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When do perturbative approaches 
accurately capture the dynamics of 
complex quantum systems?
Amir Fruchtman1, Neill Lambert2 & Erik M. Gauger3

Understanding the dynamics of higher-dimensional quantum systems embedded in a complex 
environment remains a significant theoretical challenge. While several approaches yielding numerically 
converged solutions exist, these are computationally expensive and often provide only limited physical 
insight. Here we address the question: when do more intuitive and simpler-to-compute second-order 
perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify 
its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model.

Recent years have seen remarkable experimental progress in probing and controlling increasingly larger 
quantum systems in condensed matter systems1–3. In this setting it is often not possible to consider the envi-
ronment as only having a very small perturbative influence on the system of interest. Therefore, one cannot 
a priori expect conventional weak-coupling approaches4, attractive for their relative simplicity and interpret-
ability, to remain a suitable tool for these systems. However, master equations (MEs) based on a perturbative 
expansion nevertheless often provide useful solutions in a variety of circumstances. This includes, for exam-
ple, comparison of such a model to experimentally observed excition-induced dephasing for laser-driven 
Rabi oscillation in semiconductor quantum dots5,6, or the close agreement of ME models with numerically 
exact solutions7–9. In some but not all of those cases, a judiciously chosen transformation allows a redefi-
nition of system and environment before the perturbative expansion is performed (see, e.g. refs 7 and 8),  
allowing for better performance.

An important question to address then is: when is an approach that is perturbative to second order in the 
coupling strength ‘good enough’ for capturing the essentials of the dynamics on a qualitative, or even quantitative, 
level? Here, we develop a criterion for predicting when such an approach is expected to perform well. Our crite-
rion is based on a reasonably straightforward analytical expression that is, crucially, easy to evaluate, whilst also 
lending itself to an intuitive physical interpretation.

We wish to stress that we are focussing on the question when a second-order perturbative treatment can be 
used reliably, as opposed to when environmental effects only perturb the system slightly. In the latter case the 
perturbative treatment should be automatically valid, however, a second-order treatment may remain valid even 
when it changes the dynamics dramatically from those of an isolated system. Hereafter, we shall use the term 
‘weak-coupling’ synonymously with ‘perturbative to second-order’.

We consider two different weak-coupling techniques: time convolutionless (TCL) master equations4 and a sec-
ond method based on the phase-space representation of the full density matrix10 (P-mat). Interestingly, we show 
that both approaches give rise to exactly the same criterion, despite their rather different nature. This suggests that 
our criterion has applicability beyond just one particular perturbative approach.

We apply both approaches to the canonical spin boson model11 as well as the much studied FMO complex12–17. 
The latter has received a significant amount of attention and is a prime example of the complicated interplay 
between coherent dynamics interwoven with significant environmental influences. The advantage of this system 
is that a large body of literature and numerically converging methods exist. Interestingly, our criterion indicates 
that despite the relatively strong coupling, a second-order treatment is appropriate at lower but not necessarily 
at higher temperatures. We note that the FMO problem has previously been tackled with weak-coupling tech-
niques9,15,18–21, but here we not only use a novel method but also introduce a rigorous criterion for when such 
approaches are indeed permissible.
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In the ‘grey area’ where a second-order expansion is no longer strictly justified, we find that the quality of the 
different approaches differs. Some of us have previously found that the P-mat method outperformed the com-
monly used secular, second-order Born-Markov master equation10. For the examples studied here, we find that 
a TCL ME gives slightly better short time dynamics than P-mat, whilst the latter frequently performs better at 
longer times as the system approaches thermalisation. As expected, fourth-order TCL typically (but not always) 
beats second-order approaches, but may also lead to unphysical results in the strong-coupling regime. To arrive 
at robust conclusions, we supplement comparisons of the population dynamics (as in refs 9 and 22) by the trace 
distance, which is also sensitive to the agreement between the coherences of the approximate and exact methods.

Results
As a starting point we use the ‘standard’ open-systems Hamiltonian, which is given by

   = + + , (1)S B I

where S is a finite-dimensional Hamiltonian for the system of interest, and B , I  are the bath and interaction 
Hamiltonians, respectively. The bath (or baths in the case of the FMO complex) is modelled by a collection of 
harmonic oscillators that are linearly coupled to the system according to:
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Here, Vν are system and Bν the bath operators with bath index ν. The gν,k are the coupling constants (in units of 
energy), and ν

†a k,  the bosonic creation operators satisfying = =ν ν ν ν′ ′ ′ ′
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Note that for the case of phonons, the justification for the linear form of (3) usually hinges on a weak-coupling 

argument: We assume that the equilibrium position of the atoms hosting the vibrational modes only vary slightly 
when an electron or an exciton is present. Expanding the potential energy between these atoms to first order leads 
to the linear coupling term of Eq. (3)11,23. Conversely, for very strong coupling, one would not be able to justify 
the first-order approximation.

The canonical definition of the coupling strength of an open system to its environment is the reorganization 
energy, i.e. the potential energy associated with shifting the oscillator modes into their new equilibrium position 
in the presence of an excitation of the system,
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ω
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Weak-coupling is sometimes defined by the condition λν  V ij where Vij represent off-diagonal coupling 

elements of the Hamiltonian between distinct basis states (typically chosen as the site basis)13,24. Whilst straight-
forward for a two level system, in higher-dimensional systems such as the FMO complex, one may wonder exactly 
which Vij ought to be considered. Arguably, some off-diagonal terms in the Hamiltonian may be small or even 
vanish without automatically implying a strong coupling scenario. The authors of ref. 22 write that in many cases 
the “ …​ reorganization energy is not a reasonable measure for the coupling strength …​” because the system’s 
dynamic frequencies are not taken into consideration. They suggest circumventing this shortcoming by defining 
an effective reorganisation energy ∫λ ω ω ω= d J ( )/

E

E
eff

min

max , which only spans the relevant energy interval contain-
ing the system frequencies. On the other hand, in ref. 25 the authors present a heuristic approach for estimating 
when a weak-coupling approach is valid by introducing a measure that depends on the temperature of the bath, 
but in that case not on the frequencies of the system.

In this paper we analyse a different approach, which takes into account both the system frequencies and 
the temperature of the environment. Essentially, we let ourselves be guided by wishing to apply the term 
“weak-coupling” to situations when higher order expansion terms beyond the second order are not required for 
reliably capturing the open systems dynamics. To this end, we explicitly compare terms from a 4th order expan-
sion to 2nd order terms, obtaining the following weak-coupling criterion:


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which must hold separately for each eigenenergy i, and where ii ii2  and ii ii4  are explicitly given in 
Eqs (29) and (31) of the methods section, and are rates given by TCL2 and TCL4 perturbation expansion. This 
“full” criterion, whilst evaluated straightforwardly enough, does not easily lend itself to providing much analytical 
insight. Therefore, we also consider a “simplified” version that is more amenable to physical interpretation. This 
simplified criterion reads

∑ϒ
≠
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Here, | | = ∑ν νV i V jij
2 2 with |j〉​ being the eigenstates of the system, Δ​ij =​ εi −​ εj is the energy difference 

between two eigenenergies i, j, and we have assumed that all spectral densities take the same form Jν(ω) =​ J(ω). 
(Generalising for different spectral densities is straightforward.) For a thermal environment we have 

∫ ω ω βω ω=
∞D t d J t( ) ( ) coth( /2) cos( )

0
. Further, t is the timescale of interest (i.e. the duration for which we want 

the calculations to remain accurate). When D(τ >​ t) ≈​ 0, it is justified to take the upper limit of the integral to infin-
ity. We provide the explicit derivation of Eq. (6) in the ‘Derivation of the Criterion’ section, and note that TCL and 
P-mat both lead to exactly the same final expression.

For the examples studied in the following sections of this paper, the simplified criterion of Eq. (6) turns out to 
be as stringent as the full criterion. However, not having been able to mathematically prove that it will always be 
sufficiently rigorous, we suggest using it carefully and supplementing it by Eq. (5) if in doubt.

Interestingly, the quantities written in the RHS of Eq. (7) are exactly the terms leading to the “slippage of 
initial conditions”26,27, explained below, indicating that if the initial slippage for each eigenstate is small, then the 
perturbative treatment is a good approximation, otherwise one should look for alternative methods. Note that 
appreciable slippage of initial conditions marks the onset of non-Markovian effects, rendering a perturbative 
second-order expansion (and thus our definition of weak coupling) invalid.

Let us briefly explain what the slippage of initial conditions is: This is a second-order argument, and is related 
to the relationship between the Redfield master equation and the TCL2 master equation (that is discussed in more 
detail below): In the Schrödinger picture, the TCL2 kernel t( )2  becomes constant for times larger than the mem-
ory time of the environment τb. This means that after τt b the dynamics become Markovian. In fact, making the 
substitution  → ∞t( ) ( )2 2  yields exactly the (Markovian) Redfield equations for the dynamics of the system. 
The slippage of initial conditions is a mathematical trick that enables one to recover the long-time TCL2 dynamics 
of the system using Redfield equations, by introducing a modified initial density matrix ρ(0) →​ ρeffective(0), that 
captures the difference in the initial dynamics between time-dependent TCL2 and Redfield. That is, after an initial 
transient and non-Markovian period, the density matrix calculated using TCL2 will be similar to one calculated 
using Redfield starting from a modified initial state. This “initial slippage” also guarantees the positivity of the 
density matrix, which is not true in general for the Redfield equations.

In the methods section we introduce the perturbative methods we use in this paper, namely the TCL and 
P-mat methods. We also briefly introduce HEOM, a technique yielding numerically converged results, which will 
in the following serve as benchmark against which we may compare our perturbative expansions, and provide 
evidence for the validity and usefulness of the above criteria.

Spin-Boson Model Example.  As a first case study, we apply our criteria to the canonical example of the 
spin-boson model11 with Hamiltonian given by:

 ∑ ∑σ ω σ= ∆ + + +† †a a g a a1
2
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k k k z

k
k k k

where σx, σz are the usual Pauli matrices and Δ​ represents the Rabi frequency of the spin. Further, a(†) denotes 
the annihilation (creation) operator of a bosonic mode k with frequency ωk, and gk are the spin-boson coupling 
elements. We consider an Ohmic spectral density with exponential cutoff as follows

∑ω δ ω ω ηλ ω ω= − = ω ω−J g e( ) ( ) ( / ) ,
(9)k

k k c
2 / c
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where η is a dimensionless parameter allowing us to easily interpolate between weak and strong coupling. We 
choose Δ​ =​ π/2 ps−1, T =​ 50 K, λ =​ 0.01485 ps−1, and ωc =​ 2.2 ps−1.

Evaluating our weak-coupling criteria, the LHS of Eqs 5 and 6 for these parameters gives 0.04 η (0.06 η) for 
the simplified (full) version of the criterion, meaning the system is well into the weak-coupling regime when 
we set η =​ 1. This can be seen in Figs 1 and 2 which show a comparison of TCL2, TCL4, and P-mat techniques 
with the numerically exact HEOM dynamics. As expected the perturbative techniques capture the dynamics 
very accurately in this case. P-mat performs worst in this case (despite having previously been shown to outper-
form a standard secular Born-Markov master equation in a comparable scenario10), although the gap narrows 
towards longer times when the system approaches thermal equilibrium. The trace distance of all three perturba-
tive approaches features oscillations at twice the Rabi frequency of the natural precession time of the spin, clearly 
visible in Fig. 2. For completeness, the trace distance between two density matrices is defined by

 ∑ρ ρ ρ ρ λ= − ={ }Tr( , ) 1
2

( ) 1
2

,
(10)i

i1 2 1 2
2

where λi is the i’th eigenvalue of (ρ1 −​ ρ2). Its physical meaning is connected to the probability of correctly dis-
tinguishing between the two states if a measurement was performed. For a two-level system, the trace distance 
is equal to 1/2 the Euclidean distance between two points in the Bloch sphere28. Generally, its interpretation 
depends on the dimensionality of the system, making it difficult to say what “small” means in absolute terms. 
However, this does not affect its usefulness as a relative metric for benchmarking several approximate methods 
against an exact solution.
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When we increase the system and environment coupling by setting η =​ 10, our criteria indicate that we can 
no longer expect to be in the weak-coupling regime. In Fig. 3 we show a comparison between TCL2 and P-mat 
techniques with exact HEOM calculations, and it is apparent that both fail not only quantitatively but also qual-
itatively at intermediate times around t ≈​ 1.5 ps. We do not show TCL4 in this case because the TCL4 generator 
features an unphysical positive eigenvalue in the long time limit.

Figure 1.  Comparison of the spin boson dynamics calculated using HEOM (dashed) to our perturbative 
techniques (solid). Here we consider the weak-coupling case with η =​ 1 (see main text for other parameters).

Figure 2.  Trace distance between the spin boson dynamics calculated using HEOM and the different 
perturbative techniques. Again, we consider a clearly cut weak coupling scenario with parameters as in Fig. 1.

Figure 3.  Comparison between the spin boson dynamics calculated using HEOM and weak-coupling 
techniques, for a strong-coupling case, η = 10. Other parameters as in Fig. 1.
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FMO Complex Dynamics Example.  We now turn to the dynamics of the Fenna-Matthews-Olsen (FMO) 
complex – a prime example of complex quantum dynamics in the difficult regime between weak and strong envi-
ronmental coupling in a higher-dimensional Hilbert space. We follow the 7-site FMO model considered by 
Ishizaki and Fleming13, where all chlorophylls have the same environment given by a Drude-Lorentz spectral 
density ω λ=ν π

γω

ω γ+
J ( ) 2

2 2  with λ =​ 6.59 ps−1. We consider the three cases for the environmental parameters 
discussed in ref. 13, namely T =​ 77 K, γ−1 =​ 50 ps; T =​ 300 K, γ−1 =​ 50 ps; and T =​ 300 K, γ−1 =​ 166 fs. Once again 
comparing HEOM results to two perturbative methods, we will find that our criteria predict the validity of the 
methods not only for the spin boson model considered above but also for this much more involved case.

Table 1 lists the values of the criteria for the different sets of parameters mentioned above. Here we observe a 
factor of roughly two between the simplified, Eq. (6) and full criterion, Eq. (5), with the simplified version being 
the more stringent one. However, we note that both agree in their classifications of whether the perturbative 
solution should be valid or not. Further, the reorganisation energy is constant across the three cases as it does not 
depend on the temperature or the cut-off frequency (for this choice of spectral density), and is thus clearly not a 
good measure for the coupling strength in the sense discussed in this paper.

We visualise the ϒ​ij of Eq. (6) for all three FMO cases in Fig. 4. Notably, two of the system eigenstates are 
almost resonant, being split by only ~2.8 ps−1. This pair experiences strong environmental interactions for the 
γ−1 =​ 166 fs cutoff (ϒ​ij ~ 2.8), clearly placing the system into the strong-coupling domain, according to our defini-
tion. By contrast, for γ−1 =​ 50 fs this pair sits in an intermediate regime (at T =​ 300 K), whereas all other occurring 
frequencies satisfy our weak-coupling criterion.

Consequently, we would expect a very good agreement between exact numerics and weak-coupling tech-
niques in the low-temperature cases at T =​ 77 K, but at T =​ 300 K we expect the weak-coupling techniques to 
work only for γ−1 =​ 50 fs and not for γ−1 =​ 166 fs. We shall see that these expectations are met by our dynamical 
simulations discussed in the following.

To perform our simulations, the real part of the response function D(t) is approximated by a single exponent 
and a delta function
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Temperature γ−1
Max Full 
Criterion

Max Simplified 
Criterion

λn/max 
|V12|

77 K 50 fs 0.04 0.09 0.4

300 K 50 fs 0.19 0.38 0.4

300 K 166 fs 1.09 2.6 0.4

Table 1.   Full and simplifed criteria applied to different FMO configurations. In each case we choose the 
largest value of LHS of Eqs (5) and (6) over all i. The reorganisation energy, λn =​ 6.59 ps−1, does not depend 
on the cut-off frequency γ or the temperature, and we show the value of the reorganisation energy divided by 
the largest dipole-dipole coupling in the system, |V12| =​ 16.5 ps−1 (note that here 1 and 2 refer to the site basis, 
whereas throughout the rest of this paper we use the energy eigenbasis).

Figure 4.  Visualisation of the simplified criterion: the different |ϒij| are shown at their corresponding 
frequencies Δij. The rescaled and dimensionless respective spectral densities, πJ(ω)/ω, are also shown as 
the coloured background areas, to illustrate at which frequencies environmental effects are expected to be 
dominant.
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while the exact imaginary part of the response function has a single exponent. This approximation is made to 
overcome memory restrictions of the HEOM implantation. For a fair comparison, we use the same response 
function for the TCL and P-mat methods, though these methods are not restricted to a certain structure of the 
response function. We note that HEOM calculations for the same FMO model, but with a more accurate approxi-
mation for the response function, using of 3 (2) exponents for approximating the 77 K (300 K) response function, 
have been reported in ref. 29.

To capture the full density matrix dynamics as opposed to just the evolution of the populations, we shall also 
plot and discuss the trace-distance between the perturbative solutions and the HEOM benchmark.

Panels (I–III) of Fig. 5 show the trace distances and populations from the weak-coupling techniques against 
the numerically exact HEOM calculations, all using γ−1 =​ 50 fs and for T =​ 77, 300 K as indicated. We find 
that TCL2 compares favourably to P-mat at short times, while for longer times, with the notable exception of 
Fig. 5(III), P-mat becomes more accurate. We suspect that this is because in the P-mat formalism, the secular 
approximation is inherently included. By contrast, in TCL a full or partial secular approximation21 still needs to 
be performed explicitly to guarantee that the system will go to the thermal state with respect to the temperature 
of the bath (provided there is no decoherence-free subspace30 and all the baths have a single temperature). Note, 
however, that in a stronger-coupling regime the system is no longer expected to fully evolve into its canonical 
thermal state at all31.

We conclude that in all these three cases, our weak-coupling techniques capture the relevant oscillations in 
the dynamics well, as expected. Rather surprisingly, in Fig. 5(III) (γ−1 =​ 50 fs and T =​ 300 K) when using site 1 as 
the initial state, TCL2 outperforms not only P-mat but also TCL4. We note that this is not the case in the same 
configuration but with site 6 as the location of the initial excitation.

We now consider the lower cutoff frequency γ−1 =​ 166 fs at T =​ 300 K, having already identified this case as one 
which violates our weak-coupling criterion. As shown in Fig. 5(IV), exact numerics suggest that the difference in 

Figure 5.  Benchmarking of dynamics obtained from perturbative techniques (solid) against numerically 
converged HEOM (dashed). Panels (I–III): Initial state and temperature as indicated at the bottom of each 
panel. Subplots (a–c) show comparisons of TCL2, TCL4, and P-mat, respectively, vs HEOM. Subplots (d) give 
the trace distance between HEOM and the aforementioned perturbative approaches (extending out to longer 
times). All other parameters are as in ref. 13 with cutoff frequency γ−1 =​ 50 fs. (IV) FMO dynamics comparison 
with a stronger coupling: Subplot (a) contrasts HEOM for cutoff frequency γ−1 =​ 166 fs against HEOM for 
γ−1 =​ 50 fs. Subplots (b,c) show P-mat and TCL2 (solid) against HEOM, all using cutoff frequency γ−1 =​ 166 fs. 
Notably, P-mat performs worse than TCL2 at short times but then improves. TCL4 provides unphysical 
solutions and has therefore not been included.
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the dynamics is deceptively small between γ−1 =​ 50 fs and 166 fs, borne out both by the populations [subplot (a)] 
and the trace distance [subplot (d)]. Nonetheless, according to Table 1, the two cases are vastly different from the 
point of view of the perturbation series, and indeed we find that TCL2 is overestimates the damping and does not 
capture the oscillations, whilst P-mat underestimates the damping and shows more oscillations than HEOM. Yet 
the main difference in this case is actually what is not shown in the figure: We do not present TCL4 results in this 
plot because in this regime, the TCL4 generator once more possesses an unphysical eigenvalue in the long-time 
limit. This means that, even though according to the trace-distance measure, TCL2 is not vastly different from 
Fig. 5(III) (γ−1 =​ 50 fs and T =​ 300 K), the 4th order of the perturbation is larger than the 2nd order in this case. 
This means that the 2nd order is neither justifiable nor trustworthy, and this is what our criterion captures.

Discussion
We have introduced and discussed a straightforward criterion for the often difficult problem of deciding when 
when weak coupling approaches perform adequately for capturing higher-dimensional quantum dynamics in 
complex environments. We have discussed a rigorous as well as a simplified version of the criterion, with the latter 
constituting essentially a measure of the degree of ‘slippage of initial conditions’26,27.

By presenting a comparative numerical study of two different classes of weak-coupling methods, contrasted 
against numerically converged HEOM results, we have verified the validity and predictive power of both variants 
of the criterion. We have used the canonical spin boson model and the much-studied energy excitation dynamics 
in the FMO complex as two representative examples to make this case.

Interestingly, we have identified two room temperature FMO configurations with almost identical HEOM 
results, whilst our perturbative solutions diverge significantly, to the point that it yields un-physical results in 
the 4th order. This discrepancy is captured by our criterion which confirms that despite the apparent similarity 
of numerically converged results, one configuration sits well in the weak-coupling regime, whilst the other is 
sufficiently strongly coupled such that a perturbative approach is no longer justifiable. We note that, surprisingly, 
although not justified, it still gives fairly adequate results.

Finally, we have here extended the P-mat approach, first introduced in ref. 10, to a situation with multiple 
baths, and discussed its relationship to time-convolutionless master equations. We have seen that P-mat stands its 
ground reasonably well compared to TCL2, particularly in the long-time limit. Whilst not the subject of this study, 
we note that the concept of tiered environments10 can also be straightforwardly applied to higher-dimensional 
systems and multiple baths.

Methods
The methods section of this paper is organised as follows: we first introduce the two aforementioned weak cou-
pling approaches. We formally extend the P-mat technique from ref. 10 to a multisite system with independent 
bosonic baths. Following Breuer & Pettrucione4 we also briefly discuss the TCL technique. We then describe 
HEOM, which is our benchmark technique for numerically converged solutions.

The Time Convolutionless (TCL) Technique.  The TCL master equation is based on the projector-operator 
technique, stating that the system’s dynamics obeys the time-local master equation

ρ ρ∂
∂

=
t

t t t( ) ( ) ( ), (12)S S

where the superoperator  t( ) is known as the TCL generator, and ρS(t) =​ TrB(ρ) is the reduced density matrix of 
the system. It is time-local because ρS on the righthand side of Eq. (12) only features the current time t. All 
non-Markovian memory effects are thus contained within the TCL generator. A full derivation and discussion of 
it is found in chapter 9 of ref. 4.

Deriving an expression for the full TCL generator is as complex as solving the full von-Neumann equation for 
the system plus environment, so in practice we approximate it using a perturbative expansion in powers of the 
interaction:

 ∑η= .t t( ) ( )
(13)n

n
n

Note that this is sometimes not possible, but should be possible for short times/weak coupling4. We use the 
Hamiltonian (1), with a factorising initial condition ρ(0) =​ ρS(0) ⊗​ ρB, where ρ = β−eB

BN H ,   is the environment 
partition sum and β =​ 1/(kBT) inversely related to the temperature. For factorising initial condition and linear 
coupling, all odd terms in the TCL expansion vanish. The second and fourth terms are explicitly given by4,32:
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≡ν ν
× · ·V t V t( ) [ ( ), ], (16)
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and ν νD t( ),a b , ν νD t( )1
,a b  are the real and imaginary part of this response function, respectively, given by

α η ρ= + = .ν ν ν ν ν ν
ν ν{ }t D t iD t B t B( ) ( ) ( ) Tr ( ) (19)B

, ,
1

, 2a b a b a b
a b

We note that in the strong-coupling regime, the procedure for calculating the TCL generator Eq. (13) may 
fail4. Even when it does not, there is no guarantee that a truncation will still yield physical results. Indeed, as dis-
cussed in the Results section we have found strong-coupling examples where TCL4 [i.e. truncating the series in 
Eq. (13) after the fourth order term] results in a positive, and thus unphysical, eigenvalue of the generator in the 
long-time limit.

Multisite P-representation with Independent Baths.  The P-matrix approach10 is a different 
weak-coupling expansion for approximating the reduced system dynamics. In this case, one approximates the 
generating function of the time evolution generator as opposed to approximating the generator like in the TCL 
technique. Interestingly, we find that this rather subtle distinction may have substantial impact even at second 
order.

In the P-matrix picture, we write down the dynamics of the reduced density matrix as

ρ ρ= Θt U t e( ) ( ) (0), (20)t( )

where U(t) is the evolution operator for the dynamics of the closed system, and the effects of the environment and 
its memory are captured by the influence functional Θ​(t). Following ref. 10 we obtain a perturbative expansion of 
the influence functional in powers of the interaction parameter η, ηΘ = ∑ Θt t( ) ( )n

n
n . Interestingly, the influence 

functional expanded to second order bears a close formal relationship to the TCL expansion, and is simply given 
by

∫ τ τΘ = .t d( ) ( ) (21)
t

2
0

2

Note that in ref. 10 the P-matrix technique was developed for a single bath only, whereas Eq. (21) contains its 
extension to multiple independent baths.

HEOM.  The hierarchical equations of motion (HEOM), first proposed by Tanimura and Kubo33–35, map the 
exact equation of motion of the reduced system density matrix to a simpler set of equations describing a series of 
coupled auxiliary density matrices. This series is arranged in a hierarchy proven to converge. Derivation of this 
hierarchy requires that the response function of environment can be described by a sum of exponential terms. 
Examples of spectral densities where this is analytically the case include the Drude-Lorentz spectral density33, a 
Lorentzian spectral density36 and an underdamped Brownian oscillator37–40.

In the FMO example below we use a Drude-Lorentz spectral density. However, in general one can also numer-
ically fit the response function of an arbitrary bath to a sum of exponential terms, similar in spirit to ref. 41. We 
find that this approach works well for both a Ohmic and super-Ohmic spectral densities. Due to the form of the 
HEOM, it is convenient to fit the real and imaginary parts of the response function independently, defining in 
general α(t) =​ D(t) +​ iD1(t), with

∑ ∑= = .µ µ

=

−

=

−D t c e D t c e( ) , ( )
(22)k

N

k
R t

k

N

k
I t

1
1

1

R
k
R I

k
I

Then, when constructing the HEOM for such general spectral densities, we distinguish between those ancil-
liary density operators originating from the real and imaginary parts of the response function, and write the 
hierarchy index = ν ν

  n n n( , )R I . Here = ..ν ν ν ν
n n n n( , , , )j j j jN1 2 j

, nνjk are integers ∈ ..νn N{0, , }jk c , up to the cut-off 
tier of the hierarchy Nc, and where ν ∈ .. N{0, , } labels the different independent baths, up to their number N. For 
notational simplicity we assume all baths have the same correlation functions, but again generalisation is 
straight-forward. The HEOM (with renormalized coupling between hierarchies42) then takes the form

∑ ∑ ∑ ∑∑

∑∑ ∑ ∑ ∑

ρ µ ρ ρ

ρ ρ

= −





+






−

+ − + .

ν
ν

ν

α
ν

ν

ν
ν

ν
ν ν

×

= = = = =

×

= = = = =

×

ν

ν ν

−

− +

�

�

t iH n t i n
c

c V t

n
c

c V t i n c V t

( ) ( ) ( )

( ) ( 1) ( )
(23)

n
S

N

j R Ik

N

jk k
j n

N

k

N
Rk

k
R k

R n

N

k

N
Ik

k
I k

I n
N

j R Ik

N

jk k
j n

1 , 1 1 1

1 1 1 , 1

j R
Rk

I
Ik

j
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The notation ρ ν
±n jk indicates an increase/decrease of just the νjk’th element of the hierarchy index by 1. One 

then solves these coupled equations numerically, setting all the ancillary → ≠ …n( (0, 0, , 0)) density matrices to 
zero at t =​ 0.

Spin-Boson Response Function.  In our simulation, the response function α(t) =​ D(t) +​ iD1(t) =​ 
 ∫ ω ω βω ω ω−
∞ d J t i t( )[coth( /2) cos( ) sin( )]

0
 is approximated by a series of exponents, as given in Eq. (22). This 

was done by evaluating the exact response function at 0.1 ps intervals up to 8 ps, and using Mathematica’s 
“FindFit” function for non-linear least-squares fitting a function to a set of datapoints. Using this procedure we 
get the parameters given in Table 2, with the accuracy

∫
∫

η

η

− = . ×

− = . × .

∞ − −

∞ − −

dt D t D t ps

dt D t D t ps

( ( ) ( )) 1 68 10 ,

( ( ) ( )) 4 02 10 (24)

0
exact approx

2 9 2 4

0
1 exact 1 approx

2 10 2 4

In Fig. 6 we plot the exact and approximated response function in order to show the fit.
We find that for this case HEOM converges at Nc =​ 3 for η =​ 1 and Nc =​ 9 for η =​ 10.

Derivation of the Criterion.  In this section we derive the criterion (6) in the main text. For this analysis we 
look at the case where all of the different baths are independent, and they are all coupled to the system in the same 
manner, i.e. Jν(ω) =​ J(ω) for all ν. This simplifies Eqs (14 and 15) with δ=R t t R t t( , ) ( , )n n a b n n n n a b, , ,a b a b a a

, and 
τ δ τ=D D( ) ( )n n

n n
,

,
a b

a b
, τ δ τ=D D( ) ( )n n

n n1
,

, 1
a b

a b
, α τ δ α τ=( ) ( )n n

n n
,

,
a b

a b
.

Working in the Liouville Space  ⊗S S, with |i〉​ 〈​j|→​|ij〉​, where |i〉​ are the system’s energy eigenstates, it is 
straightforward to write down an explicit expression for 2 :

 ∫∑ ∑τ δ α τ δ α τ

α τ α τ

= − 


+ 


− +

ν

τ ν ν τ ν ν

ν ν τ τ

− ∆ −∆ − ∆ + ∆

− ∆ + ∆

⁎

⁎

{
}

ij rs e d e V V e V V

V V e e

( ) ( )

[ ( ) ( )] , (25)

i t t

k
js

i
ik kr ir

i
sk kj

ir sj
i i

2
( )

0
rs ij kr ks

ir js

where Δ​ij =​ εi −​ εj, and =ν νV i V jij .

Parameter Value (ps−2) Parameter Value (ps−1)

ηc /R
1 0.145 +​ 0.316i µ R

1
2.77 +​ 0.986i

ηc /R
2 0.145 −​ 0.316i µ R

2
2.77 −​ 0.986i

ηc /R
3 −​0.0588 −​ 0.0207i µ R

3
2.68 +​ 3.12i

ηc /R
4 −​0.0588 +​ 0.0207i µ R

4
2.68 −​ 3.12i

ηc /I
1 −​0.00683 +​ 0.0449i µ I

1
2.35 −​ 1.04i

ηc /I
2 0.00683 +​ 0.00938i µ I

2
2.34 +​ 3.22i

ηc /I
3 0.00683 −​ 0.00938i µ I

3
2.34 −​ 3.22i

ηc /I
4 −​0.00683 −​ 0.00449i µ I

4
2.35 +​ 1.04i

Table 2.   Fitting parameters for a series of exponents form [Eq. (22)] of the response function of an Ohmic 
bath characterised by a spectral density given by Eq. (9), with T = 50 K, λ = 0.01485 ps−1, and ωc = 2.2 ps−1.

Figure 6.  Exact and approximated response function, for an Ohmic bath characterised by a spectral 
density given by Eq. (9), with T = 50 K, λ = 0.01485 ps−1, and ωc = 2.2 ps−1. The fitting parameters are given 
in Table 2.
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The dephasing, decoherence, and Lamb-shift rates are given by matrix elements in the superoperator t( )  that 
do not oscillate with t as t →​ ∞​, meaning that in 2 only elements with Δ​rs −​ Δ​ij =​ 0 contribute to the rates. In the 
same manner one can show that the t dependence of the fourth order is ∼ − ∆ −∆ij rs e i t

4
( )rs ij , for times much 

longer than the bath’s memory time. Assuming that the energies are non-degenerate in the broad sense, meaning 
ε ε∑ − = ↔ =n m( ) 0 { } { }i n m i ii i

, then the only matrix elements with these rates are either diagonal terms

 ∫∑

∑ ∑

τ α τ α τ

α τ α τ

= − − −

+ + | |

ν

ν ν ν ν

ν τ ν τ

≠

− ∆

≠

− ∆

⁎

⁎ }
{ij ij d V V V V

V e V e

( )[ ( ) ( )]

( ) ( ) ,
(26)

t
ii jj ii jj

k i
ki

i

k j
jk

i

2
0

2 2ki jk

or elements between two different eigenstate projectors,

 ∫∑ τ α τ α τ= | | + .
ν

ν τ τ
≠

− ∆ + ∆ ⁎ii jj d V e e[ ( ) ( )]
(27)i j

t
ij

i i
2

0

2 ij ij

The part proportional to the diagonal of the coupling operator V is known in the literature as “pure dephasing”. 
Incidentally because our model only considers linear coupling between the system and environment, if there were 
only diagonal terms in the interaction, then the exact contributions of these terms are equal to their second order 
expansion43.

Moreover, we are only interested in the real parts of the rates, as the imaginary parts are responsible for the 
Lamb shift. Finally, in Eq. (26), the rates for i ≠​ j are the ones for which the off-diagonal elements of the density 
matrix decay. For the sake of this paper we focus on the dephasing rates, i.e. the rates in which the diagonal ele-
ments of the density matrix decay, i.e.

 ∫∑ ∑τ τ τ τ τ= − ∆ − ∆ .
≠

ii ii d V D D2 [ ( ) cos( ) ( ) sin( )]
(28)n

t

k i
i k
n

ik ik2
0

,
2

1

The part proportional to D1 =​ Im(α) in the above equations is normally much smaller and will be ignored for 
the purpose of our discussion, hence we approximate the second order rates as

 ∫∑ ∑τ τ τ≈ − ∆ .
ν

ν

≠
ii ii d V D2 ( ) cos( )

(29)

t

k i
i k ik2

0
,

2

In the Markovian limit, where the time of the experiment is much longer than the memory-kernel decay time 
t tc, we may take the integral in Eq. (29) to infinity and obtain the usual rates

∑π β≈ − | | |∆ | |∆ | .
ν

ν
∞

ii ii V J ( ) coth( /2)
(30)i j ij ij2 ,

2

By contrast, for times comparable to or shorter than the decay time of the response kernel D(t), or if the 
spectral density is not smooth and has sharp peaks, it is not justified to take the Markovian limit and one should 
evaluate the rates (29) over the time of the experiment.

Using a similar analysis for the fourth-order terms, we find that corrections to the rates introduced by a fourth 
order treatment are given by

∫ ∫ ∫

∫ ∫

∑

∑

∑

∑

∑ ∑

τ τ τ τ τ τ τ

τ τ δ

τ τ τ τ τ τ

τ

τ τ

≈ −






+ −






× | | ∆ + ∆ +

+ −

×




 − ∆

+ | | ∆ + ∆







.

ν ν

τ

τ

ν ν

ν ν

τ

ν ν ν ν

ν ν

−

−

≠ ≠

≠

≠ ≠

ii ii d d t d D D

V V

d d D D

V V V V

V V

2 ( ) ( ) ( )

cos( )(1 )

2 ( ) ( ) ( )

( ) cos( )

cos( )
(31)

t t

t

t

k i p i
ik ip ik ip kp

t

i k
ik ii ii kk ik

k i p i k
ik kp ik kp

4
, 0

1
0

2 2 2 2 1 2

,

2 2
1 2

, 0
1

0
2 1 2 1 2

2
1

{ , }

2 2
1 2

1 2

1

1

1 2

1 2

1

1 2 2 2

1 2



In the above equation we only kept terms that have τ1 or τ2 in their integrand. We note that there are other 
terms, namely terms with integrands similar to (e−iΔτ −​ 1)/Δ​ where Δ​ is an eigenfrequency of the system, which 
are generally, but not always, smaller than their τ equivalents derived by taking the limit Δ​ →​ 0. Further, we 
ignore contributions by D1 as in Eq. (29). Also, we assume that the system’s energies and frequencies are not 
degenerate in the sense that ∑ = ∑ ⇒ =E E E E{ } { }i i j j i j .

The ratio between Eqs (29) and (31) defines our ‘full’ criterion [Eq. (5)]. To arrive at the ‘simplified’ criterion, 
we shall make some further approximations and assumptions in the following. We note that Eq. (31) consists of 
two terms and we conjecture that these are both of the same order (noting that this is a good approximation for 
for the spin-boson model and the FMO complex examples studied in this paper), so we continue with the first one 
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for the sake of this analysis. Now, because we are looking for a criterion for when the fourth order contribution is 
small, we are being conservative by artificially enlarging it via the substitution 1 +​ δkp →​ 2, and taking the upper 
limit of the τ2 integral to t. Further, we expand the cosine and ignore any terms proportional to τ2 sin(Δ​ik τ1)  
sin(Δ​ip τ2), which are smaller than their cosine equivalents. Thus we arrive at

∫ ∫∑ ∑τ τ τ τ τ τ τ∼ − | | ∆ ∆ .
ν ν

ν ν

≠ ≠
ii ii d d D D V V4 ( ) ( ) cos( ) cos( )

(32)

t t

k i p i
ik ip ik ip4

, 0
1

0
2 2 1 2

,

2 2
1 2

1 2

1 2

Now considering the ratio ii ii ii ii/4 2   leaves us with the following ‘simplified’ criterion [Eq. (6)] for 
when weak-coupling is a good approximation:

∫∑∑ ττ τ τ∆ .
ν

ν

≠
V d D2 ( ) cos( ) 1

(33)k i
ik

t
ik

2

0

The above inequalities should hold for all of the system’s energy levels i.

Raw Data.  Raw data for all the entries of the density matrices described in this paper is included as a supple-
mentary material. This includes HEOM, TCL2, TCL4, and P-mat data to for the Spin-Boson and FMO models 
plotted above.
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