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It is generally believed that susceptibility to both organ-specific and systemic autoimmune diseases is under polygenic
control. Although multiple genes have been implicated in each type of autoimmune disease, few are known to have a
significant impact on both. Here, we investigated the significance of polymorphisms in the human gene CD24 and the
susceptibility to multiple sclerosis (MS) and systemic lupus erythematosus (SLE). We used cases/control studies to
determine the association between CD24 polymorphism and the risk of MS and SLE. In addition, we also considered
transmission disequilibrium tests using family data from two cohorts consisting of a total of 150 pedigrees of MS
families and 187 pedigrees of SLE families. Our analyses revealed that a dinucleotide deletion at position 1527~1528
(P1527°') from the CD24 mRNA translation start site is associated with a significantly reduced risk (odds ratio = 0.54
with 95% confidence interval = 0.34-0.82) and delayed progression (p = 0.0188) of MS. Among the SLE cohort, we
found a similar reduction of risk with the same polymorphism (odds ratio = 0.38, confidence interval =0.22-0.62). More
importantly, using 150 pedigrees of MS families from two independent cohorts and the TRANSMIT software, we found
that the P1527° allele was preferentially transmitted to unaffected individuals (p = 0.002). Likewise, an analysis of 187
SLE families revealed the dinucleotide-deleted allele was preferentially transmitted to unaffected individuals (p =
0.002). The mRNA levels for the dinucleotide-deletion allele were 2.5-fold less than that of the wild-type allele. The
dinucleotide deletion significantly reduced the stability of CD24 mRNA. Our results demonstrate that a destabilizing
dinucleotide deletion in the 3’ UTR of CD24 mRNA conveys significant protection against both MS and SLE.
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nervous system vasculitis, pulmonary hypertension, intersti-
tial lung disease, and stroke. Whole-genome scans have
revealed multiple chromosomal regions [12-17]. However,

Introduction

Multiple sclerosis (MS) is a chronic, inflammatory neuro-

degenerative disease of the central nervous system of the identity of most susceptibility genes are unknown [18].

unknown etiology. There is evidence to support the hypoth-
esis that MS is an autoimmune process modulated by both
genetic and environmental factors [1-6]. An increased risk of
MS among MS relatives has been found in numerous
prospective epidemiological studies [2,4,7]. Twin studies from
different populations consistently indicate that a monozy-
gotic twin has a 5- to 6-fold higher risk of MS than a dizygotic
twin [1,2,8]. Collectively, these findings would implicate that,
at least in part, the risk for developing this disorder and
possibly its progression are mediated by multiple genetic
factors. Several whole-genome screens were performed in MS
affected families. These studies confirmed the association of
MS with the HLA class II DR2 haplotype (HLA-DRBI1*1501-
DQAI1*0102-DQB1%0602), but failed to confirm other major
putative loci in MS [9-11].

Systemic lupus erythematosus (SLE) is a classic systemic
autoimmune disease with diverse clinical symptoms, includ-
ing fatigue, joint pain and swelling, skin rashes, and chest
pain. Severe SLE complications include nephritis, central
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CD24 is a glycosylphosphatidylinositol-anchored cell sur-
face protein with expression in a variety of cell types that can
participate in the pathogenesis of MS and SLE, including
activated T cells [19,20], B cells [21], macrophages [22], and
dendritic cells [23]. CD24, as a candidate locus [10], was shown
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Author Summary

When an individual’'s immune system attacks self tissues or organs,
he/she develops autoimmune diseases. Although it is well
established that multiple genes control susceptibility to auto-
immune diseases, most of the genes remain unidentified. In
addition, although different autoimmune diseases have a common
immunological basis, a very small number of genes have been
identified that affect multiple autoimmune diseases. Here we show
that a variation in CD24 is a likely genetic factor for the risk and
progression of two types of autoimmune diseases, including
multiple sclerosis (MS), an organ-specific autoimmune disease
affecting the central nervous system, and systemic lupus eryth-
ematosus, a systemic autoimmune disease. Our data indicated that if
an individual’'s CD24 gene has a specific two-nucleotide deletion in
the noncoding region of CD24 mRNA, his/her risk of developing MS
or SLE is reduced by 2- to 3-fold. As a group, MS patients with the
two-nucleotide deletion will likely have a slower disease progres-
sion. Biochemical analysis indicated that the deletion leads to rapid
decay of CD24 mRNA, which should result in reduced synthesis of
the CD24 protein. Our data may be useful for the treatment and
diagnosis of autoimmune diseases.

to be essential for the induction of experimental autoimmune
encephalomyelitis (EAE) in mice [24]. Interestingly, CD24
controls a checkpoint of EAE pathogenesis after the
autoreactive T cells are produced [24]. Recently, we showed
that CD24 is essential for local clonal expansion and
persistence of T cells after their migration into the central
nervous system and that expression of CD24 on either
hematopoietic cells or nonhematopoietic antigen-presenting
cells in the recipient is sufficient to confer susceptibility to
EAE [25]. These findings suggest that CD24 is essential for
susceptibility to EAE.

Human CD24 (CD24) mRNA has a 0.24-kb ORF and a 1.8-kb
3" UTR. A CT single nucleotide polymorphism (SNP) at
position 170 from the CD24 translation start site (P170) in the
CD24 putative cleavage site for the glycosylphosphatidylino-
sitol anchor (=1 position) [26] results in the nonconservative
replacement of alanine with valine. The P170™" genotype
expressed higher cell-surface CD24 than the P170" or
P170¢¢ genotypes, which had an increased risk and more
rapid progression of MS [27]. Thus, the CD24 SNP may
influence MS pathogenesis by affecting the expression of
CD24. The potential contribution of CD24 to SLE has not
been studied. However, since CD24 has emerged as a major
checkpoint of homeostatic proliferation in lymphopenic
hosts [28,29], and since leucopenia is a defining feature of
SLE [30], it would be of great interest to evaluate whether
CD24 polymorphism may affect susceptibility to SLE.

Interestingly, the long 3’ UTR of mouse Cd24 mRNA plays an
important role in controlling CD24 expression [31]. Two cis
elements of mouse Cd24 mRNA, a negative and a positive cis
element, regulate the stability of mouse Cd24 mRNA expres-
sion and determine cell-surface CD24 expression [31]. Our
sequencing analysis of the 3° UTR of CD24 revealed four
polymorphisms in the Ohio population. Considering the
importance of CD24 in the development and progression of
MS, we investigated the association of the CD24 polymor-
phisms at the 3" UTR with the susceptibility to both organ-
specific and systemic autoimmune diseases. Our study revealed
a dinucleotide deletion in the 3" UTR of human CD24 that
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confers significant protection against the risk and progression
of MS and the risk of SLE by destabilizing CD24 mRNA.

Results

CD24 Chromosomal Location and Polymorphisms in the
3" UTR

CD24 has been identified as an autosomal gene located in
Chromosome 6q21 [32], with intronless pseudogenes in
Chromosomes 1, 15, and Y. In addition to a lack of introns,
it has been reported that Chromosome Y DNA sequence
differs from CD24 cDNA at 23 positions, with two changes in
the coding regions and the remaining ones scattered through
the 1.6-kb c¢cDNA region [32]. The CD24 gene sequence, as
assembled by Celera, is presented in Figure S1. However, a
recent update in the National Center for Biotechnology
Information (NCBI) database placed CD24 on Chromosome Y
with partial intron 1 sequence and exon 2 identical to the
cDNA except for eight changes in the region corresponding
to the 3’ end of the cDNA. We used PCR primers antisense to
a portion of the intronic sequence and the 3’ end of the CD24
mRNA to amplify from genomic DNA, using as templates
genomic DNA from eight unrelated normal individuals (four
males and four females). Since the primers would amplify
both the Chromosome 6 sequence and the putative Chromo-
some Y sequence (Figure S2), we sequenced five clones from
each of the eight individuals in order to determine which
annotation is correct. We found that none of the 40 sequences
matched the putative Chromosome Y sequence, regardless of
the sex of the donor, and all sequences matched the intron 1
and exon 2 sequence of the CD24 gene as located on
Chromosome 6 [32] (Figure S2). These results indicated that
the putative Chromosome Y sequence is likely incorrect and
that the PCR primer pair amplifies the autosomal CD24 gene.

Analysis of five clones from each of the eight individuals
also revealed four SNPs, three of which were reported in the
NCBI database (P1056 A/G, P1527 TGldel, and P1626 AIG). As
shown in Figure 1, following an anchored PCR designed to
eliminate the contribution of intronless CD24 pseudogenes
[32], these three polymorphic sites could be identified by
restriction enzyme digestion of individual PCR products. The
accuracy of the PCR-restriction length fragment polymor-
phism (RFLP)was confirmed by sequencing the PCR products
from 32 individuals. The PCR-RFLP analysis was therefore
adopted for genotyping. The genotype distributions of these
polymorphisms did not deviate from the Hardy-Weinberg
equilibrium (Table S1). Moreover, the genotype distributions
are essentially the same among males and females among the
large set of samples tested (Table S1). We also used Merlin
software (http://www.sph.umich.edu/csglabecasis/Merlin) to de-
tect potential genotyping errors [33]. No Mendelian incon-
sistency and obligatory double recombination were found.
Taken together, these data ruled out the possibility that the
Chromosome Y locus contributes to the data presented in this
study and confirmed the accuracy of the genotypes presented.

Case-Control Studies on 3’-UTR Polymorphisms and the
Risk of MS

We examined the association of the CD24 polymorphisms
in the 3" UTR with MS using DNA from independent
Caucasian participants with MS and race-, age- and gender-
matched controls from Central Ohio (Table 1). A summary of
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CD24 gene P170°7 P105646 p152776/el __P1626%C
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Exon 1 Exon 2
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Figure 1. Diagram of the CD24 Gene and Genotyping of Four Polymorphic Sites by PCR-RFLP

The upper panel shows the relative position of the 3’-UTR (gray box) and the two codon regions (white boxes). Intron 1 is represented as a separate
line; however, the large intron 1 is not fully represented in the figure. The relative position of each polymorphism found in the study is shown by a
downward arrow. The position of the nested-PCR primers is also shown. Lower panel shows genotyping by PCR-RFLP analysis using BstX I, BstU |, Bsr |,
and Mfe | restriction enzymes for P170, P1056, P1527, and P1626, respectively. The genotype of each pattern is indicated at the bottom of each lane. M:
molecular size marker (lane 1, 6, 11, and 16). Numbers on the left side are the size of a standard DNA marker (bp). N: negative control (lane 5, 10, 15, and

20).
doi:10.1371/journal.pgen.0030049.g001

the CD24 allele and genotype analyses of the MS patients
compared with controls is shown in Table 2. A significant
difference in the allelic frequencies between the MS patients
and the controls was found for P1527 (p = 0.006), but not for
P1056 or P1626.

Remarkably, an approximately 2-fold decrease in the risk
for MS was found in participants with the P15277%% or
P1527%"" genotypes compared with the P1527"“"¢ geno-
type. These data suggest that the dinucleotide deletion may
confer protection against MS risk.

Family-Based Tests for the Association between CD24
Polymorphisms and MS

Since the above case-control results could potentially be
due to population admixture, even though we have restricted
the analysis to only the Caucasian samples, we also considered

transmission disequilibrium tests using family data, as such a
test is still valid under population admixture. We used a total
of 150 pedigrees, including 49 pedigrees from the Multiple
Sclerosis Genetics Group (MSGG) (with 63 informative
nuclear families) and 101 from central Ohio (with 93
informative nuclear families), to determine whether the
CD24 polymorphisms are associated with MS risk. The family
compositions of both cohorts are shown in Table S2. A strong
association in P1527 was found using TRANSMIT (http:/
www-gene.cimr.cam.ac.uk/clayton/software) [34,35] (p = 0.002).
No significant association was observed with other SNPs.
Linkage disequilibrium (LD) analysis of the four SNPs using
the 150 MS and 187 SLE family samples revealed a
surprisingly low LD between P170 and P1527 (Figure 2A
and 2B). Considering the short distance between the SNPs, it
is possible that a recombination hotspot may exist in the

Table 1. Characteristics of MS Patients and Controls

Case-Control Participants

Family Participants

Control (n = 443) MS (n = 275) Family OSU MS (n = 135) Family MSGG MS (n = 119)
Women/men 284/159 185/90 88/47 84/35
Age (y) (mean = SD) 473 =172 47.7 £ 11.0 469 + 11.4 47.8 + 10.7
Caucasian participants 443 275 134 109
African-American participants 0 0 0 0
Hispanic-American participants 0 0 1 2
Native American participants 0 0 0 4
Asian participants 0 0 0 0
Other participants 0 0 0 4
Age at onset (y) (mean = SD) — 32.0 = 104 31.3 = 10.1 297 £ 93
Disease duration (y) — 158 = 11.2 159 = 124 18.1 = 10.9
EDSS < 6.0/ > 6.0 (100%) — 55/45 58/42 53/47
Time to EDSS 6.0 (y) — 133 £ 10.2 139 £ 108 12.7 = 10.1
Clinical course: RR/SP/PP (100%) — 58/32/10 59/34/7 57/36/7

Data from patients having reached EDSS 6.0 were used to calculate time to EDSS 6.0. MS cases for case-control analysis were all independent Caucasians.

RR, relapsing-remitting; SP, secondary progressive; PP, primary progressive.
doi:10.1371/journal.pgen.0030049.t001
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Table 2. CD24 Genotype Frequencies for All MS Participants and
Controls

CD24 SNPs Cases Controls > p OR® 95% ClI
Genotypes n % n %
P1056 AA 76 27.6 128 289 1.00 —
AG 131 476 215 486 103  0.71-1.48
GG 68 247 100 226 046 0795 1.15 0.74-1.75
P1527 TG/TG 242 880 354 799 100 —
TG/del 32 116 84 19.0 — —
del/del 1 04 5 1.1 — —
TG/del+ 43 89 7.87 0.005° 0.54° 0.34-0.82
del/del
P1626 AA 200 72.7 301 679 1.00 —
AG 70 255 128 289 0.82 0.58-1.16
GG 5 18 14 32 244 0299 054 0.11-1.40

“These data were adjusted for age and gender.
°TG/del + del/del versus TG/TG.
doi:10.1371/journal.pgen.0030049.t002

CD24 gene. These results, together with the fact that P1056
and P1626 are not significantly associated with MS suscept-
ibility, suggest that P170 and P1527 are independently
associated with MS risk. Such an interpretation is plausible
since the allele frequencies of the SNPs are not very similar,
which diminishes the power of detecting association even for
a nearby SNP in high LD with the causal SNP. The
significance of the origin of the participant in the association
of P170 has been highlighted in recent studies by us and
others [27,36,37].

The Association of SNPs P1527 and P1626 with the
Progression of MS

MS disease severity is usually measured according to the
expanded disability status scale (EDSS). MS patients who have
lost the ability to walk without aid have reached EDSS 6.0. For
the majority of the patients, their EDSS 6.0 status was based
on a follow-up visit to our center. A few of the cases were
based on case history. Because this is one of the most
traumatic events in a patient’s life, most can recall accurately
the time when their disease reached EDSS 6.0. We then tested
whether the CD24 genotype affected the time span it took the
patients to reach EDSS 6.0 from the day of the first symptom
of MS. Clinical data from 275 independent Caucasian MS
patients in the Ohio cohorts, but not those from the MSGG,
were available for the survival analysis.

The Kaplan-Meier curves provide estimates of the distri-
bution of the time it took to reach EDSS 6.0 for patients with
different genotypes. As shown in Figure 3, patients with the
P15277C4 oy p1527%Mel genotype had a more delayed disease
progression pattern than those with the P15277¢/16 genotype
(p = 0.0188). In addition, the patients with the P1626"4
genotype also showed faster progression (p = 0.0105). No
significant result was found in the patients with the P1056

genotype.

Case-Control Studies on the 3’ UTR Polymorphism and
the Risk of SLE

We used a Caucasian cohort of age and sex-controlled
samples (Table 3) to test the potential association between
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Figure 2. LD Analysis of Four Polymorphic Sites in the CD24 Gene

The data from two cohorts of families are presented. Pairwise LD
measure r* in the display was calculated for each of the six pairs of SNPs
using data from three cohorts of families and the results are displayed in
a tilted matrix.

(A) Data from the OSU and MSGG families.

(B) Data from the SLE families’ samples from Columbus Children’s
Hospital. Complete LD was observed between 1056 and 1527/1626 in
the SLE family sample cohort between 1056 and 1527.
doi:10.1371/journal.pgen.0030049.g002

CD24 polymorphism and risk of SLE. A summary of the CD24
allele and genotype analyses in the SLE patients against
controls is shown in Table 4. A significant difference in the
allelic frequencies between the SLE patients and the controls
was found for P1527 (p = 0.00003), but not for P1056 or
P1626. Remarkably, a 2.6-fold decrease in the risk for SLE was
found in participants with the P15277%% or p1527%/#
genotype compared to the P15277“"¢ genotype. These data
suggest that the dinucleotide deletion may confer protection
against SLE risk.

Family-Based Tests for the Association between CD24
Polymorphisms and SLE

We used a total of 187 pedigrees to determine whether the
CD24 polymorphisms are associated with SLE risk (with 187
informative nuclear families). A strong association in P1527
was found using TRANSMIT (p = 0.002), but it did not show
evidence for transmission disequilibrium for P170, P1056, or
P1626 (p > 0.05). Linkage disequilibrium analysis of the four
SNPs using the 187 family samples also revealed a low LD
between P170 and P1527 (Figure 2B), suggesting that P1527 is
independently associated with SLE risk, the same as in MS.

Dinucleotide Deletion at P1527 Leads to an Allele-Specific
Reduction of CD24 mRNA

Since P1527 resides in the 3’ UTR, its polymorphism may
affect the accumulation of its mRNA. To address whether
mRNA transcribed from the P1527% allele presents a
decrease in its expression levels in vivo, we established an
allele-specific real-time PCR (RT-PCR) to measure the allele-
specific transcripts. As shown in Figure 4A, the primers
designed for the P15277¢ allele detected CD24 mRNA in the
P1527"“" but not in the P1527“/* individuals, and vice
versa. These results demonstrate complete specificity of the
primers used. In addition, the conditions used led to the
amplification of CD24 cDNA in a strictly dose-dependent
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Figure 3. Kaplan-Meier Curves for Overall Survival by CD24 Polymorphisms among OSU MS Patients

(A) No significant difference was found in the survival rate among patients with the P1056 genotype.

(B) Patients carrying the variant P1527% allele had a higher survival rate than those who had two copies of the wild-type P15277° allele.

(C) Patients with the P1626** genotype had a lower survival rate than those with the P1626*¢ or P1626°C genotype. Numbers in parentheses are the
size of samples for MS patients. Forty-five percent of the MS patients have reached EDSS 6.0.

doi:10.1371/journal.pgen.0030049.g003

fashion over six logs of magnitude (Figure 4B). We therefore
used this method to measure the allele-specific expression of
two CD24 alleles in eight P15277“*" individuals. As shown in
Figure 4C, the P1527% transcripts were 2.5-fold less than the
P1527"¢ transcripts. Since the two alleles were present in the
same cells and therefore were transcribed at the same rate,
our data demonstrate that the P1527 variant has a strong
impact on mRNA expression of CD24 in vivo, most likely by
post-transcriptional mechanisms.

P1527 Modulates CD24 mRNA Stability

P1527 is located in the 3" UTR that modulates mRNA
stability [31]. To test if this polymorphism modulates CD24
mRNA stability, we constructed two plasmids (pTracer
CMV2-CD24™¢ and pTracer CMV2-CD24%, Figure 5, top
panel) and transfected Chinese hamster ovary (CHO) cells
with the two constructs. Starting at 48 hours after trans-
fection, the synthesis of RNA was blocked by actinomycin D,
and the half life of mRNA was measured by RT- PCR. The
levels of GFP mRNA were used as internal controls for
transfection efficiency.

Prior to actinomycin D treatment, there was significantly
higher mRNA expression for the CD24"“ ¢DNA in compar-
ison to the CD24% ¢DNA. Using the pre-treatment mRNA
levels as 100%, we measured the decay kinetics of two mRNA

from two different cDNA. As shown in Figure 5 (lower panel),
the decay patterns of CD247¢ were significantly more gradual
than those of CD24 (p < 0.001), and the differences in the
rates of decay were significantly different at all time points
starting from 0.5 h (all p < 0.001). In particular, mRNA from
the CD24 ¢cDNA had a half life of less than 1 h, while that
derived from the CD247¢ had a half life of more than 4 h.
Thus, the dinucleotide deletion at the P1527 position
destabilized CD24 mRNA.

Discussion

It is well established that polymorphisms of immune-
related genes modulate host susceptibility to autoimmune
diseases, including MS and SLE [27,38-42]. Historically, most
studies have focused on polymorphisms that result in the
replacement of amino acids [27,38,40]. More recently,
substantial information has been accumulated that demon-
strates that polymorphisms at the promoter and intron
regions can also have a significant impact on susceptibility.
These alterations modulate either RNA synthesis (transcrip-
tion) or splicing [41,42]. Although it is well established that
the 3" UTR plays a major role in RNA stability, we are not
aware of any study reporting that polymorphism at the 3’
UTR modulates susceptibility to autoimmune diseases by

Table 3. Characteristics of SLE Patients and Controls

Control (n = 270) All SLE (n = 264) Sporadic SLE (n = 77) Family SLE (n = 187)
Women/men 249/21 248/16 77/0 171/16
Age (y) (mean = SD) 445 = 115 445 = 120 50.3 £ 126 429 = 11.3
Ethnicity Caucasian Caucasian Caucasian Caucasian
Renal disease: SLE without nephritis (%) 56.1 67.6 51.3
Renal disease: SLE with nephritis (%) 439 324 48.7
WHO class: I-1ll (%) 80.5 84.8 78.7
WHO class: IV-VI (%) 19.5 15.2 213
ACR, American College of Rheumatology; WHO, World Health Organization.
doi:10.1371/journal.pgen.0030049.t003
@ PLoS Genetics | www.plosgenetics.org 0512 April 2007 | Volume 3 | Issue 4 | e49



Table 4. CD24 Genotype Frequencies for All SLE Participants and
Controls

CD24 SNPs Cases Controls 3> p aOR® 95% Cl

Genotypes n % n %

P1056 AA 69 26.1 75 278 1.00 —
AG 126 47.7 135 500 101 0.68-1.52
GG 69 26.1 60 222 1.12 0.570 125 0.78-2.01

P1527 TG/TG 240 909 214 793 100 —
TG/del 24 9.1 50 185 — —
del/del 0o - 6 2.2 — —
TG/del+ 24 56 14.22 0.0001° 038" 0.22-0.62
del/del

P1626 AA 196 742 184 68.1 1.00 —
AG 63 239 73 270 0.81 0.55-1.20
GG 5 19 13 4.8 4.60 0.100 036 0.13-1.03

“These data were adjusted for age and gender.
°TG/del + del/del versus TG/TG.
doi:10.1371/journal.pgen.0030049.t004

changing mRNA stability. Our data presented in this study
revealed that a destabilizing dinucleotide deletion in the 3’
UTR of the CD24 gene may confer a significant protection
against the risk and progression of MS and against the risk of
SLE. Our conclusion is based on five lines of evidence.

First, a population study with 275 independent Caucasian
MS patients and a comparable size of normal controls
revealed that individuals with the deletion in at least one

CD24 Polymorphism and Autoimmune Diseases

allele had about a 2-fold less relative risk in comparison to
those without the deletion. Thus, the CD24 P1527% allele may
be a protective genetic susceptibility factor for the onset of
MS. This is more remarkable in light of the fact that
polymorphisms at sites that were only 100-500 bp apart did
not have a significant impact on the risk of MS. The strong
association at P1527, but not at the nearby SNPs, suggests that
the deletion was causatively related to the reduced MS
susceptibility. This interpretation is consistent with the fact
that the frequencies of the associated alleles at the two nearby
(flanking) loci are very different from that of the protective
allele. A recent study showed that the power to detect the
association in such loci is diminished even when there is high
linkage disequilibrium [43]. This also leads to a reasonable
explanation as to why two loci in high LD are not both
associated with the disease.

Second, using data from two independent cohorts of
families, we also established a strong association of the
CD24 P1527 polymorphism with MS. The P1527"“ allele was
preferentially transmitted to affected individuals. This result
strongly supports the conclusion from the case-control
analysis that the P1527% allele may be a protective genetic
susceptibility factor for the onset of MS. Both of these results
remain significant after multiple-testing adjustments. Within
the Ohio State University (OSU) cohort, our previous data
revealed that the P1707 allele was preferentially transmitted
into affected individuals among multiplex families with two or
more MS patients [27]. This result continues to hold with our
expanded OSU family set, although not with the MSGG cohort
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Figure 4. Allele-Specific Transcripts in P1527"%?¢ Heterozygous Individuals

Total RNA was isolated from the blood of eight OSU MS patients with the P15277%%/ heterozygous genotype. The allele mRNA expression of CD24 was
analyzed using TagMan RT-PCR.

(A) Specificity of the primers. DNA from patients homozygous for either TG or del at the P1527 was amplified with allele-specific primers. Note that no
products were detected when the primers and the patient genotypes were mismatched.

(B) Standard curve of the allele-specific amplification. The known copies of plasmid cDNA were used as templates.

(C) Quantification of allele-specific CD24 transcripts. Total RNA from eight P15277%?! patients was amplified with allele-specific primers. The copy
numbers were calculated based on the standard curves. A significant difference in the mRNA expression of CD24 was observed between the P1527%/
and P15277 alleles (p < 0.0001). Data shown have been repeated twice.

doi:10.1371/journal.pgen.0030049.9g004
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The top panel depicts vector constructs used in the analysis. The CD24 cDNA and the GFP-Zeocin have a different promoter and poly-A site cassette,
respectively. Vectors with different haplotypes, CD24™° and CD24%!, were used to transfect CHO cells. The lower panel shows the kinetics of mRNA
degradation. The amount of CD24 mRNA was quantified using RT-PCR. Actinomycin D treatment was administered at 48 h after transfection, and the
total RNA was extracted at 0, 0.5, 1, 2, 3, and 4h after actinocmycin D treatment. The relative amount of CD24 mRNA was calculated as the percentage of
untreated mRNA. A significant difference in CD24 mRNA degradation was observed between CD24¢ and CD24% haplotypes (p < 0.0001, Fisher's PLSD
test). Error bars represent the standard deviation of mean. Data shown have been repeated twice.

doi:10.1371/journal.pgen.0030049.9005

(data not shown). In summary, results from both of population
and the family studies confirm our earlier conclusion that the
CD24 locus is a major modulator for MS risk.

Third, survival analysis revealed a significant association
(even after correcting for multiple tests) of CD24 P1527 with
7% allele

had a significantly delayed progression. This finding further

MS disease progression; MS patients with the P152

confirms that the P1527% allele is a protective genetic factor
for MS. An interesting issue is whether P1527 is associated
with the progression of MS because of its linkage to P170. We
consider it very unlikely as our analysis of LD revealed that
there is little LD between the two sites despite their close
proximity to one another, perhaps due to a recombination
hotspot within the CD24 gene. Moreover, P1056, which is
closer to P170, is not associated with the progression of MS.
We therefore consider it likely that P170 and P1527 are
independently associated with the progression of MS. Since
P1626 is less than 100 bp away and shows a strong LD with
P1527, it remains possible that its association with MS
progression may be due to its proximity to P1527. This
interpretation is favored as P1626 shows no association with
MS risk. Since our analysis has now covered all known CD24
polymorphisms in the exons, it is likely that P1527, rather
than other SNPs, is related to protection against autoimmune
diseases.

Fourth, in addition to MS, which is an organ-specific
autoimmune disease, we also observed that the CD24 P1527%
allele is preferentially transmitted to unaffected individuals
in the SLE family data. It is worth noting that the SLE data
should not be regarded as a replication of MS data per se.
Rather, our data suggest that the protective effect of the
dinucleotide deletion extends to systemic autoimmune
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diseases. Thus, in addition to its critical role for T-cell
proliferation in the central nervous system [25], CD24 may
play a role in the development of multiple autoimmune
diseases.

Based on the observed data pattern and the structure of the
family cohorts, we have chosen TRANSMIT soft ware to
detect association between CD24 polymorphism and risk of
autoimmune diseases to maximize the statistical power.
However, we caution that TRANSMIT may have inflated
type-I error due to its inferences of missing parental
genotypes [44]. Nevertheless, we do not believe the core
finding is due to type-I errors, as statistically significant
association can also be find with FBAT that deletes data from
families without parental information (MS dataset, p = 0.04;
SLE data set, p = 0.01).

Fifth, the dinucleotide deletion reduced steady levels of
CD24 mRNA by more than 2-fold. Thus, in heterozygous
patients, the mRNA from the alleles with the deletion was
only 50% of that of the alleles without the deletion. This is
recapitulated in transfection studies. Analysis of RNA decay
kinetics revealed that the half life for the CD24 transcript
with the dinucleotide deletion was at least 4-fold shorter than
that of the wild-type allele. Since CD24 was expressed at high
levels among some lineages of hematopoietic cells and in the
transfected CHO cells, the reduction in the steady levels may
underestimate the reduction in other cell types, such as T
cells, in which CD24 is expressed at lower levels and is
therefore less likely to saturate the degradation system. The
low expression of CD24 in T cells is essential for homeostatic
proliferation of T cells, which has been implicated in the
development of autoimmune diseases.

In summary, we demonstrated that a dinucleotide deletion

April 2007 | Volume 3 | Issue 4 | e49



at the 3" UTR of the human CD24 gene confers significant
protection against the risk and progression of MS and the risk
of SLE. These results not only provide insight into the genetic
basis of MS and SLE susceptibility, but, perhaps more
importantly, to our knowledge, this is the first report that
shows how polymorphisms at the 3" UTR modulate suscept-
ibility to autoimmune diseases by regulating RNA stability.
Since CD24 is a checkpoint for homeostatic proliferation of T
cells [29], which is implicated in other autoimmune diseases
[45], it will be of great interest to test the contribution of
CD24 to the risk and progression of other autoimmune
diseases.

Materials and Methods

MS patient samples. All sample collection and experimentation
was approved by the Institutional Review Board, and informed
consents from all participants were obtained before sample collec-
tion. Some of the participants had been enrolled in the previous
study [27]. Patients with definite MS, as diagnosed by K.W.R. and
DJ.L. at OSUMultiple Sclerosis Center according to the McDonald
criteria [46], were offered the opportunity to participate. The clinical
diagnosis of MS type and the EDSS score [47] were determined by
three of the authors (K.W.R,, D.J.L,, and N.G.). The time of disease
onset and the time when a walking aid was first prescribed (EDSS 6.0)
were determined retrospectively by the analysis of case records
without knowing CD24 genotype.

In the case-control study, we selected a consecutive series of 829
participants including 361 MS patients and 468 normal controls. For
the case-control analysis based on participants with the same genetic
background, we only used 275 independent Caucasian cases and age
and gender-matched 443 Caucasian controls (Table 1). All MS
patients were recruited at the OSU Medical Center between January
2000 and March 2006 and agreed to participate in this study. All
donors gave written informed consent. The control participants were
obtained from the American Red Cross (Columbus, Ohio) between
September 1999 and January 2006 using leftover peripheral blood
samples.

In the Ohio family study, 101 pedigrees of MS families were used
for association analysis. Of the 346 participants from the families, 135
were MS patients and 211 were non-MS relatives. All MS patients and
their unaffected family members were recruited at the OSU Medical
Center, and all agreed to participate in this study. We interviewed all
MS patients for family history of MS. Consenting family members
with or without MS provided blood samples as well. In rare cases,
when family members were at other locations, samples were obtained
by local physicians or nurses and transported or mailed to our center.
Ascertainment of the presence or absence of MS among the relatives
was by history alone. Relatives who provided blood samples were not
subjected to neurological evaluation or an MRI at our center. These
participants were selected between October 2001 and May 2005.

In the MSGG family study, 321 participants from 49 pedigrees of
multiplex MS families were obtained from the MSGG through the
University of California San Francisco. Of the participants, 119 were
MS patients and 202 were from non-MS relatives. These participants
were selected between October 1997 and January 2003.

Demographics and disease characteristics of the MS patients and
controls are summarized in Table 1. The sex ratio and average age of
the OSU MS patients were not significantly different from those of
normal controls (p = 0.506 in sex; p = 0.970 in age). In all of the OSU
MS patients, as well as in each of the familial and sporadic groups,
there were no significant correlations among age, age at onset, EDSS,
duration of the disease, and clinical course (all p > 0.05). In the OSU
MS patients, no information was obtained for the EDSS score in four
patients and the clinical course in three patients. The group of
patients with some missing phenotypic information was included in
our genetic analysis to be detailed below.

The comparison of clinical and demographic features between
OSU and MSGG family MS patients did not show any significant
differences (p > 0.05). Although there was no significant difference in
the ethnicity between the MS patients of the OSU and the MSGG
families, the MS patients of the MSGG families were from a number
of other countries besides the United States.

SLE patient samples. Demographics and disease characteristics of
the SLE patients and controls are summarized in Table 3. A total of
264 unrelated SLE patients were consecutively recruited at the

@ PLoS Genetics | www.plosgenetics.org

0515

CD24 Polymorphism and Autoimmune Diseases

Columbus Children’s Hospital and Research Institute, OSU, and
followed in the Ohio SLE Study. SLE cases for case-control analysis
were all independent Caucasians. Healthy race-, sex-, and age-
matched participants (270) with no history of autoimmune disease
were enrolled from the American Red Cross (Columbus, Ohio). The
sex ratio and average age of SLE patients were not significantly
different from those of normal controls (p = 0.435 in sex; p = 0.990 in
age). The healthy participants were completely independent from the
control participants in the MS group. Both case and control samples
were collected between 1999 and 2006.

A large collection of 187 pedigrees of SLE families was obtained
from the Columbus Children’s Hospital and Research Institute, OSU,
with predominantly one affected offspring per family. Of the 555
participants from the families, 187 were SLE patients and 368 were
non-SLE relatives. Samples from both parents were available for 36%
of the families, and samples from siblings were also collected where
available (Table S2). In the case of single-parent families, samples
were always taken from siblings. An extensive questionnaire and
interview with a trained physician were completed by unaffected
family members to determine the absence of SLE.

The SLE patients were diagnosed according to the classification
criteria of the American College of Rheumatology [30,48]. Only those
that were diagnosed as definitive SLE were included in the study. The
demography and clinical data for the samples were listed in Table 3,
using kidney involvement and WHO classifications for disease
severity [48]. All participants were Caucasians who gave written
informed consent. Approval for human study protocols was obtained
from the human subjects review board at OSU and the Institutional
Review Board.

Polymorphism identification. The genomic DNA was isolated from
peripheral blood leukocytes (PBL) by using the QIAamp DNA Blood
Minikit (Qiagen, http://www.qiagen.com). We searched for polymor-
phisms in the 3" UTR of exon 2 using PCR and DNA sequencing, and
these polymorphisms were further determined by DNA cloning and
sequencing. Since several intronless CD24 pseudogenes have been
identified in the human genome [32], the functional CD24 locus was
selectively amplified by nested PCR (Figure 1). The first PCR
amplification (Invitrogen http://www.invitrogen.com) was from intron
1 to the end of exon 2 by using a forward primer (5'-CTA AAG AGA
ATG ACC TTG GTG GGT TGA G-3) and a reverse primer (5'-CAC
AGT AGC TTC AAA ACT GTT CGA-3'). The PCR conditions were as
follows: 94 °C for 30 s, 55 °C for 30 s, and 68 °C for 2 min for 20 cycles.
The predicted CD24 PCR fragment was 2,017 bp long. The identity of
the PCR products to the CD24 gene sequence on Chromosome 6, but
not the putative Chromosome Y locus sequence as well as the SNP in
the region was confirmed by cloning and sequencing of the PCR
products (Figure S2). The second PCR amplification (Promega, http://
www.promega.com) was based on each polymorphic site using the
primers as follows: a forward primer (5'-CTA AAG AGA ATG ACC
TTG GTG GGT TGA G-3') and a reverse primer (5'-GGA TTG GGT
TTA GAA GAT GGG GAA A-3') for 170 C/T polymorphism (P170)
from the CD24 translation start site, a forward primer (5'-GGC ATT
TCC TAT CAC CTG TTT-3') and a reverse primer (5'-AAT CTA CCC
CCA GAT CCA AGC A-3") for 1056 A/G polymorphism (P1056), a
forward primer (5'-GCA ATT TTG CCT TCA AAA CAG-3') and a
reverse primer (5'-TTT AGG CTT AGG ACC AGG TTC-3') for
1527~1528 TG/del polymorphism (P1527), and a forward primer (5'-
CAA CTA TGG ATC AGA ATA GCA ACA AT-3’) and a reverse
primer (5'-GGAACATCTAAGCATCAGTGTGTG-3") for 1626 A/G
polymorphism (P1626). The PCR conditions were as follows: 94 °C for
30's, 55 °C for 30 s, and 72 °C for 30 s, for 35 cycles. The PCR products
were digested overnight with BstXI (50 °C) for P170, BstUI (60 °C) for
P1056, Bsrl (65 °C) for P1527, and Mfel (37 °C) for P1626 (New
England Biolabs, http://www.neb.com) and then electrophoresed on
3.0% agarose gels (Figure 1). The genotypes were designated as “C,”
“A,” “del,” or “A” when the restriction sites of BstXI, BstUI, Bsrl, and
Mfel were respectively absent, and as “7,” “G,” “TG,” or “G” when
each restriction site was respectively present (Figure 1). The validity
of the PCR-RFLP analysis was confirmed by direct sequencing of
several PCR samples with each genotype.

Molecular cloning and plasmid construction. CD24 cDNA was
amplified from the peripheral blood leukocyte of individuals with the
P15277¢H genotype by RT-PCR (Invitrogen). The following primers
were used: a forward primer (5'-ATG GGC AGA GCA ATG GTG-3")
and a reverse primer (5'-CAC AGT AGC TTC AAA ACT GTT CGA-
3"). The PCR products (1,842 bp) were cloned into the TOPO-
pCDNA2.0 vector (Invitrogen), which was digested with Kpnl/Notl,
and then the PCR products with the additional Kpnl/Notl site were
cloned into the pTracer CMV2 vector (Invitrogen), thus generating
two plasmids, pTracer CMV2-CD24"“ and pTracer CMV2-CD24%
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The sequence of two CD24 cDNA inserts was confirmed by DNA
sequencing. To exclude potential confounding factors, we selected
the same sequence at the P170, P1056, and P1626 sites between the
two plasmids.

Cell culture and DNA transfection. To test the expression
efficiency of the CD24 alleles, we transfected varying concentrations
of plasmids into CHO cells using FuGENE 6 (Roche, http:/lwww.roche.
com). For the RNA stability experiment, 48 h after transfection, CHO
cells were treated with actinomycin D (5 pg/ml) (Sigma, St. Louis, Mo.)
for 0.5, 1, 2, 3, and 4 h. Untreated cells were used as control at the 0 h
time point.

RT-PCR. We isolated total RNA from 1 X 10° transfected CHO
cells using a commercially available kit (Qiagen). We exposed RNA
samples to DNase digestion before cDNA synthesis. For gene-specific
PCR, 1 pl of first-strand cDNA product was amplified with platinum
Taq polymerase (Invitrogen) according to the manufacturer’s
instructions. We designed primers specific for CD24 (forward: 5'-
CCC ACG CAG ATT TAT TCC AGT-3', reverse: 5'-TGG TGG TGG
CAT TAG TTG GAT-3') and for GFP (forward: 5'-GGT GAT GTT
AAT GGG CAC AA-3', reverse: 5'-TAG TGA CAA GTG TTG GCC
ATG-3") and performed a 30-cycle, three-step PCR (denaturation at
95 °C for 30 s, annealing at 55 °C for 30 s, extension at 68 °C for 30 s)
with an initial temperature of 95 °C for 10 min.

An ABI Prism 7900-HT sequence system (Applied Biosystems,
http:/lwww.appliedbiosystems.com) with the QuantiTect SYBR Green
PCR kit (Qiagen) was used in accordance with the manufacturer’s
instructions. A standard curve was created in each experiment using
serial dilutions of positive template (plasmid). The relative amount of
CD24 mRNA was calculated by plotting the C, (cycle number) against
the standard curve and comparing this to GFP as an endogenous
control. The average relative expression for each group was
determined using the comparative method (2724, We used samples
either without a template or with a template where the reverse-
transcription step had been omitted as controls for unspecific
contamination and amplification of plasmid DNA, respectively.

Allele-specific mRNA expression assay. Genomic DNA from eight
OSU MS patients was initially genotyped to identify a P1527"““ heterozygote
and the corresponding cDNA samples were initially analyzed by using
a TagMan gene expression assay. Sample cDNAs were amplified in a
model 7900-HT sequence system (Applied Biosystems) using the
forward and reverse primers and a FAM dye-labeled TagMan MGB
probe with a TagMan PCR reagent kit (Applied Bips?/stems). The
sequence of primers and the probes for CD24 P15277%* which were
designed by Applied Biosystems, were 5-AGAAGGCAAAATG-
TAAAGGAGTCAAACT-$' for a forward P1527"¢ primer, 5'-FAM-
TTCCAGTCTTCACTTCCC-TAMRA-8' for a P1527"¢ probe, 5'-
GTTGCTATTCTGATCCATAGTTGTTTTTTAAAGA-3' for a reverse
P1527"¢ primer, 5-AGAAGGCAAAATGTAAAGGAGTCAAACT-8'
for a forward P1527"" primer, 5'-FAM-AAGTGAAGACGAAGC-
TAATTT-TAMRA-3' for a P1527%' probe , and 5'-
TTCTAAATGTTGCTATTCTGATCCATAGTTGT-3" for a reverse
P1527% primer. Quantitative PCR was carried out in 96-well optical
reaction plates using a cDNA equivalent of 50 ng of total RNA for
each sample in a volume of 50 ml using the TagMan Universal PCR
Master Mix (Applied Biosystems) according to the manufacturer’s
instructions. The mixed plasmid of pTracer CMV2-CD24"%and
pTracer CMV2-CD24™ in the same concentrations was used as a
template for making the standard curve. The known concentrations
of the serially diluted CD24 plasmid mix were employed as a standard
for the quantification of the sample cDNAs. Each sample was assayed
in triplicate and the intra-assay coefficient of variation was less than
1%. Experiments were repeated three times.

Statistical analysis. Case-control population study. Patients and
normal controls were examined for any significant differences in
their genotype (allele) distributions in each of the CD24 poly-
morphisms at the population level. First, the Hardy-Weinberg
equilibrium assumption was checked for each polymorphism for
the cases and controls separately. After such data quality analyses, we
performed % tests for each polymorphism by comparing the
distribution of the genotypes (alleles) of the cases to that of the
normal controls. We computed the p-values of the test statistics using
Monte Carlo simulations to avoid the assumptions of asymptotic
distributions that may not be valid for small counts. Then, using the
counts of one of the genotypes (allele) as a reference, the odds ratios
for the remaining genotype (allele) variants were computed. The
associated 95% confidence intervals for the odds ratios were
obtained through bootstrap resampling methods. All Monte Carlo
simulations were performed with 100,000 iterations.

Analysis using family data. Since case control studies are, in
general, sensitive to population stratification, which may render the
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interpretation of results less than satisfactory, we also considered
transmission disequilibrium tests using family data from three
cohorts; the OSU MS samples, the MSGG MS samples, and Columbus
Children’s Hospital SLE samples. We checked for Mendelian
inconsistencies and obligatory double recombination, using Merlin
to test the typing errors.

The numbers of families with transmissions to affected offspring
are: OSU MS, 87; MSGG, 63; and SLE cohort, 189. In these analyses,
we hoped to confirm any significant association uncovered in the case
control studies to further strengthen the results. Each polymorphism
was examined for transmission disequilibrium using the TRANSMIT
software [34,35] to uncover any association between the polymor-
phism and MS or SLE. TRANSMIT can deal with data from general
pedigrees, the same type of data collected in our family studies.

Linkage disequilibrium. Analysis of the four SNPs was carried out
using Haploview [49] software to study the LD pattern in the CD24
gene using the Caucasian family data from the three independent
cohorts. Specifically, pairwise LD measure ° was calculated for each
of the six pairs of SNPs, and their results were displayed in a tilted
matrix. While all families’ data were used for phase (haplotype)
information, only unrelated individuals were used for calculating the
LD.

Survival analysis. For each SNP, we estimated the Kaplan-Meier
survival curve for patients with each of the genotypes associated with
the polymorphism. We calculated the observed survival time of a
patient as the time from the first day of symptoms to reaching EDSS
6.0 (in years) or to the day of the last follow-up visit if EDSS 6.0 had
not been reached. In the latter situation, the recorded survival time
was treated as a censored observation. Association between the
estimated survival curves and the underlying genotypes were then
assessed using a log-rank test [50].

Analysis of expression data. A paired ¢-test was used to assess the
effect of the dinucleotide deletion of P1527 on the allele-specific
reduction of CD24 mRNA. Due to the small sample size (eight
individuals) used, the p-value was calculated based on 1,000,000
Monte Carlo simulations without making the normality assumption
of the underlying population. For the mRNA stability data, an
analysis of variance was performed to test the hypothesis that P1527
modulates CD24 mRNA stability. The dependency through time was
taken into account by modeling the covariance using an autore-
gressive process. To test our hypothesis, we contrasted the decay
patterns of the CD247¢ with those of the CD24. In addition, we
tested their difference at each individual time point.
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Figure S1. CD24 Sequence Based on Celera Database
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That of NC_000024.8 from the NCBI Database
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