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Abstract: One-class modelling is a useful approach in metabolomics for the untargeted detection
of abnormal metabolite profiles, when information from a set of reference observations is available
to model “normal” or baseline metabolite profiles. Such outlying profiles are typically identified
by comparing the distance between an observation and the reference class to a critical limit. Often,
multivariate distance measures such as the Mahalanobis distance (MD) or principal component-based
measures are used. These approaches, however, are either not applicable to untargeted metabolomics
data, or their results are unreliable. In this paper, five distance measures for one-class modeling in
untargeted metabolites are proposed. They are based on a combination of the MD and five so-called
eigenvalue-shrinkage estimators of the covariance matrix of the reference class. A simple cross-
validation procedure is proposed to set the critical limit for outlier detection. Simulation studies
are used to identify which distance measure provides the best performance for one-class modeling,
in terms of type I error and power to identify abnormal metabolite profiles. Empirical evidence
demonstrates that this method has better type I error (false positive rate) and improved outlier
detection power than the standard (principal component-based) one-class models. The method is
illustrated by its application to liquid chromatography coupled to mass spectrometry (LC-MS) and
nuclear magnetic response spectroscopy (NMR) untargeted metabolomics data from two studies on
food safety assessment and diagnosis of rare diseases, respectively.

Keywords: high-dimensional data; one-class model; untargeted metabolomics; mahalonobis distance;
eigenvalue-shrinkage; critical value; scaled Chi-square distribution

1. Introduction

Due to the rapid advances in comprehensive untargeted metabolomics, generating
relative abundance values of hundreds to thousand metabolites present in crude extracts, it
is possible to examine the metabolite profile of an individual observation in unprecedented
detail. Analytical techniques such as liquid chromatography coupled to mass spectrometry
(LC-MS) or nuclear magnetic response spectroscopy (NMR) allow for the global and
unbiased profiling of a wide range of metabolites in a single biological sample. Although
these metabolites are detected in an untargeted fashion, a targeted statistical approach is
commonly used to interrogate the acquired data. Typically, cases (i.e., tests) and controls
(i.e., references) are compared as a two-class classification problem using, for example,
partial least squares—discriminant analysis (PLS-DA). However, this approach is often
unsuitable because the classes are not well defined due to associated populations being
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biologically too heterogeneous; or when data from a class is difficult or expensive to obtain,
resulting in a too low amount of samples; or when an observation being classified does not
belong to any of the predefined classes (i.e., an unknown or unexpected effect).

In one-class modeling, the focus lies on the classification of observations to a single,
specific class, which we will refer to as the reference class [1]. In particular, data from a set
of reference observations (a random sample from the reference class) is used to characterize
the normal range of metabolic profiles of that class. Deviations in the metabolite profile
of new observations compared to this normal range then provide an untargeted signal
indicative of an outlier (abnormal observation). Here, untargeted refers to the fact that
a multitude of outliers, whose metabolite profiles may differ from the reference class in
various ways, can be detected by the same one-class classifier. This way, the issues of
multi-class classification mentioned above are circumvented. Applications of one-class
classification in combination with untargeted metabolomics include food authentication,
health monitoring, and risk assessment of genetically modified (GM) crops [2–4]. In
food authentication, the reference class is formed by the product of interest [2]. Outliers
potentially correspond to adulterants. In health monitoring, the one-class classifier is used
for disease detection [3]. The model is trained by metabolite data from a set of healthy
references. Several methods have been proposed to identify the metabolites associated to
an observation being an outlier from the one class, i.e., disease diagnosis [5]. The approach
was used for the diagnosis of rare diseases, where it may be difficult to obtain observations
from a specific disease [3]. It has also been proposed for detection of individual responses to
treatment of Hepatocarcinogenesis [6]. In safety assessment of GM crops, the reference class
consists of varieties that have a history of safe use for human consumption [4]. An outlier
may be indicative of an undesired effect in the GM event, as a result of the introduced trait
or of the GM method that may pose a hazard. Note that outlier detection may be a useful
element in assessing food safety, but is not in itself sufficient to show the equivalence of the
genetically modified and reference crops, because the absence of a proof is not a proof of
absence (i.e., a proof of safety) [7]. Another potential application of one-class modeling in
metabolomics would be quality control of a mass-spectrometer over time [8,9].

The Mahalanobis Distance (MD) is a multivariate generalization for measuring how
many standard deviations an observation is away from the center of a class. The MD is
often used in one-class modeling, where it is assumed that the distribution of the reference
class is multivariate normal [10]. Observations with a MD above a critical limit are marked
as an outlier. The MD, however, was developed for traditional data sets where the number
of observations (N) is much larger than the number of variables or metabolites (P). The
measure becomes unreliable when N ∼ P and completely breaks down when N� P [11].
In other words, the MD is not applicable to a typical untargeted metabolomics data set.
To circumvent this issue, the dimension of the data is often first reduced by principal
component analysis (PCA). Subsequently, the MD (and other distance measures) can be
used to detect outliers in the subspace spanned by the principal components and its
orthogonal complement. This strategy is used, for example, in Soft Independent Modeling
by Class Analogy (SIMCA) [12]. However, we will show in Section 2 that such popular
PCA-based outlier detection criteria also have serious drawbacks when applied to high-
dimensional data (N � P), including metabolomics data. Other authors have reported
similar issues in these settings [12,13]. In particular, the type I error of PCA-based one-class
models is not controlled well, i.e., too many reference observations are incorrectly flagged
as outliers. In addition, the performance of a PCA-based one-class model critically depends
on the number of selected principal components, which is not straightforward to choose
in practice. Finally, as a consequence of the dimension reduction step, outliers cannot be
identified on the basis of a single distance metric.

The estimate of the MD critically depends on the estimate of the covariance matrix of
the reference class, which describes the variation in the metabolite profiles of the references
around the mean (of the references). In particular, the eigenvalues of the covariance matrix
correspond to the variance of the reference observations along different directions (principal
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components) in a multivariate space. Typically, the well-known sample estimator of the
covariance matrix is used to estimate these. As shown in the top row of Figure 1, however,
this has several drawbacks for datasets where the number of observations is (much) smaller
than the number of variables, such as in untargeted metabolomics data. The variance of the
reference observations is overestimated along some directions in multivariate space and
underestimated along others. Clearly, this hampers outlier detection, see Supplementary
Figure S1. In particular, as shown in Figure 1c, some variance estimates are equal to zero
when the number of metabolites is larger than the number of reference observations, and
the calculation of the MD completely breaks down in these cases.

Figure 1. Estimates of the eigenvalues of the covariance matrix of the reference class for (a) 800, (b) 200, and (c) 100 reference
observations and 200 variables (metabolites). The top and bottom rows correspond to the sample and (“L LW”) eigenvalue-
shrinkage estimates of the covariance matrix, respectively. The data are i.i.d. samples from N(0, Σ) with population
covariance matrix Σ = I, i.e., the population eigenvalues are all equal to one as is indicated by the vertical red dashed line.
In line with the simulation settings performed in rest of the paper, the data is auto-scaled. Note that, in particular, the
dispersion of the sample eigenvalue estimates around the population value increases when the number of observations
decreases. This result is generally observed and not restricted to the case shown here [14].

As shown in the bottom row in Figure 1, the drawbacks of the sample covariance esti-
mator mentioned above can be overcome by application of a so-called eigenvalue-shrinkage
estimator. Briefly, eigenvalue-shrinkage results in a better estimate of the variation between
the reference observations. Secondly, this class of methods always returns a so-called posi-
tive definite estimate of the covariance matrix. This means that in principle the method can
always be employed to calculate the MD, even when P� N. The use of such shrinkage-
based estimators for one-class modelling is not widespread in the literature, especially in
metabolomics. Recently, Ullah et al. [8] demonstrated the use of eigenvalueshrinkage-based
one-class modeling in targeted metabolomics. The method was successfully applied for
quality control of GC-MS data involving 25 metabolites. The present paper focuses on
eigenvalueshrinkage for one-class modeling in untargeted metabolomics data involving
a much larger number of metabolites. We extend the work of Ullah and coworkers in
high-dimensional settings by (1) employing more sophisticated eigenvalue-shrinkage ap-
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proaches in combination with the MD [15–18] and (2) using a simple procedure to set the
critical limit for the shrinkage MD (for identification of outliers). In (1) five shrinkage
estimators are considered, namely the so-called Ledoit and Wolf (LW) linear shrinkage
estimator that was used by Ullah et al. [8] and four estimators that improve upon LW.
The best (in terms of type I error and computational feasibility) shrinkage estimator is
identified by simulation and consequently employed for one-class modeling in untar-
geted metabolomics.

The application of the shrinkage MD in one-class modeling requires a critical limit to
identify outliers. Specification of this limit is not straightforward because the distribution
of the resulting MD under the null hypothesis of no outlier is unknown, due to the
eigenvalue-shrinkage. We show, however, that the distribution can be approximated
well by a (scaled) χ2 distribution. The degrees of freedom and scaling factor are obtained
from cross-validation using the reference observations. We provide empirical evidence
by simulation that this approach outperforms the method of Ullah et al. [8] in terms
of type I error. In short, we introduce an improved protocol for one-class modeling
in high-dimensional data based on shrinkage, which will be called as “ES-CM” (a.k.a.
eigenvalue-shrinkage class-model) throughout the rest of the paper.

In the next section, the practical application of ES-CM is illustrated by its application
to two case studies. We first focus on risk assessment of GM crop varieties using LC-MS
data. Next, diagnosis of inborn errors of metabolism (IEM) on the basis of urine 1H-NMR
spectra is considered. Subsequently, the statistical properties of ES-CM are investigated by
simulation. The results demonstrate that the method has better type I error (false positive
rate) and improved power (to detect actual outlying observations) than the standard
PCA-based (SIMCA) one-class classifier, and also improves upon other shrinkage-based
one-class models such as the one of Ullah et al. Section 3 discusses the results together
with possible directions for future research. Finally, in Section 4 materials, methods, and
the main theory of ES-CM are presented.

2. Results
2.1. Case Study 1: Compositional Safety Assessment of Tubers from Commercial and Cisgenic
Potato Varieties

Safety assessment of GM crop varieties generally focuses on two aspects: intended
effects and potential unintended effects of the genetic modification. In Herman et al. [19], it
has been argued that safety of potential unintended effects should be considered in the light
of normal crop variation. For this purpose, a comparative analysis is performed, where
metabolic profiles of the GM variety are compared to those of reference varieties that have
a history of safe use. Recently, comprehensive, untargeted metabolomics in combination
with a SIMCA one-class model were proposed for this purpose [4,20]. Here, ES-CM is
used to analyze untargeted LC-MS-based metabolomics data of a series of potato tuber
samples from both commercial genotypes and cisgenic GM varieties, with each sample
consisting of a mix of multiple individual tubers per variety. Thus, for the considered case
of cisgenesis, the argument of Herman et al. is even more justified because of the native
genes that were introduced in these varieties. The samples that are marked as an outlier by
ES-CM contain aberrant metabolite profiles in comparison to the references, and therefore
may need further evaluation for risk assessment.

The present study considers the relative abundance values of 458 metabolites, de-
tected by untargeted high mass resolution LC-MS, across 62 potato tuber samples (see the
Supplementary Materials for further details about the potato samples). Each sample repre-
sents a different potato genotype or environment. Forty-one of these samples were grown
in the same location (Wageningen, The Netherlands) and correspond to conventionally
bred consumption (i.e., non-starchy) potato varieties with a history of safe use for human
consumption, i.e., a sample of the reference class. They were used to train ES-CM.

ES-CM employs eigenvalue-shrinkage, providing an estimate of the covariance matrix
as a combination of the identity and the sample covariance matrices. The contribution
of two components is given by the shrinkage intensity (a number between 0 and 1). The
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optimal eigenvalue-shrinkage intensity was estimated at 0.599. This means that a consider-
able amount of shrinkage was used to obtain a better estimate of the variation between
the reference varieties in multivariate space. Further technical details and interpretations
of the shrinkage intensity are given in Section 4.5. In a leave-one-out cross-validation the
classification of each reference sample was investigated by ES-CM. A total of 35 observa-
tions were correctly classified as inside the one-class, while 6 observations were incorrectly
marked as an outlier, see Figure S2b of the Supplementary Materials. This corresponds to a
type I error rate of 12.5%, which is larger than the nominal level of 5% that was used, but
within the expected range (the binomial Clopper-Pearson interval ranges from 1.1 to 14%)
given the limited sample size in this study.

Next, the trained ES-CM was used to classify the remaining 21 samples. Eight of these
samples correspond to eight cisgenic varieties that were enriched with different late blight
resistant genes from crossable species [21]. Three samples correspond to starch varieties
that, together with the cisgenic varieties, were grown in the same location as the reference
group. The remaining 10 samples are consumption varieties with a history of safe use that
were obtained from 2 other locations in comparison to the training data. These varieties
are also included in the set that forms the reference class. However, these samples are not
references themselves because the samples were obtained from another location.

A first investigation based on a Principal Component (PC) score plot (shown in
Figure S2a in the Supplementary Materials) of the auto-scaled training and test data
does not reveal any abnormal sample in the test group. However, only a relatively low
percentage of variance among the reference metabolites is explained by the first two
principal components. Arguably, we aim with ES-CM to take all the variation in the data
into account. Figure 2 illustrates the classification of the potato tubers included in the test
set by ES-CM. The y-axis shows the eigenvalue-shrinkage based MD of each observation.
The horizontal dotted line corresponds to the critical limit. The critical limit was determined
by cross-validation, see Section 4.6. Any observation with a MD larger than the critical
limit is classified as an outlier, i.e., outside the one-class. The cisgenic varieties (in blue)
appear to behave differently than the other two test groups (i.e., starch and reference
varieties, respectively, in green and orange), as their MD is much closer to those of the
parental varieties (in dark red), which are part of the reference group. In fact, the majority
of the cisgenic events (7/8) were not flagged as “outliers”. This offers the first indication
that cisgenic breeding does not cause a disturbance of global metabolite composition and
is therefore equally safe as classical breeding. Furthermore, this is in line with current
expectations that the adopted GM modification methods are not thought to create greatly
different metabolic phenotypes [4]. The GM cisgenic event that is marked as an outlier
(outside the one-class) may well be safe but will require further risk assessment to confirm
its safety. A starting point for this could be the identification of the variables (metabolites)
that contributed most to this observation being an outlier. Such a procedure is discussed in
the next case study. Next, the metabolite profiles of the starchy potatoes were found to be
clearly different from the profiles of the reference class. In fact, the reference class contains
non-starchy potato varieties only. Therefore, the evaluation of starchy potato varieties
by ES-CM is expected to highlight their abnormality. Similarly, all reference varieties
from another location were also marked as outlying. This is attributed to the fact that the
reference class was defined for samples from location A (see Supplementary Materials),
while these samples were grown in different locations, B and C. Thus, the model correctly
indicates that these are not part of the reference class. These differences are attributed to
environmental variation.
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2.2. Case Study 2: Diagnosis of Inborn Error of Metabolism

Recently, a PCA-based one-class model was proposed for disease detection, and, in
a subsequent step, identification of the disease biomarker at the level of the individual
patient [22]. In this section, ES-CM is applied to identify observations with an abnormal
metabolite profile (disease detection). Subsequently, the variables contributing to the obser-
vation are identified, which is also briefly touched upon. By means of prior knowledge,
these abnormal features can be linked to a disease (disease diagnosis). Here, we focus on
analysis of urine 1H-NMR spectra. More specifically, urine samples were acquired from
176 healthy controls. In addition, 1H-NMR data of urine samples of 41 test observations is
available. Earlier, the data was analyzed according to current clinical practice, namely by
visual inspection of the 1H-NMR spectra by a clinical expert and by means of PCA score
plots [3]. By means of visual inspection, abnormal patterns (with respect to the reference
class of healthy controls) were identified in each of the spectra from the test set. Many
of these could not be identified in a PCA scores plot of the complete data matrix, see
Supplementary Figure S3a.

For improved detection of abnormal patterns an ES-CM model was fitted to the
preprocessed NMR data, which comprised 246 bins (variables). A subset of healthy controls
was selected to train ES-CM, i.e., using a random sample. In line with the original study of
Engel et al. [3], the Kennard Stone algorithm [23] was used to select a subset of 120 healthy
individuals.

The remaining 56 individuals were used in the model validation discussed below. The
first step in fitting the ES-CM model was to obtain an estimate of the covariance matrix of
the class of healthy controls by means of eigenvalue-shrinkage. Compared to case study
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one, less shrinkage was applied because of the larger ratio between the number of training
observations and the number of variables in the data set. More specifically, the eigenvalue-
shrinkage intensity was estimated at 0.078. This number is close to zero suggesting that not
much shrinkage had to be applied to correct for the bias in the sample covariance matrix of
the set of references. Note, however, that the sample covariance matrix was not positive
definite, meaning that it could not be used (in combination with the MD) to fit one-class
model. Due to eigenvalue-shrinkage, a positive definite estimate of the covariance matrix
was obtained, and consequently a one-class model could be fitted. Similar to case study 1,
we have evaluated the compliance of each training reference observation (out of the 120) to
the one-class by leave-one-out cross-validation. Figure S3b of the Supplementary Materials
illustrates that only a few references (9) were detected as outliers. This corresponds to a
type I error rate of 7.5%, which is within the expected range (the binomial Clopper-Pearson
interval ranges from 1.9–10.6%) for this study.

The remaining 56 healthy controls (not included in the training data) were also used
to validate the type I error of the ES-CM classifier. Figure 3 illustrates that all of these
observations were classified as inside the one-class. Next, 41 additional observations were
classified by the fitted ES-CM model. Abnormal patterns (in comparison to the reference
class) had earlier been observed in the NMR spectra of these observations by a clinical
expert [3]. In other words, this set comprised observations that should be marked as an
outlier by ES-CM. More specifically, this test set comprised data from 18 patients who
were known to suffer from one of 7 inborn errors of metabolism (IEM), namely (isovaleric)
aciduria (1), alkaptonuria (10), cystinuria (2), carboxylase deficiency (1), dehydrogenase
deficiency (1), formiminotransferase deficiency (2), and oxoprolinuria (1) (see Engel et al. [3]
for more details). Of the remaining 23 samples, 6 are patients who consumed commonly
prescribed drugs (i.e., paracetamol, depakine), and the last 17 are healthy individuals
with exogenous metabolite profiles due to diet (in comparison to the reference class).
Interestingly, Figure 3 shows that all IEM patients were correctly marked as an outlier by
ES-CM, highlighting that single ES-CM can be used to detect multiple diseases. Similarly,
other patients under medication were also classified outside the class. Most healthy
individuals with an exogenous metabolic profile (as defined in Engel et al. [3]) were also
detected as abnormal (10/17) with respect to the healthy group of references. For the (7/17)
cases classified inside the class, we found characteristic compounds associated to fish (1),
artificial sweetener consumptions (3), drug intake (1), and bacteria contamination (2).

In this context, after an observation is marked as an outlier, it might be beneficial to
detect which resonances in the NMR data contributed most to the observation being an
outlier. This information could be used to identify the pattern of metabolites for which
the patient differs most from the references, i.e., a biomarker at the level of the individual
patient [5]. Recently, various approaches were reviewed for this purpose [5]. A brief
description is given in the Supplementary Materials. These can easily be combined with
the eigenvalue-shrinkage estimator used by ES-CM. Two examples are shown in Table S5
of the Supplementary Materials corresponding to an alkaptonuria patient and a person
who consumed paracetamol.

2.3. Synthetic Data Experiments

For reasons described in Section 4.5, 5 shrinkage estimators of the covariance matrix
of the reference class were initially considered to be used for one-class modeling. These
methods are referred to as “L LW” [14], “L OA” [16], “L T” [15], “nL LW” [24], and “nL
vW” [17]. The first 3 methods are so-called linear eigenvalue-shrinkage estimators, while
the latter 2 are nonlinear approaches. As explained in Section 4.5, nonlinear shrinkage is
typically expected to result in the best estimate of the covariance matrix of the reference
class, but linear shrinkage often offers a good approximation while being computationally
much more efficient.

The shrinkage estimators are evaluated by applying them to synthetic data since there
is often no clear “ground-truth” in real metabolomics experiments. In the simulation 3
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covariance structures of the reference class were considered. First, the eigenvalue-shrinkage
estimators were compared to each other with respect to computational speed and type I
error of the corresponding one-class model. The best performing estimator was selected for
further use in ES-CM, including the case studies described above. Next, the power of the
ES-CM to identify outliers was investigated and compared to that of a popular PCA-based
one-class model. The complete setup of the synthetic data experiments is outlined in
Section 4.3.
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2.3.1. Assessment of the Computational Speed

The computational efficiency of 5 eigenvalue-shrinkage estimators was compared for
synthetic data involving N = 25 reference observations and P = 250 metabolites. More
specifically, the time (in seconds) needed for the procedure to estimate the covariance matrix
for a single dataset was considered. Table 1 shows that the linear shrinkage estimators are
computationally much more efficient compared to the nonlinear methods. In particular,
the estimation of the covariance matrix by “nL vW” took more than 8 min. Note that
setting the critical limit of ES-CM requires iterative estimation of the covariance matrix in a
cross-validation framework. Therefore, from a computational perspective, “nL vW” was
not considered a feasible approach, especially for the analysis of untargeted metabolomics
data with P� 250. For similar reasons, the application of the other non-linear shrinkage
method (“nL LW”) will also often be unfeasible.
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Table 1. Evaluation of the computational time and type I error for one simulated dataset with
N = 25 P = 250 and a type (iii) covariance matrix for the different classes of eigenvalue-shrinkage
methods, see Section 4. One-hundred test observations (with the same distribution as the set of
references) are used to compute the type I error. A significance level of 0.05 was used.

L LW L OA L T nL LW nL vW

Time [s] 1.19 1.00 0.79 189.00 490.00
Type I error 0.14 0.097 0.087 0.079 0.081

2.3.2. Type I Error of the Eigenvalue-Shrinkage Approaches

Next, the type I error of one-class models based on the MD in combination with
the 5 eigenvalue-shrinkage methods was investigated. Seemingly, for the single data set
considered in Table 1, the type I error of one-class models based on non-linear shrinkage is
closer to the nominal level of 5% compared to the linear shrinkage estimators. However,
the results of linear shrinkage appeared to be quite close. Given the computational expense
of the non-linear methods, subsequent investigations mainly focused on the performance
of linear eigenvalue-shrinkage for one-class modeling. For the sake of comparison, the
least computationally expensive nonlinear method, “nL LW”, was also included.

The type I error of the one-class models was further investigated for different numbers
of reference observations N ∈ {25, 50, 100, 200}, metabolites P ∈ {250, 500, 1000}, and
three correlation structures between the metabolites. Here, the results are presented for
a correlation structure that was based on a real metabolomics dataset (i.e., type (iii)).
The other results are presented in Section S6 of the Supplementary Materials. For each
setting, 200 independent datasets are generated. For each simulation, we generate an
additional 100 independent observations to be used as test data. As we focus on the
type I error, we do not assume any abnormality in the test data. Figure 4 depicts the
results of the different simulation settings for one-class models based on each of the
4 selected eigenvalue-shrinkage estimators. As expected, increasing the sample size, while
keeping P fixed, largely improves the type I error for all methods (see also Figure S7 of
the Supplementary Materials). Conversely, when the number of metabolites is increased,
with N fixed, the type I error deteriorates. Overall, very low sample sizes (N = 25) increase
the type I error slightly over the nominal level and should therefore not be overlooked in
similar practical applications. However, we will see in the next section that, in comparison
to current (PCA-based) one-class models, the type I error is much closer to the nominal
level. Generally, all eigenvalue-shrinkage estimators improve upon “L LW”, which was
used by Ullah et al. [8] to construct their “ES-CM”, in the sense that their type I errors are
much closer to the nominal level.

Overall, the type I error of the one-class model based on the “nL LW” estimator was
closest to the nominal level. However, the computationally much less expensive procedures
“L OA” and “L T” showed comparable performance, with most type I errors well within the
binomial Clopper–Pearson interval. In all simulations, one-class modeling in combination
with “L T” eigenvalue shrinkage emerged as the fastest procedure with acceptable control
over the type I error. L OA was a close second, but the “L T” approach is assumed to be
a bit more robust to departures from normality, as explained in Section 4.5, since it is a
non-parametric method. Therefore, ES-CM uses this eigenvalue-shrinkage approach.
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2.3.3. Improved Power of ES-CM over the Standard PCA-Based Decision Criteria

Next, the power of ES-CM for outlier detection was examined. We consider the
settings N = 50, P = 250, and N = 100, P = 1000 for the train data. Figure 5 presents the
results for the latter setting. The simulation results for N = 25 and P = 250 are shown
in Figure S8 of the Supplementary Materials. The four panels in Figure 5 correspond to
four different types of abnormal metabolite profiles of the test observations in comparison
to the reference class, namely (a) a difference in the first 12 variables (metabolites), (b) a
difference in a random subset of variables, (c) a difference along the first eigenvector of
the population covariance matrix of the references (i.e., shifts along directions where the
references show the most variation), and (d) a difference along the last eigenvector (i.e.,
shifts along directions where references show the least variation). In each of these cases, the
size of the abnormality, labeled “shift (STD)” in Figure 5, is tuned so that ES-CM showed
intermediate power over most of the values of the sizes considered.

As expected, for each scenario the power to detect outliers increases with increasing
effect sizes. Case (a) and (c) share similar trends in the observed power, because the
abnormalities introduced in the first variables are most likely associated to the largest
eigenvalues. Figure S9 of the Supplementary Materials clearly shows that the covariance
matrix used in the simulations has a blocked structure. The first 12 variables belong to a
block of highly correlated variables, which are potentially associated to direction of large
variance. We expect high detection power when using shrinkage in these settings, because it
corrects for the error (i.e., overestimation) along the eigenvectors expressing major variance,
enhancing the mean differences among the abnormal and the other metabolites and thus
facilitating the detection of abnormal metabolite patterns along these directions [25]. In
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the other cases (see panels (b) and (d)), power is expected to decrease [25], i.e., when shifts
are randomly introduced among the variables or expressed along the last eigenvalues.
Particularly, the results in panel (b) refers to situations when outlying values are present
in a random subset of (possibly uncorrelated) variables. We can see that compared to
panel (a) and (c), the shrinkage statistic has less power against this type of abnormalities,
which should not be picked up by the method too easily. In panel (d), we can see that the
power is decreased when an abnormality is expressed along the eigenvectors associated
to the smallest eigenvalues (i.e., lowly correlated metabolites). This is because shrinkage
decreases the weighting given to the small eigenvalues [25]. Nevertheless, this is not very
much alarming, since these types of shifts are not expected to occur much in practice.

Figure 5. Percentage of correct detection of the introduced abnormality (over 200 simulations) for ES-CM based on “L T”
shrinkage for the MD (with χ2—based critical limits) and for the standard PCA-based decision criteria (simulation 1). On
the x-axis the magnitude of the shift (in standard deviations) in the mean between the reference population and the test
sample and on the y-axis the percentage of correct detection of the introduced abnormality (i.e., power). The black line
shows the detection percentage based on ES-CM, the red line the PC-based score distance alone, the cyan line the PC-based
orthogonal distance only and the gold line the two PC-based measures combined. Each simulation setting consisted of
N = 25 units and a (P = 250)-variate normal distribution with 0 mean and a type (iii) covariance matrix.In panel (a), the test
data (N = 100, P = 250) has a mean shift for the first 12 variables of size (0, 0.25, 0.5, 1, 2). In panel (b), the test data has a
mean shift in 12 random variables of size (0, 0.25, 0.5, 1, 2). In panel (c), shifts of size (0, 0.25, 0.5, 1, 2) were done along
the first eigenvector. In panel (d), shifts of size (0, 16, 32, 64, 128) were done along the last eigenvector.

Figure 5 also compares the power of “ES-CM” to that of a PCA-based one-class model.
Note that in the figure we can also evaluate the type I error of two methods when the effect
size is 0. Generally, outlier detection in PCA-based one-class modeling is based on two
statistics (distance measures), namely Hotelling’s T2 and the so-called Q-statistic [26–28].
These measures can also be combined for outlier detection. This way a single statistic can
be used for outlier detection. Figure 5 seems to suggest that the PCA statistics PCA_Q and
PCA_T2 + Q offer more power to detect outliers in comparison to ES-CM. This, however,
should not be misunderstood as a positive result, since their type I error (incorrectly
marking a reference observation as outlying) is not taken into account. Note that the type
I error of the methods can be seen in Figure 5 for shifts (x-axis) of zero. The type I error
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of PCA_Q and PCA_T2 + Q was around 80%, which is clearly much larger than that of
ES-CM (and the nominal level of 5%). In contrast, the PCA_T2 test appears to be very
conservative (too low type I error) and hardly has any power to detect outliers.

3. Discussion

In this paper, we have proposed a one-class model for the analysis of high-dimensional
(metabolomics) data called ES-CM. The method combines estimation of Mahalanobis
distances with an eigenvalueshrinkage estimator of the covariance matrix. It was shown
that ES-CM outperforms PCA-based outlier detection and the shrinkage-based one-class
model proposed by Ullah et al. [8].

It was shown in simulations that the type I error of ES-CM was close to the nominal
level for datasets with 50–100 reference observations and up to 1000 variables. Additional
simulations (results not shown) suggest that with 50–100 reference observations the type I
error tends to increase when more variables (i.e., 2000–5000) are considered. For instance,
for P = 2000 we observed a type I error of 0.16, which is still substantially lower than the
standard PCA-based approaches. The type I error is expected to decrease when a larger
number of observations are available. Finally, the simulations have shown that ES-CM
has high power to detect outliers, especially when an observation has outlying values in
set(s) of correlated variables. The power was lower when outlying values were introduced
in a random set of (possibly) uncorrelated variables. This is attributed to masking of
outlying-ness by the normal variation in the other variables [29]. This effect is assumed to
be larger for datasets with more variables.

ES-CM employs a modern eigenvalue-shrinkage estimator of the covariance matrix of
the reference class. As detailed in Section 4.5, this estimator can be seen as an eigenvalue-
shrinkage approach, but also as a weighted average of the sample covariance matrix and a
target matrix with a simple structure. Here, the identity matrix was chosen as the target,
but other targets could be employed as well [15] As the data was auto-scaled, the use of
the identity matrix as shrinkage target implies that in ES-CM the sample correlations are
shrunk towards zero.

Alternatively, in ES-CM, one could aim to impose more specific structure on the
(inverse of the) covariance matrix by assuming that many of the (partial) correlations
among the metabolites are exactly 0. Arguably, the Graphical LASSO (GLASSO) [30–32] is
the most well-known sparse estimator that imposes such a structure. Currently, however,
the method is computationally too expensive for application in ES-CM. Therefore, the use
of structured covariance estimators was not considered further. It would be interesting,
however, to explore the use of other modern covariance estimators in a one-class modeling
context, such as the methods reviewed by Kuismin et al. [31].

ES-CM was evaluated under the assumption that the distribution of the reference class
is multivariate normal. In practice, when this assumption is not met, a Box-Cox transfor-
mation (like the logarithm used in case study 1 of the present paper, or the square root) can
be applied to make the data more normal distribution-like. Note that the “L T” estimator
of the covariance matrix used by ES-CM is quite robust against departures from normality
assumptions [15]. An interesting direction for future research would be to evaluate the
robustness of ES-CM itself as well. Initial investigations suggest that the methods are quite
robust as well: for a few selected simulations (not shown), it was observed that the type I
error of ES-CM was close to the nominal level when the distribution of the reference class
was multivariate t with 1 degree of freedom instead of multivariate normal.

Similar to many statistical approaches, outliers in the training data can affect the
performance of ES-CM. Therefore, in case study 2, a clinical expert interpreted the 1H-
NMR spectra to ensure that no obvious outliers were present. Additionally, in both case
studies, cross-validation was used as a first practical solution to detect potentially outlying
observations in the training data. For, this purpose, the stability of the critical value of
ES-CM during cross-validation was investigated, as well as the cross-validated values of
the eigenvalue-shrinkage MD. In case study 1, 2 potential outliers were identified this
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way, but the results provided in Section 2.1 remained largely the same when these were
excluded from the analysis. Alternatively, to circumvent outlier detection in the training
data, estimators of the mean and the covariance matrix that are robust to (some) outliers in
the training data could be employed [33–41], but further research is needed to explore the
use of such methods in combination with eigenvalue-shrinkage in high-dimensional data.

We have demonstrated the ability of ES-CM using 2 high-dimensional metabolomics
datasets. In case study 1, ES-CM was used to explore metabolite profiles of cisgenic potato
varieties in light of normal crop variation. Cisgenic potato varieties were mostly not
identified as outliers in the safety assessment of experimental potato tubers, which is in line
with the practical expectations of the current research field [4]. It is also well known that the
natural biochemical variation between plants of the same cultivar (i.e., commercial plant)
can be large, as a result of the different growth environments and harvest practices. This
explains the non-compliance to ES-CM of the potatoes from other geographical locations
in our case study. Secondly, we have revised the study in Engel et al. [3] focusing on
diagnosis of inborn errors of metabolism (amongst other abnormalities) with our ES-CM.
Our approach focused on a MD-based one-class model, whereas the previous study used a
PCA-based one-class model, exploiting the Q statistic as detection criterion. Comparing
Figure 5 in the present paper with the results shown in Engel et al. [3], we can conclude that
their one-class model has a slightly higher detection power. In fact, the use of the Q statistic
only filters out the normal metabolic variation of the reference class and consequently
geometrically operates in the space orthogonal to the principal component subspace. In
this study, we can reasonably assume that the IEM diseases are orthogonal to the principal
component subspace and thus easily detectable as abnormal. However, the popular PCA-
based approaches always require the optimization of the number of PCs which determine
the split into PC and residual subspace, and currently no clear protocol has been defined.
Remarkably, the geometrical partition of the modelled data variability might also suffer
from the smearing effect [5].

We believe that our new approach is certainly more general, whenever no prior
knowledge is available on the test data (and their related type of abnormality). Secondly, ES-
CM offers a more comprehensive diagnostic, covering the entire variables space, to detect
strange abnormalities with respect to the normal metabolic expression of the reference set,
as in the case of the IEM patients.

4. Materials and Methods
4.1. Case Study 1: Compositional Safety Assessment of Tubers from Commercial and Cisgenic
Potato Varieties

For this study, 44 commercial potato varieties from traditional breeding (41 consump-
tion and 3 starch varieties) and 8 cisgenic potato varieties were grown in a net cage in
Wageningen, the Netherlands, by Wageningen University & Research. Seed tubers were
planted according to a randomized block design with six blocks. The GM plants selected for
this case study were cisgenic potato varieties that were enriched with different late blight
resistance genes from crossable species [21]. The main purpose of this experiment was a
comparative assessment of the cisgenic varieties to a reference collection of traditionally
bred potato varieties. For 10 of the 41 non-starch varieties, tubers obtained from 2 other lo-
cations were analyzed as well. See Table S10 in the Supplementary Materials for a complete
overview of the samples included in this study. After the vines were completely matured,
the tubers were harvested in the first week of October 2018, collected from individual pots
and stored at 4 ◦C until January 2019. For each variety and location, a pooled sample
of randomly selected potato tubers from each of the 6 blocks plants was homogenized
and freeze dried as described in Kok et al. [4], before their analysis by LC-MS. Samples
(25 mg dry powder) were extracted in 1 mL of 75% methanol acidified with 0.1% formic
acid according to De Vos et al. [42]. Chromatographic separation was performed on a
HPLC system (Waters Acquity, Milford, MA, USA) with a C18-RP column (150× 2.1 mm;
Luna, Phenomenex) using a 5–35% acetonitrile gradient with 0.1% formic acid. Detection
was done using an LTQ-Orbitrap FTMS hybrid mass spectrometer (Thermo Scientific,
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Bremen, Germany) in positive electrospray ionization mode. A mass resolution of 70, 000
FWHM at a mass range of m/z 90–1350 was employed for data acquisition. Unbiased mass
peak picking and alignment of the raw LC-MS data were performed using the MetAlign
software [43]. From the resulting mass peak table of 81,120 mass features, signals present
in < 3 observations were filtered out and non-detects (i.e., peak intensity < 1000 ions per
scan) were replaced by a 0, using an in-house script called METalign Output Transformer
(METOT). The remaining 18, 214 individual mass peaks were subsequently clustered into
so-called reconstructed metabolites (centrotypes), based on the correlation of mass peaks,
derived from the same compound, in both their retention time and relative abundance
across samples, using the MSCLust software [44]. The resulting metabolite dataset contains
1018 compounds (see Supplementary Materials), each represented by their in-source mass
spectra, consisting of the (putative) molecular ion, natural isotopes, adducts, and fragments
generated in the ion source. The dataset was further processed in the software R, version
4.0.4. First, metabolites with more than 40% (across the 61 samples) of 0’s (non-detects) were
discarded, leaving 458 metabolites. The remaining 0 values in the dataset were imputed
using random forest [45], and finally, the dataset was log-transformed and auto-scaled
(0 mean and unit variance). Note that similar results as described in Section 2.1 were
observed if missing values were imputed by half the minimum value in the dataset, instead
of using random forest.

4.2. Case Study 2: Diagnosis of Inborn Error of Metabolism

Data from a previously published study [3] are analyzed. Briefly, urine metabolite
profiles were acquired from by 1H-NMR using a Bruker 500 MHz spectrometer from
218 Dutch (in the Gelderland region around the city of Nijmegen) subjects, aged between
4–12 years (with same proportion between males and females). The study group involved
a set of 176 healthy children, 17 additional healthy children with exogenous metabolites
related to diet, 18 patients diagnosed with IEM and 6 additional patients with particular
drug intake. The regions 0.2–4.7 ppm and 5.0–10.0 ppm in the NMR spectra were selected
for further analysis. The urine profiles were normalized to the creatinine signal to correct
for dilution effects. Next, equidistant binning with a bin size of 0.04 ppm was used to
reduce the dimension of the normalized data from 30, 888 to 246 variables (bins) [3]. Finally,
the data was centered to 0 mean and scaled to unit variance.

4.3. Simulation Set Up

In each simulation, we draw N reference observations (training data) from a P-variate
normal distribution with mean µ and covariance matrix Σ. Three structures for Σ are
considered, which are further illustrated in Figure S9 in the Supplementary Materials:
(i) Independent block covariance structure, with block size of 25 variables. The within-
block correlation is set to 0.8 and all variances to 1. (ii) Correlated blocked covariance
structure. Extending structure (i), we allow the outer block correlations to be uniformly
distributed between 0 and 0.4, whereas the within blocks (of fixed size 25) correlations are
selected from a uniform distribution [0.6, 0.9]. All variances are set to 1. (iii) Correlation
structure based on a real LC-MS metabolomics data [46], where we have used the pairwise
correlations between the P variables with the highest variance. The study associated to this
data involved a very large number of observations, which allows a proper calculation of
the sample covariance matrix and therefore it can be considered representative enough of
the true population covariance matrix.

Reference observations are simulated by drawing random values from a multivariate
normal distribution with µ = 0 and one of the covariance structures. To investigate type I
errors of the one-class model, for each simulated training data set, 100 test observations
were drawn from the same distribution. To investigate the power for outlier detection,
for each simulated data set 100 test observations were drawn from a multivariate normal
distribution with mean µT and covariance matrix Σ. The test mean was different from
the reference mean in four ways, namely (a) with a perturbation γ in the first 12 (highly
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correlated) variables, (b) as in (a), but with a perturbation γ touching 12 randomly highly
and lowly correlated metabolites, (c) with a perturbation along the eigenvector of the
covariance matrix Σ along the direction of maximum variance. The size of the perturbation
is γ
√
λmax, with λmax corresponding to the associated largest eigenvalue of Σ and (d) as

in (c) with a perturbation along the eigenvector of minimum variance (touching lowly
correlated variables), i.e., γ

√
λmin. We varied the magnitude of the shift γ to ensure

intermediate power over most of the values of the sizes considered. Each simulation is
repeated 200 times, each with a new set of reference observations and testing objects. Based
on the similarities and the consistencies of the results the 3 covariance structures for the
study on the type I error, we have only shown the results on the type (iii) covariance
structure in Section 2.3 of this paper. Section S11 of the Supplementary Materials contains
the R code used for the simulation study. In this last simulation, ES-CM was compared to a
popular PCA-based one-class model (SIMCA), implemented in R package “mdatools” [26].
For simplicity, we have retained a number of principal components explaining at least the
80% of the variance of the reference observation.

4.4. One-Class Modelling Based on MD

Let N× P matrix X denote the data matrix of a sample of reference observations,
whose P variables (metabolites) follow a multivariate normal distribution (after suitable
transformations) with mean µ and covariance matrix Σ. We have also assumed that the set
of references contains no outliers. In the text below, it is assumed that all data (including
new observations) is auto-scaled using the estimates of the mean and standard deviations
of X.

The squared Mahalanobis distance is used to measure the difference between the
metabolite profile of a new observation xn and the center of the reference class. It is esti-
mated as MD2(xn ) = (xn − µ̂)Σ̂

−1
(xn − µ̂)T, with µ̂ and Σ̂ the estimates of the population

mean µ and covariance matrix Σ of the reference class. Traditionally, µ̂ and Σ̂ correspond
to the sample estimators of the mean and covariance matrix (here denoted as S). The obser-
vation xn is marked as an outlier (classified as outside the one-class) if MD2(xn) > MD2

crit,
where MD2

crit is a critical value that easily follows from an F distribution with P and N− P
degrees of freedom [28], given a predetermined confidence level α. Thus, the MD together
with the critical limit defines the one-class.

The MD estimate strongly relies on the (inverse) of the sample estimate of the co-
variance matrix of the reference class. This might present challenges. Figure 1 (panel (a))
shows that, even when N > P, the eigenvalues of the sample (diagonal) covariance matrix
are overdispersed and estimated with large variance. For a general covariance structure,
this means that the large eigenvalues tend to be overestimated and the small eigenvalues
underestimated. As P ∼ N, this problem is worsened, as illustrated in the same figure,
panel (b). The numerical inversion to calculate the precision matrix will only amplify the
estimation error. When P > N, the matrix S is rank-deficient (not positive definite) and
thus it cannot be inverted (singular). As a consequence, a growing number of eigenvalues
are 0, as illustrated in Figure 1, panel (c). These issues can negatively affect the power of the
MD statistic for N > P settings and completely prevent its application in high-dimensional
settings (N � P). Hence, one-class modeling based on MD is typically not possible in
untargeted metabolomics.

Furthermore, the size of the reference set may potentially affect the detection power
of the one-class models. In fact, when the sample size is small, there is too little amount
of observation to properly characterize the multivariate distribution among the variables
of the train data. As a consequence, we expect a large difference among the covariance
matrix of the train set and the one of the test objects. Table S12 of our Supplementary
Materials illustrates this interesting behavior by comparing the sample moments of the MD
for two simulated sets of reference and test sets (with the same distribution) for different
N, P settings. Cross-validation has been proposed as a remedy in Ramaker et al. [13] to
improve the characterization of the MD and consequently improve the reliability of the MD
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threshold, especially for P� N and small N. Therefore, it has been adopted throughout
this paper as a prior step before any further data elaboration.

4.5. (Shrinkage) Estimators of the Covariance Matrix

Shrinkage approaches adjust (shrink) the eigenvalues of the sample covariance ma-
trix in a data-dependent manner to correct for their overdispersion (bias). This way an
improved estimator is obtained. It can be shown that this estimator always returns a
positive definite covariance matrix. Hence, combining the MD with eigenvalue-shrinkage
offers an interesting route to one-class modeling in untargeted metabolomics, even when
N� P. Figure 1 (panel 2(a)–2(c)) shows that eigenvalue-shrinkage indeed largely reduces
the overdispersion of the sample eigenvalues. Figure S1a of the Supplementary Materials
illustrates how this positively effects one-class modelling. Here, a shrunken estimate of
the covariance matrix is compared to the sample and true covariance matrix. We can
clearly see that initially the dispersion among the reference observations is overestimated
in certain directions and underestimated in others. This is corrected by shrinkage, resulting
in improved power for detecting outliers and improved type I error for correctly marking
reference observations as non-outlying.

The starting point of our investigations was the one-class model proposed by Ullah
et al. [8]. This method used a linear eigenvalue-shrinkage estimator of the covariance matrix
of the reference class. This shrinkage estimator (“L LW”) was proposed in 2004 by Ledoit
and Wolf [14]. The shrinkage estimator is given by Σ̂LW = (1− δ)T + δS, where δ is the
shrinkage intensity, usually determined by cross-validation [47], but analytical expressions
for δ do exist as well for given specific structures of the target matrix [14,48–51]. Here,
the identity matrix was used as shrinkage target, which is a typical choice considering
that all data is auto-scaled. In principle, other targets could be used as well. For the
identity target an analytical expression can be used to determine the optimal value for δ.
This optimal indicates how much the sample eigenvalues of Σ are shrunk towards 1 (the
diagonal elements of the target matrix T). For example, δ = 0 implies no contribution
of S to Σ̂LW, i.e., the variance between the reference observations is assumed to be equal
to 1 in all directions in multivariate space. In contrast, δ = 1 implies no shrinkage and
only the sample eigenvalues are used. Intermediate values for δ reveal the simultaneous
contribution of T and S to Σ̂LW. The “L LW” estimator is implemented in the R packages
“corpcor” (or equivalently in “nlshrink” or “rrcov”) and all use the original choice of the
penalty term proposed by Ledoit et al.

In recent years, several improvements to “L LW” estimator were proposed. In the
present paper it was investigated whether these also offer an improvement in the context
of one-class modeling. Chen et al. [16] proposed an improved method to find the optimal
value for shrinkage intensity δ when the data is multivariate normal. The authors showed
that for normally distributed data the value for δ that is found is close to the optimal value.
Therefore, the method is referred to as an oracle approximating estimator, “L OA”. Note
that when the data is not multivariate normal the “L LW” estimator offers a better estimate
of the covariance matrix [16]. The “L OA” estimator is implemented in the R package
“CovTools”.

Touloumis [15] showed that in settings where the target matric equals the true co-
variance matrix (T = I) the value for δ used by “L LW” is biased downwards in extreme
high-dimensional settings. An improved procedure for tuning δ was therefore proposed.
This estimator, “L T”, has the desirable property of being non-parametric, thus it does
not rely on the distributional assumptions on the reference class. Through simulations,
Touloumis proved that “L T” outperforms “L LW” in scenarios which involved normally
and non-normally distributed data, especially in cases of small sample sizes. The improve-
ment seemed not to be relevant when Σ deviates slightly from the target matrix T, where
the “L LW” approach could still perform sufficiently good. The “L T” estimator is contained
in the R package “ShrinkCovMat”.



Metabolites 2021, 11, 237 17 of 20

Linear eigenvalue-shrinkage is an approximation to a nonlinear problem. Recently,
non-linear eigenvalue-shrinkage methods have been proposed by Ledoit et al. [24,52]. This
method is denoted as “nL LW”. The non-linear shrinkage estimator does not employ a
shrinkage target T or a shrinkage intensity δ. Instead, each eigenvalue is shrunk separately
through the use of the sample spectral density and its Hilbert transform. The authors
argued that this approach has substantial benefits when P/N is small and the population
eigenvalues are dispersed. Similarly, linear shrinkage is expected to perform poorly
when higher-order effects are present among the original variables. In the opposite case,
that is when P/N is large, and/or the population eigenvalues are close to one another,
linear shrinkage captures most of the potential improvement over the sample covariance
matrix [18]. This estimator is implemented in the R package “nlshrink” and will be denoted
as “nL LW”.

In a parallel work, van Wieringen et al. [17] proposed a ridge estimator of the preci-

sion matrix Σ̂
−1
vW = [(δI + 0.25(S− δT)2)

0.5
+ 0.5(S− δT)]

−1
. It can be shown that this is

equivalent to nonlinear shrinkage of the sample eigenvalues. The R package “ragstoridges”
contains the algorithm for estimating Σ̂

−1
vW, which will be denoted as “vW ridge”. Consis-

tently with the authors, we have applied a cross-validation procedure for the choice of the
optimal shrinkage intensity δ.

4.6. One-Class Modelling Based on Shrunken MD

For one-class modeling in high-dimensional data we propose to combine eigenvalue-
shrinkage (Section 4.5) with the MD (Section 4.4): for a test observation y, MD2

shrink(y) =

(y − µ̂)Σ̂
−1
shrink(y − µ̂)T, with Σ̂shrink being the shrinkage estimate of the covariance matrix

(Σ) of the set of references. Of the 5 shrinkage estimators described in Section 4.5, the “L
T” estimate for Σ̂shrink offers the best compromise between computational efficiency and
type I error control (see Section 2.3) and is therefore used by ES-CM. New observations
with MD2

shrink(. ) > MD∗2crit are marked as outliers. In contrast to Section 4.4, the value for
MD∗2crit is not straightforward to specify. The statistical distribution of the MD2

shrink for the
reference observations is unknown due to the shrinkage that is applied. Consequently,
the classical F distribution is no longer applicable. Based on the results from Pomerantsev
et al. [27] for PCA-based one-class modeling, we propose a scaled χ2 distribution for
MD2

shrink. The scaling factor and the degrees of freedom are obtained from cross-validation
by the following algorithm:

(1) For each reference observation xn, from 1 to N:

a. Leave the observation xn out and compute the (shrinkage) covariance estimate
of the N− 1 set of references using “L T”.

b. Compute the MD for the left-out observation, MD2
shrink(xn).

(2) Calculate the critical limit MD∗2crit for ES-CM using the quantile g1χ
2
α(g2) of the scaled

χ2 distribution for a predetermined significance level α (i.e., 5%), given the scale
factor g1 = ŝ2/m̂ and the degrees of freedom g2 = 2m̂2/ŝ2, with m̂ and ŝ2 being the
(sample) mean and standard deviation of the (cross-validated) MD2

shrink values.

Alternatively, cross-validation in combination with a non-parametric bootstrap could
be employed [8]. However, as shown in Figure S13 of Supplementary Materials, initial
investigations suggest that the χ2 approach performs better.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11040237/s1, Figure S1: Schematic overview of a bivariate one-class model based
on (a) the sample covariance matrix and (b) the eigenvalue-shrinkage covariance matrix, Figure S2a:
PCA score plot of the potato metabolomics data, Figure S2b: DLOOCV for the train MD values for
the potato data, Figure S3a: PCA score plot of the IEM metabolomics data, Figure S3b: DLOOCV for
the train MD values for the IEM data, Figure S4: Variable Selection, Table S5: Abnormal compounds
present in urine spectra from 2 outlying patients, Figure S6a: Type I error (over 200 simulations) for
the eigenvalue-shrinkage approaches for the MD (with χ2—based critical limits) for a a P-variate

https://www.mdpi.com/article/10.3390/metabo11040237/s1
https://www.mdpi.com/article/10.3390/metabo11040237/s1
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normal distribution with 0 mean and type (i) covariance matrix, Figure S6b: Type I error (over
200 simulations) for the eigenvalue-shrinkage approaches for the MD (with χ2—based critical limits)
for a a P-variate normal distribution with 0 mean and type (ii) covariance matrix, Figure S7: Type
I error (over 200 simulations) for the “L T” eigenvalue-shrinkage approaches for the MD (with
χ2—based critical limits) for a a P-variate normal distribution with 0 mean and type (iii) covariance
matrix (P = 250), Figure S8: Percentage of correct detection of the introduced abnormality (over
200 simulations) for ES-CM based on “L T” shrinkage for the MD (with χ2—based critical limits) and
for the standard PCA-based decision criteria (simulation 2), Figure S9: Heatmaps of the population
correlation matrices, Table S10: overview of the potato samples analyzed in case study 2, Figure S11:
R script example, Table S12: MD sample statistics (over 1000 simulations) based on “LW” shrinkage
as a function of the sample size of the reference set, Figure S13: Type I error (over 200 simulations)
for the “L W” eigenvalue shrinkage approaches for the MD with χ2- or bootstrap-based critical limits
for a P-variate normal distribution with 0 mean and type (i) covariance matrix (P = 250).

Author Contributions: Conceptualization, A.B., J.E., and V.A.; methodology, A.B. and J.E.; software,
A.B., validation, A.B.; potato metabolomics, R.C.H.d.V.; formal analysis, A.B.; investigation, A.B.;
resources, J.E. and E.R.v.d.H.; data curation, A.B. and J.E.; writing—original draft preparation, A.B.;
writing—review and editing, J.E., J.H.V., E.R.v.d.H., V.A., R.C.H.d.V.; visualization, A.B.; supervision,
J.E., V.A., and E.R.v.d.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by NWO-PTA-COAST3 through the Outfitting the Factory of the
Future with Online analysis (OFF/On) consortium.

Institutional Review Board Statement: Not applicable to case study 1. Not applicable to case study
2 (data from an earlier published study).

Informed Consent Statement: Not applicable for case study 1. For case study 2, the requested
statements can be found in the original paper [3].

Data Availability Statement: Data for case study 1 is available as Supplementary Materials. No new
data were created or analyzed for case study 2.

Acknowledgments: We would like to thank Gijs Kleter (Wageningen Food Safety Research, Wa-
geningen) and Hilko van der Voet (Biometris, Wageningen) for their insightful comments at different
stages of this research. Udo Engelke and R. Wevers are gratefully acknowledged for sharing NMR
medical data, and Henriëtte van Eekelen and Bert Schipper (Plant Metabolomics group. WUR-
Bioscience) are gratefully acknowledged for their help with the potato LCMS measurements. The
potato data set was acquired within the context of the Biotechnology and Safety program (Proj. No.
15815) of the Netherlands Organization for Scientific Research and the Ministry of Infrastructure and
Water Management.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khan, S.S.; Madden, M.G. One-class classification: Taxonomy of study and review of techniques. Knowl. Eng. Rev. 2014, 29,

345–374. [CrossRef]
2. Wallace, E.D.; Todd, D.A.; Harnly, J.M.; Cech, N.B.; Kellogg, J.J. Identification of adulteration in botanical samples with untargeted

metabolomics. Anal. Bioanal. Chem. 2020, 412, 4273–4286. [CrossRef]
3. Engel, J.; Blanchet, L.; Engelke, U.F.H.; Wevers, R.A.; Buydens, L.M.C. Towards the Disease Biomarker in an Individual Patient

Using Statistical Health Monitoring. PLoS ONE 2014, 9, e92452. [CrossRef]
4. Kok, E.; Van Dijk, J.; Voorhuijzen, M.; Staats, M.; Slot, M.; Lommen, A.; Venema, D.; Pla, M.; Corujo, M.; Barros, E.; et al. Omics

analyses of potato plant materials using an improved one-class classification tool to identify aberrant compositional profiles in
risk assessment procedures. Food Chem. 2019, 292, 350–358. [CrossRef] [PubMed]

5. Koeman, M.; Engel, J.; Jansen, J.; Buydens, L. Critical comparison of methods for fault diagnosis in metabolomics data. Sci. Rep.
2019, 9, 1–11. [CrossRef] [PubMed]

6. Del Carratore, F.; Lussu, M.; Kowalik, M.A.; Perra, A.; Griffin, J.L.; Atzori, L.; Grosso, M. Statistical Health Monitoring Applied
to a Metabolomic Study of Experimental Hepatocarcinogenesis: An Alternative Approach to Supervised Methods for the
Identification of False Positives. Anal. Chem. 2016, 88, 7921–7929. [CrossRef] [PubMed]

7. Van der Voet, H.; Goedhart, P.W.; Schmidt, K. Equivalence testing using existing reference data: An example with genetically
modified and conventional crops in animal feeding studies. Food Chem. Toxicol. 2017, 109, 472–485. [CrossRef] [PubMed]

8. Ullah, I.; Pawley, M.D.; Smith, A.N.; Jones, B. Improving the detection of unusual observations in high-dimensional settings.
Aust. N. Z. J. Stat. 2017, 59, 449–462. [CrossRef]

http://doi.org/10.1017/S026988891300043X
http://doi.org/10.1007/s00216-020-02678-6
http://doi.org/10.1371/journal.pone.0092452
http://doi.org/10.1016/j.foodchem.2018.07.224
http://www.ncbi.nlm.nih.gov/pubmed/31054687
http://doi.org/10.1038/s41598-018-37494-7
http://www.ncbi.nlm.nih.gov/pubmed/30718783
http://doi.org/10.1021/acs.analchem.5b03078
http://www.ncbi.nlm.nih.gov/pubmed/27437557
http://doi.org/10.1016/j.fct.2017.09.044
http://www.ncbi.nlm.nih.gov/pubmed/28958869
http://doi.org/10.1111/anzs.12210


Metabolites 2021, 11, 237 19 of 20

9. Stanfill, B.A.; Nakayasu, E.S.; Bramer, L.M.; Thompson, A.M.; Ansong, C.K.; Clauss, T.R.; Gritsenko, M.A.; Monroe, M.E.; Moore,
R.J.; Orton, D.J.; et al. Quality Control Analysis in Real-time (QC-ART): A Tool for Real-time Quality Control Assessment of Mass
Spectrometry-based Proteomics Data. Mol. Cell. Proteom. 2018, 17, 1824–1836. [CrossRef] [PubMed]

10. De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D. The Mahalanobis distance. Chemom. Intell. Lab. Syst. 2000, 50, 1–18.
[CrossRef]

11. Engel, J.; Buydens, L.; Blanchet, L. An overview of large-dimensional covariance and precision matrix estimators with applications
in chemometrics. J. Chemom. 2017, 31, e2880. [CrossRef]

12. De Maesschalck, R.; Candolfi, A.; Massart, D.; Heuerding, S. Decision criteria for soft independent modelling of class analogy
applied to near infrared data. Chemom. Intell. Lab. Syst. 1999, 47, 65–77. [CrossRef]

13. Ramaker, H.-J.; Van Sprang, E.N.; Westerhuis, J.A.; Smilde, A.K. The effect of the size of the training set and number of principal
components on the false alarm rate in statistical process monitoring. Chemom. Intell. Lab. Syst. 2004, 73, 181–187. [CrossRef]

14. Ledoit, O.; Wolf, M. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 2004, 88, 365–411.
[CrossRef]

15. Touloumis, A. Nonparametric Stein-type shrinkage covariance matrix estimators in high-dimensional settings. Comput. Stat. Data
Anal. 2015, 83, 251–261. [CrossRef]

16. Chen, Y.; Wiesel, A.; Eldar, Y.C.; Hero, A.O. Shrinkage Algorithms for MMSE Covariance Estimation. IEEE Trans. Signal Process.
2010, 58, 5016–5029. [CrossRef]

17. Van Wieringen, W.N.; Peeters, C.F. Ridge estimation of inverse covariance matrices from high-dimensional data. Comput. Stat.
Data Anal. 2016, 103, 284–303. [CrossRef]

18. Ledoit, O.; Wolf, M. Nonlinear shrinkage estimation of large-dimensional covariance matrices. Ann. Stat. 2012, 40, 1024–1060.
[CrossRef]

19. Herman, R.A.; Price, W.D. Unintended Compositional Changes in Genetically Modified (GM) Crops: 20 Years of Research. J.
Agric. Food Chem. 2013, 61, 11695–11701. [CrossRef]

20. Van Dijk, J.P.; De Mello, C.S.; Voorhuijzen, M.M.; Hutten, R.C.; Arisi, A.C.M.; Jansen, J.J.; Buydens, L.M.; Van Der Voet, H.; Kok,
E.J. Safety assessment of plant varieties using transcriptomics profiling and a one-class classifier. Regul. Toxicol. Pharmacol. 2014,
70, 297–303. [CrossRef]

21. Jo, K.-R.; Kim, C.-J.; Kim, S.-J.; Kim, T.-Y.; Bergervoet, M.; Jongsma, M.A.; Visser, R.G.F.; Jacobsen, E.; Vossen, J.H. Development of
late blight resistant potatoes by cisgene stacking. BMC Biotechnol. 2014, 14, 50. [CrossRef] [PubMed]

22. Engel, J. Chemometrics on Its Way towards Personalized Health Care. Ph.D. Thesis, Radboud University Nijmegen, Nijmegen,
The Netherlands, 2016.

23. Kennard, R.W.; Stone, L.A. Computer Aided Design of Experiments. Technometrics 1969, 11, 137–148. [CrossRef]
24. Ledoit, O.; Wolf, M. Analytical Nonlinear Shrinkage of Large-Dimensional Covariance Matrices Analytical Nonlinear Shrinkage of

Large-Dimensional Covariance Matrices. 2018. Available online: http://www.econ.uzh.ch/static/wp/econwp264.pdf (accessed
on 12 April 2021).

25. Warton, D.I. Penalized Normal Likelihood and Ridge Regularization of Correlation and Covariance Matrices. J. Am. Stat. Assoc.
2008, 103, 340–349. [CrossRef]

26. Kucheryavskiy, S. mdatools—R package for chemometrics. Chemom. Intell. Lab. Syst. 2020, 198, 103937. [CrossRef]
27. Pomerantsev, A.L. Acceptance areas for multivariate classification derived by projection methods. J. Chemom. 2008, 22, 601–609.

[CrossRef]
28. Qin, S.J. Statistical process monitoring: Basics and beyond. J. Chemom. 2003, 17, 480–502. [CrossRef]
29. Zimek, A.; Schubert, E.; Kriegel, H.-P. A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal.

Data Min. ASA Data Sci. J. 2012, 5, 363–387. [CrossRef]
30. Kuismin, M.O.; Kemppainen, J.T.; Sillanpää, M.J. Precision Matrix Estimation with ROPE. J. Comput. Graph. Stat. 2017, 26, 682–694.

[CrossRef]
31. Kuismin, M.O.; Sillanpää, M.J. Estimation of covariance and precision matrix, network structure, and a view toward systems

biology. Wiley Interdiscip. Rev. Comput. Stat. 2017, 9, e1415. [CrossRef]
32. Witten, D.M.; Friedman, J.H.; Simon, N. New Insights and Faster Computations for the Graphical Lasso. J. Comput. Graph. Stat.

2011, 20, 892–900. [CrossRef]
33. Hubert, M.; Debruyne, M.; Rousseeuw, P.J. Minimum covariance determinant and extensions. Wiley Interdiscip. Rev. Comput. Stat.

2017, 10, 1–11. [CrossRef]
34. Rousseeuw, P.J.; Hubert, M. Anomaly detection by robust statistics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2017, 8, 1236.

[CrossRef]
35. Cabana, E.; Lillo, R.E.; Laniado, H. Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage

estimators. Stat. Pap. 2019, 1–27. [CrossRef]
36. Gnanadesikan, R.; Kettenring, J.R. Robust Estimates, Residuals, and Outlier Detection with Multiresponse Data. Biometrics 1972,

28, 81. [CrossRef]
37. Öllerer, V.; Croux, C. Robust High-Dimensional Precision Matrix Estimation. In Modern Nonparametric, Robust and Multivariate

Methods; Springer: Cham, Switzerland, 2015; pp. 325–350. [CrossRef]

http://doi.org/10.1074/mcp.RA118.000648
http://www.ncbi.nlm.nih.gov/pubmed/29666158
http://doi.org/10.1016/S0169-7439(99)00047-7
http://doi.org/10.1002/cem.2880
http://doi.org/10.1016/S0169-7439(98)00159-2
http://doi.org/10.1016/j.chemolab.2003.12.015
http://doi.org/10.1016/S0047-259X(03)00096-4
http://doi.org/10.1016/j.csda.2014.10.018
http://doi.org/10.1109/TSP.2010.2053029
http://doi.org/10.1016/j.csda.2016.05.012
http://doi.org/10.1214/12-AOS989
http://doi.org/10.1021/jf400135r
http://doi.org/10.1016/j.yrtph.2014.07.013
http://doi.org/10.1186/1472-6750-14-50
http://www.ncbi.nlm.nih.gov/pubmed/24885731
http://doi.org/10.1080/00401706.1969.10490666
http://www.econ.uzh.ch/static/wp/econwp264.pdf
http://doi.org/10.1198/016214508000000021
http://doi.org/10.1016/j.chemolab.2020.103937
http://doi.org/10.1002/cem.1147
http://doi.org/10.1002/cem.800
http://doi.org/10.1002/sam.11161
http://doi.org/10.1080/10618600.2016.1278002
http://doi.org/10.1002/wics.1415
http://doi.org/10.1198/jcgs.2011.11051a
http://doi.org/10.1002/wics.1421
http://doi.org/10.1002/widm.1236
http://doi.org/10.1007/s00362-019-01148-1
http://doi.org/10.2307/2528963
http://doi.org/10.1007/978-3-319-22404-6_19


Metabolites 2021, 11, 237 20 of 20

38. Agostinelli, C.; Leung, A.; Yohai, V.J.; Zamar, R.H. Robust estimation of multivariate location and scatter in the presence of
cellwise and casewise contamination. TEST 2015, 24, 441–461. [CrossRef]

39. Tarr, G.; Müller, S.; Weber, N. Robust estimation of precision matrices under cellwise contamination. Comput. Stat. Data Anal.
2016, 93, 404–420. [CrossRef]

40. Loh, P.-L.; Tan, X.L. High-dimensional robust precision matrix estimation: Cellwise corruption under ε-contamination. Electron. J.
Stat. 2018, 12, 1429–1467. [CrossRef]

41. Avagyan, V.; Mei, X. Precision matrix estimation under data contamination with an application to minimum variance portfolio
selection. Commun. Stat. Simul. Comput. 2019, 1–20. [CrossRef]

42. De Vos, R.C.H.; Moco, S.; Lommen, A.; Keurentjes, J.J.B.; Bino, R.J.; Hall, R.D. Untargeted large-scale plant metabolomics using
liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2007, 2, 778–791. [CrossRef] [PubMed]

43. Lommen, A. MetAlign: Interface-Driven, Versatile Metabolomics Tool for Hyphenated Full-Scan Mass Spectrometry Data
Preprocessing. Anal. Chem. 2009, 81, 3079–3086. [CrossRef]

44. Tikunov, Y.M.; Laptenok, S.; Hall, R.D.; Bovy, A.; De Vos, R.C.H. MSClust: A tool for unsupervised mass spectra extraction of
chromatography-mass spectrometry ion-wise aligned data. Metabolomics 2011, 8, 714–718. [CrossRef]

45. Stekhoven, D.J.; Bühlmann, P. MissForest—Non-parametric missing value imputation for mixed-type data. Bioinformatics 2011,
28, 112–118. [CrossRef]

46. Dunn, W.B.; Lin, W.; Broadhurst, D.; Begley, P.; Brown, M.; Zelena, E.; Vaughan, A.A.; Halsall, A.; Harding, N.; Knowles, J.D.; et al.
Molecular phenotyping of a UK population: Defining the human serum metabolome. Metabolomics 2015, 11, 9–26. [CrossRef]
[PubMed]

47. Camp, T. The incredible shrinking pipeline. ACM Sigcse Bull. 2002, 34, 129–134. [CrossRef]
48. Fisher, T.J.; Sun, X. Improved Stein-type shrinkage estimators for the high-dimensional multivariate normal covariance matrix.

Comput. Stat. Data Anal. 2011, 55, 1909–1918. [CrossRef]
49. Ledoit, O.; Wolf, M. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J.

Empir. Financ. 2003, 10, 603–621. [CrossRef]
50. Schäfer, J.; Strimmer, K. A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional

Genomics. Stat. Appl. Genet. Mol. Biol. 2005, 4, 32. [CrossRef]
51. Theiler, J. The incredible shrinking covariance estimator. In Proceedings of the Automatic Target Recognition XXII, Baltimore,

MD, USA, 23–24 April 2012; Volume 8391. [CrossRef]
52. Ledoit, O.; Wolf, M. Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions. J.

Multivar. Anal. 2015, 139, 360–384. [CrossRef]

http://doi.org/10.1007/s11749-015-0450-6
http://doi.org/10.1016/j.csda.2015.02.005
http://doi.org/10.1214/18-EJS1427
http://doi.org/10.1080/03610918.2019.1668012
http://doi.org/10.1038/nprot.2007.95
http://www.ncbi.nlm.nih.gov/pubmed/17446877
http://doi.org/10.1021/ac900036d
http://doi.org/10.1007/s11306-011-0368-2
http://doi.org/10.1093/bioinformatics/btr597
http://doi.org/10.1007/s11306-014-0707-1
http://www.ncbi.nlm.nih.gov/pubmed/25598764
http://doi.org/10.1145/543812.543846
http://doi.org/10.1016/j.csda.2010.12.006
http://doi.org/10.1016/S0927-5398(03)00007-0
http://doi.org/10.2202/1544-6115.1175
http://doi.org/10.1117/12.918718
http://doi.org/10.1016/j.jmva.2015.04.006

	Introduction 
	Results 
	Case Study 1: Compositional Safety Assessment of Tubers from Commercial and Cisgenic Potato Varieties 
	Case Study 2: Diagnosis of Inborn Error of Metabolism 
	Synthetic Data Experiments 
	Assessment of the Computational Speed 
	Type I Error of the Eigenvalue-Shrinkage Approaches 
	Improved Power of ES-CM over the Standard PCA-Based Decision Criteria 


	Discussion 
	Materials and Methods 
	Case Study 1: Compositional Safety Assessment of Tubers from Commercial and Cisgenic Potato Varieties 
	Case Study 2: Diagnosis of Inborn Error of Metabolism 
	Simulation Set Up 
	One-Class Modelling Based on MD  
	(Shrinkage) Estimators of the Covariance Matrix 
	One-Class Modelling Based on Shrunken MD  

	References

