) plotted for consecutive 5-min bins 

during 6h of recovery after sleep deprivation in the same rat. Note different Y-axis scale in b 
and b′. Bottom: corresponding hypnograms. c, c′, LFP records in wake at the beginning 

(SD1) and end (SD4) of sleep deprivation, and in NREM sleep at the beginning (S1) and end 

(S6) of recovery. Bottom: corresponding MUA raster plots. d, d′, left, changes in OFF 

periods and 2–6 Hz waves in wake, and of OFF periods and 0.5–4 Hz waves in NREM 

sleep. Black lines: mean (SEM, n=11 rats); grey lines: individual rats. Triangles depict 

significant differences (wake, OFF periods: F (1,21)=7.03, p=0.024; 2–6 Hz LFP waves: F 
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(1,21)=18.61, p=0.0015; NREM sleep, OFF periods: F (1,21)=10.40, p=0.009; 0.5–4 Hz 

LFP waves: F (1,21)=34.83, p=1.5069e-004, fixed-effects model ANOVA).
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Figure 2. Local wake OFF periods
a, top: wake LFP records in frontal (F) and parietal (P) cortex, depicting global or local 

frontal 2–6 Hz waves (boxed); bottom, raster plots of corresponding MUA. a′, top: LFP 

records in NREM sleep depicting global or local frontal slow waves (boxed); bottom: raster 

plots of corresponding MUA. b, left and middle: change in global and local OFF periods 

during sleep deprivation (mean, n=7 rats, 1–3 experiments/rat). Triangles here and in the 

next panels depict differences at a significant (filled) or tendency (open) level (global OFF 

periods: F(1,21)=94.95, p=0.0104; local OFF periods: F(1,21)=20.08, p=0.0464). Right: 

number of global OFF periods (as % of local, F+P) during SD1 and SD4 (F(1,21)=67.05, 

p=0.0146, fixed-effects model ANOVA). b′, left and middle: change in global and local 

OFF periods during NREM sleep (mean, n=7 rats, 1–3 experiments/rat; global OFF periods: 

F(1,21)=60.72, p=0.0161; local OFF periods: F(1,21)=11.56, p=0.0767). Right: number of 

global OFF periods (as % of local, F+P) during S1 and S6 (F(1,21)=99.17, p=0.0099, fixed-

effects model ANOVA). Note different Y-axis scale in b and b′. c, left and middle: changes 

in global and local waves from SD1 to SD4 (mean, n=7 rats, 1–3 experiments per rat, SEM; 

global waves: F(1,21)=34.08, p=0.0281; local waves: F(1,21)=28.54, p=0.0333). Right: 

number of global waves (as % of local, F+P) during SD1 and SD4 (F(1,21)=52.53, 

p=0.0185, fixed-effects model ANOVA). c′, left and middle: changes in global and local 

waves during NREM sleep (mean, n=7 rats, 1–3 experiments/rat, SEM; global waves: 

F(1,21)=254.42, p=0.0039; local waves: F(1,21)=529.31, p=0.0019). Right: number of 

global waves (as % of local, F+P) during S1 and S6 (F(1,21)= 37.38, p=0.0253, fixed-effects 

model ANOVA). Note different Y-axis scale in c and c′.
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Figure 3. Wake OFF periods affect performance
a, average neuronal activity in frontal cortex triggered by the OFF periods (mean, SEM, n=6 

rats; shown as % of mean firing rate in the last 200 ms before the OFF period). b, top: 

individual examples of frontal LFP records immediately preceding a successful or 

unsuccessful reaching attempts (Hit or Miss, arrows); middle, raster plots of corresponding 

MUA; bottom: instantaneous firing rates of the entire population (20 putative neurons). Note 

a generalized suppression of firing before Miss. c, number of OFF periods before Hits or 

Misses (frontal, n=6 rats; parietal, n=5 rats). Average values are plotted for consecutive 

overlapping 300ms windows with 50ms shifts against the midpoint of the corresponding 

window (e.g. the value at 500 ms depicts the number of OFF periods occurring between 350 

and 650 ms). Squares show significant differences between Hits and Misses (grey: p<0.1, 

black: p<0.05, rANOVA).
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