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ABSTRACT Both spatial and temporal variability are key attributes of sedimentary micro-
bial communities, and while spatial effects on beta-diversity appear to dominate at larger
distances, the character of spatial variability at finer scales remains poorly understood,
especially for headwater stream communities. We investigated patterns of microbial com-
munity structure (MCS) in biofilms attached to streambed sediments from two watersheds
across spatial scales spanning ,1 m within a single stream to several hundred kilometers
between watersheds. Analyses of phospholipid fatty acid (PLFA) profiles indicated that
the variations in MCS were driven by increases in the relative abundance of microeukary-
otic photoautotrophs and their contribution to total microbial biomass. Furthermore,
streams within watersheds had similar MCS, underscoring watershed-level controls of mi-
crobial communities. Moreover, bacterial community structure assayed as either PCR-dena-
turing gradient gel electrophoresis (PCR-DGGE) fingerprints or PLFA profiles edited to
remove microeukaryotes indicated a distinct watershed-level biogeography. No distinct
stream order-level distributions were identified, although DGGE analyses clearly indicated
that there was greater variability in community structure among 1st-order streams than
among 2nd- and 3rd-order streams. Longitudinal gradients in microbial biomass and struc-
ture showed that the greatest variations were associated with 1st-order streams within a
watershed, and 68% of the variation in total microbial biomass was explained by sediment
atomic carbon-to-nitrogen ratio (C:N ratio), percent carbon, sediment surface area, and per-
cent water content. This study confirms a distinct microbial biogeography for headwater
stream communities driven by environmental heterogeneity across distant watersheds and
suggests that eukaryotic photoautotrophs play a key role in structuring bacterial commun-
ities on streambed sediments.

IMPORTANCE Microorganisms in streams drive many biogeochemical reactions of global
significance, including nutrient cycling and energy flow; yet, the mechanisms responsible
for the distribution and composition of streambed microbial communities are not well
known. We sampled sediments from multiple streams in two watersheds (Neversink River
[New York] and White Clay Creek [WCC; Pennsylvania] watersheds) and measured micro-
bial biomass and total microbial and bacterial community structures using phospholipid
and molecular methods. Microbial and bacterial community structures displayed a distinct
watershed-level biogeography. The smallest headwater streams within a watershed showed
the greatest variation in microbial biomass, and 68% of that variation was explained by the
atomic carbon-to-nitrogen ratio (C:N ratio), percent carbon, sediment surface area, and per-
cent water content. Our study revealed a nonrandom distribution of microbial communities
in streambeds, and showed that microeukaryotic photoautotrophs, environmental heteroge-
neity, and geographical distance influence microbial composition and spatial distribution.

KEYWORDS microbial community structure, microbial biomass, microbial
biogeography, microeukaryotes, PLFA, DGGE, watershed

Editor Vincent J. Denef, University of Michigan-
Ann Arbor

Copyright © 2021 Akinwole et al. This is an
open-access article distributed under the terms
of the Creative Commons Attribution 4.0
International license.

Address correspondence to Philips O.
Akinwole, philipsakinwole@depauw.edu.

Received 21 October 2021
Accepted 1 November 2021
Published 15 December 2021

Volume 9 Issue 3 e01972-21 MicrobiolSpectrum.asm.org 1

RESEARCH ARTICLE

https://orcid.org/0000-0002-4025-9338
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.MicrobiolSpectrum.asm.org
https://crossmark.crossref.org/dialog/?doi=10.1128/Spectrum.01972-21&domain=pdf&date_stamp=2021-12-15


Microorganisms are the most biologically diverse and ubiquitous taxa on Earth, and
their metabolic activities largely control biogeochemical cycling and many ecosystem

processes (1–3). In stream ecosystems, benthic microbial communities mediate biochemical
transformations, including degradation and transformation of organic compounds into bio-
mass or inorganic components, and exert significant control over the mineralization and
downstream export of terrestrially derived dissolved organic matter (DOM) (4–8). In addition,
microbial processing of terrestrial DOM and nutrients within streambed sediments is essen-
tial to material flux to higher trophic levels (5, 9–11). However, microorganisms are often
ignored or highly aggregated in many stream food web analyses (12).

While the central role of microorganisms in ecosystem functions is well documented,
the linkage between microbial community composition and ecosystem functions remains
elusive (13), with streams being among the least studied ecosystems. It has been sug-
gested that streams function as meta-ecosystems (14) with a longitudinal acclimation of
microbial communities as streams get larger (i.e., increasing stream order) within a drain-
age network (15). The focus on a longitudinal ecological framework emphasizes central
differences among streams and lentic aquatic habitats and underpins two seminal ideas
that have guided stream ecosystem research, the River continuum concept (RCC) (16) and
nutrient spiraling (17). The RCC emphasizes biodiversity patterns along a longitudinal pro-
gression within flowing waters and predicts that biodiversity peaks in mid-sized streams
(16). However, the RCC was published before wide-spread use or development of culture-free
methods of microbial analysis (18–20) and is notably silent about microorganisms (16), leaving
a significant knowledge gap. Also, due to their dendritic nature and spatial and temporal dis-
continuity (21), stream networks may influence biodiversity patterns beyond just longitudinal
constraints. These conceptual differences include association of downstream movement with
organisms, energy flow, and nutrient cycling within a physical network where strong direction-
ality and alteration to fluvial geomorphology and hydrology influence energy sources and bio-
geochemical processes (22). Combined, these characteristics require spatially explicit sampling
over a range of scales to better understand how key physicochemical and biological processes
impact microbial community composition (22).

The existence of biogeographic patterns that span spatial scales over 7 orders of mag-
nitude has been established for a wide range of microorganisms (23), and, although the
mechanisms shaping these patterns have not been identified (24), the drivers of microbial
diversity clearly depend upon spatial scale (25, 26). The species-area and the distance-decay
relationships commonly observed for macroscopic organisms are also common for microbial
communities although spore formation or dormant vegetative stages among microbes may
contribute to species persistence and reduce the rate of species turnover for microbial com-
munities (27). Relatively few studies have addressed temporal or spatial patterns of hetero-
trophic microbial community composition in streams, but a clear annual recurrence of taxa
within a single stream (28) and a biome-level pattern in microbial community structure for
streambed sediments have been observed (29). Alternatively, a study of nine streams across
the southeastern and midwestern United States attributed differences in microbial commu-
nity structure to variations in chemical characteristics of the habitats rather than a pattern
driven by spatial gradients (30). Factors contributing to the structure and function of
streambed microbial communities include sunlight and water flow (31); water temperature
and desiccation (32); hydrology (33–35); pH, sediment grain size, inorganic nutrients, and dis-
solved oxygen (5); bedrock type (36); interspecific competition, viral lysis, and flagellate graz-
ing (37); anthropogenic pollution (38, 39); and DOM concentration and quality (36, 40). For
instance, the dominant controls over benthic microbial diversity, such as sunlight and algal
abundance, contributes to the relative importance of algal- versus terrestrial-derived DOM
substrates in lotic systems (41). Changes in light levels have been shown to affect phototro-
phic growth rates (42). However, the spatial scales at which these local environmental gra-
dients give way to biogeographical processes as the major determinants of microbial com-
munity structure and biogeochemical functions have yet to be fully understood (8).

Although over the past decade our understanding of microbial biogeography has
continued to expand, there is still a paucity of information on the spatial distribution of
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microbial communities attached to streambed substrata of low-order streams and which
factors control geographical patterns at different scales. For instance, slow-changing soil
properties, such as total organic carbon across a larger geographical distance, might be a
stronger predictor for the microbial community structure than fast-changing soil properties,
such as soil moisture of local seasonality (26). Here, we hypothesize that streamed bacteria
exhibit spatial variation patterns that are the result of both geographical distance and con-
straints of environmental selection. Furthermore, hydrologic disturbance and metacommun-
ity dynamics have the potential to determine microbial community structure within water-
sheds (43), and higher alpha- and beta-diversities have been reported for biofilms growing
on rock surfaces in headwater streams than in higher-order streams within a watershed (44).
We hypothesize that microbial communities on streambed sediments should exhibit spa-
tially complex, but longitudinally distinct, patterns. More specifically, if the decline in biofilm
biodiversity with distance from headwaters observed on rocks in a prealpine watershed (44)
were to hold generally for benthic substrata and watersheds, the variability in microbial
community structure in biofilms on streambed sediments should decline within a network
with downstream distance from the headwaters.

To test these hypotheses, we examined microbial community structure and biomass from
streambed sediments in low-order streams within two eastern deciduous forest watersheds of
the Delaware River, White Clay Creek, within the Pennsylvania Piedmont and Neversink River
(NVR) in the Catskill Mountains of New York. We sampled using a nested design that spanned
5 orders of magnitude across four spatial scales (Fig. 1). We analyzed microbial phospholipid
fatty acids (PLFA) to assess total microbial community structure at the resolution of functional
groups, performed molecular methods (i.e., PCR-denaturing gradient gel electrophoresis [PCR-
DGGE]) to assess individual taxa, and used phospholipid phosphate-based analyses to quantify
total microbial biomass. Multivariate statistics were used to compare total microbial biomass
and microbial and bacterial community structure across distant watersheds.

RESULTS
Microbial community structure. Across both watersheds, the major component of

variation in streambed microbial community structure was the relative contribution of
bacteria and microeukaryotes to these communities. We performed a principal-component
analysis (PCA) on the fatty acid composition of the streams and found that (i) fatty acids in-
dicative of microeukaryotes (20:4v6, 18:2v6), photosystem II (16:1v13t), and chrysophytes
and chlorophytes (18:3v3, 20:5v3, 16:3v4) (45) were present in greater relative abundances
for streams with more negative principal component 1 (PC1) loadings, and (ii) bacterial fatty
acids (cy17:0, cy19:0, a17:0, i17:0, i15:0, br17:1a, and 10me16:0) were present in greater rela-
tive abundances for those streams with more positive PC1 loadings (Fig. 2). Within the
Neversink River watershed, the contribution of microeukaryotes ranged from 42% (NVR) to
12% (Pigeon Creek Tributary B [PBB]), and in the White Clay Creek watershed, the range was
31% (Walton Spring Brook [WSB]) to 4% (Dirty Dog Spring [DDS]) (see Table S1 in the sup-
plemental material). The percentage that microeukaryotes comprise of total microbial bio-
mass and PC1 factor scores showed a strong, negative correlation (r2 = 0.88) (Fig. 3a). Thus,
the position of stream communities along PC1 were arrayed according to the proportions of
prokaryotes and microeukaryotes within communities, moving from negative to positive
PC1 loadings as the relative contribution of microeukaryotes decreased. PC1 separated the
two streams that showed the highest relative contribution of microeukaryotes (NVR and
WSB) from all other streams (Fig. 2). To further investigate the role of microeukaryotic com-
munity structure on this relationship, percent contribution of microeukaryotes to total bio-
mass was compared to the ratio of fatty acid markers for phototrophs (v3) to fatty acid
markers for heterotrophs (v6). The strong positive linear correlation between these two
parameters indicated that increasing importance of microeukaryotes within the microbial
community correlated with increasing importance of phototrophs within the microeukary-
otic community (r2 = 0.71) (Fig. 3b). Furthermore, in Fig. 2, the streams (except NVR) were
separated at the scale of watershed along principal component 2 (PC2), as White Clay
Creek (WCC) streams had positive PC2 scores while the Neversink streams had negative
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PC2 scores. Within a watershed, microbial community composition of streambed sediments
from 1st-, 2nd-, and 3rd-order streams were, in general, similar. Within the Neversink water-
shed, all the streambed sediments from the lower-order streams formed a cluster separate
from the 5th-order NVR, while only the 1st-order stream with an open canopy in the White
Clay Creek watershed, WSB, separated from the cluster of other streams (Fig. 2).

No consistent longitudinal variations among stations within a stream were observed for
microbial community composition (Fig. S1); that is, there were no consistent differences
among cores from the upper, middle, and lower station of a reach. Rather, for some stations,
the three replicate cores showed nearly identical microbial community structure (Fig. S1a
and b, dashed circle), while for other stations, the three replicate cores differed greatly in mi-
crobial community structure (Fig. S1a and b, dotted ellipse). In addition, cores from different
stations within a stream (Fig. S1, horizontal arrows) and, in a few cases, cores from different
streams within a watershed (Fig. S1, vertical arrows) showed nearly identical microbial com-
munity structure.

Bacterial community structure. When bacteria alone are considered, community
structure of streambed sediments separated out by watershed for both the lipid and molecu-
lar approaches to assess community structure; all streams in the Neversink River watershed
had negative factor scores, and all streams within theWhite Clay Creek watershed had positive
factor scores (Fig. 4a and b). At the spatial scale of streams within a watershed, no clear

FIG 1 (a) Map of the Neversink watershed in New York and White Clay Creek watershed in Pennsylvania, USA. (b) Sampling scheme used to examine
microbial biomass and community structure across multiple spatial scales in the two watersheds. Sampling within the Neversink watershed consists of four
1st-order streams, Biscuit Brook and Pigeon Creek tributaries (Biscuit Brook Tributary A and B [BBA, BBB] and Pigeon Creek Tributary A and B [PBA, PBB]), two 3rd-
order streams (Biscuit Brook [BBR] and Pigeon Creek [PBR]), and one 5th-order stream (Neversink River [NVR]). Sampling within the White Clay Creek watershed
consists of four 1st-order streams (Ledyards Spring Branch [LSB], Water Cress Spring [WCS], Dirty Dog Spring [DDS], and Walton Spring Branch [WSB]), two 2nd-order
streams (East and West Branch White Clay Creek [WCE, WCW, respectively]), and one 3rd-order stream (White Clay Creek [WCC]). Sketches of watersheds are not
drawn to scale. Each eclipse represents a reach, which contained 3 stations, each of which was sampled 3 times.
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longitudinal separation of stream orders was observed, although the variation in bacterial
community structure among 1st-order streams assayed by DGGE was greater than that
observed for 2nd- and 3rd-order streams (Fig. 4b, fine versus coarse dashed boxes). At the spa-
tial scale of replicate cores within a station (,1 m), bacterial community structure assayed by
PLFA showed patterns similar to those observed for microbial community structure (Fig. S1a
and b).

Total microbial biomass. Streams from the WCC watershed showed greater ranges and
higher basin-wide averages for total microbial biomass concentration (29.73 6 18.23 nmol
g21 fresh wet weight [fww]), percent prokaryotic content (88% 6 9.71), and bacterial abun-
dance (9.85� 108 6 4.75� 108 g21 fww) than streams within the Neversink River watershed,
(10.87 6 6.53 nmol g21 fww, 77.5% 6 11.40, and 3.30 � 108 6 1.24 � 108 g21 fww, respec-
tively) (Table S1; Fig. S2). The microbial biomass differences were significant at the levels of
watersheds (F = 15.18, P# 0.005) and streams within watersheds (F = 7.38, P# 0.001) but not
stations within streams (Table 1; Fig. S2). At the scale of stations within streams (1 to 50 m),
variability in sediment microbial biomass, expressed as a coefficient of variation, ranged from
30% to 79% with no consistent longitudinal pattern of biomass changes among stations (Fig.
S2b). The coefficient of variation for microbial biomass among replicate cores within stations
ranged from 5% to 83% (Fig. S2c).

Water chemistry and sediment organic content. Differences between the two
watersheds in bedrock geology and glaciation history were clearly reflected in stream water
conductivity, which was ;5-fold greater in WCC watershed streams than in the Neversink
watershed streams (Table S1). Sediment carbon (C) and nitrogen (N) content in streams
from the watersheds had overlapping ranges, but, on average, sediments from the WCC
watershed had 3.5-fold higher percent C and 3-fold higher percent N than the sediments
from the Neversink watershed, and the atomic carbon-to-nitrogen ratio (C:N ratio) was 1.5-
fold higher in the WCC watershed (Table S1; Fig. 5). Streams from the White Clay Creek West
(WCW) subbasin containing patches of carbonate bedrock had the highest conductivity

FIG 2 Principle-component analysis of stream sedimentary microbial community structure of PLFA profiles of
White Clay Creek (open circle) and Neversink (open square) watersheds. The percent variation explained by
each axis is indicated on the respective component axis. Identified fatty acids had component loadings of
.j0.5j with strong influence on the pattern of variation among samples along the respective component axes.
Site abbreviations are as described in the legend to Fig. 1.
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within the WCC watershed and consistently greater C and N content than other streams in
that watershed, although the high variation within cores for each stream impacted the num-
ber of significant differences among all streams, especially for N content (Fig. 5a and b). In
general, sediment C:N mass ratios were higher in 1st- and 2nd-order streams and lower in
3rd- and 5th-order stream sediments (Fig. 5c). Combined, sediment percent carbon content,
percent water content, C:N mass ratio, and sediment surface area explained approximately
two-thirds of the variation observed in sedimentary microbial biomass (Table 2, model 7).
Path analysis indicated that the variables percent carbon content, percent water content,
and C:N ratio had significant direct effects on biomass and that sediment surface area was
positively and significantly correlated with those three variables (Fig. 6). Two models were
investigated to discern the theoretical linkage and directionality among the variables, one
constrained and one unconstrained. The constrained model links sediment surface area indi-
rectly to biomass via its direct effects on sediment carbon and water content, while the
unconstrained model links surface area indirectly to biomass via its correlations with sedi-
ment carbon content, water content, and C:N ratio. These two models yielded very similar
results, and we present only the unconstrained model. Percent carbon content showed the
greatest direct effect on biomass (r2 = 0.393) as well as substantial indirect effects via its cor-
relation with percent water content and C:N mass ratio (Fig. 6). Combined, the direct and
indirect effects of carbon accounted for ;61% of the variation in total sediment microbial
biomass. Similarly, percent water content and C:N mass ratio accounted for 56% and 37%,
respectively, of the variation in total sediment microbial biomass. Sediment surface area
via indirect effects accounted for ;34% of the variation in total sediment microbial bio-
mass (Fig. 6).

DISCUSSION
Spatial variability of microbial community structure and the role of phototrophic

microeukaryotes. Our results indicate that microbial community structure in the 14
headwater streams investigated within the Eastern Deciduous Forest biome displayed a dis-
tinct regional-level spatial variability, even when streams within a watershed displayed high
within-stream or among-stream variations. Sediments from the WCC and Neversink River
watersheds, with the exception of sediments from the 5th-order Neversink River site, dif-
fered in total microbial community structure; this difference was detected by the second

FIG 3 (a) Relationship between principle-component analysis factor 1 score and the calculated
percentage that microeukaryotes contribute to total microbial biomass for all stream samples. (b)
Relationship between the calculated percentage that microeukaryotes contribute to total microbial
biomass and the ratio of v3 to v6 fatty acids for all stream samples from the PLFA profiles.

Akinwole et al.

Volume 9 Issue 3 e01972-21 MicrobiolSpectrum.asm.org 6

https://www.MicrobiolSpectrum.asm.org


component of variation. These findings extend previous studies that indicate that geo-
graphical distance is important in structuring microbial communities at regional scales
(26, 28, 29) and provide further evidence for spatial variations in microbial community
structure (27). For instance, in a recent study, Zhang et al. (26) investigated soil microbial
communities along a ca. 878-km transect during two contrasting seasons and reported
that spatial heterogeneity rather than seasonality explained more of the spatiotemporal
variation of soil microbial alpha- and beta-diversities. In a Findlay et al. study (29), when
sediment microbial community structure was compared among three biomes, microbial
communities within a biome were more similar in composition than communities from
different biomes that differed in environmental heterogeneity. A major difference between
our study and that of Findlay et al. (29) was that the two watersheds examined in this study
occurred within the same Eastern Deciduous Forest biome with some overlap in the domi-
nant tree species but with other notable differences. Only the Neversink watershed was gla-
ciated during the last glacial period and that generated differences in soil age and structure
and bedrock geology, and the WCC watershed has more agricultural land use. These differ-
ences led us to expect different microbial community compositions between the watershed

TABLE 1 Nested analysis of variance to test the effects of watershed, streams within a
watershed, and stations within streams on microbial biomass

Source DFa Adj SSa Adj MSa F P
Watershed 1 5.119 5.119 15.18 0.002
Stream (watershed) 12 4.047 0.337 7.38 0.000
Stations (watershed*stream) 28 1.280 0.046 1.46 0.095
Error 84 2.628 0.031
aDF, degrees of freedom; adj SS, adjusted sum of squares; adj MS, adjusted mean square.

FIG 4 Sedimentary bacterial community composition in WCC and NVR watersheds. (a) PCA analysis of
PLFA profiles after removal of fatty acids assigned a priori to the functional group microeukaryotes
and those known to be common to both bacteria and microeukaryotes from the PLFA profiles. (b)
NMDS analysis of DGGE presence/absence data. Streams within the White Clay Creek dendritic
network are denoted with open circles, and those within the Neversink dendritic network are
denoted with filled circles. Site abbreviations are as described in the legend to Fig. 1. Dotted boxes
indicate the relative variation in bacterial community structure of 1st-order stream sediments within a
watershed, and dashed boxes indicate the same for the 2nd- and 3rd-order streams or 3rd-order streams
within the watershed.
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that would be detected at the regional scale. In this study, we showed that the WCC and
Neversink watersheds differed in C:N mass ratio, percent carbon, sediment surface area, and
microeukaryotic/prokaryotic ratio, suggesting that these factors, along with others, affect
spatial variability of freshwater sediment microbial communities at a variety of scales within
watersheds.

One major component of variation in microbial community structure reflects the ratio of
microeukaryotic to prokaryotic biomass. As streams with high microeukaryotic biomass were
dominated by phototrophs, and light has long been known as a major factor influencing
the relative abundance of microeukaryotes within microbial communities (41, 46), canopy
cover likely influenced the placement of streams along this gradient. While canopy cover
was not directly measured, the.20-m-wide 5th-order NVR station is largely clear of riparian
tree shade, and abundant, dense filamentous algal streamers were observed attached to
cobble on the streambed. The shift in community structure at the NVR site is consistent with
predictions of the RCC of shifts from a heterotrophic regimen to more autotrophic produc-
tion with an expanded role for periphyton as the canopy opens in mid-order streams (16).

FIG 5 Variation in sediment percent carbon (a), percent nitrogen (b), and C:N mass ratio (c) by stream order (1st to 3rd/5th order from left to right) and
watershed. Vertical bars denote 0.95 confidence intervals. Streams not connected by a horizontal line are significantly different (P = 0.05, Tukey’s wholly
significant difference).
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One of our 1st-order streams, WSB, arises from soils with a high-water table, making the
trees subject to windthrow, creating an opening in the forest canopy. The theoretical role of
an open canopy in shifting community composition to more phototrophy as predicted by
RCC was seen in WSB in the headwaters of the WCC watershed rather than downstream.
This phenomenon is consistent with the mechanism behind the RCC prediction but a special
case associated with the height of the water table, indicating that a substantial part of net-
work-wide biodiversity may rest in the large environmental variation among headwater.

In this study, microeukaryotes contributed from 4.0 to 40.9% of microbial biomass,
and at the lower portion of the range (10% or less), PLFA profiles indicated that hetero-
trophs were the dominant microeukaryotes, while in communities with larger proportions
of microeukaryotes, phototrophs were dominant. This was evidenced by the shift in the ratio
of v3 to v6 PLFAs. While v3 and v6 fatty acids are found in both heterotrophic and photo-
trophic microeukaryotes, they differ in their relative abundance (45–47). In heterotrophic
eukaryotes, the abundance of v6 and v3 fatty acids are comparable, while in phototrophic

FIG 6 Path diagrams describing the structure of the relationship between sediment microbial
biomass and percent carbon (%C), percent water content, C:N mass ratios (C:N), and sediment surface
area (SSA). Single-headed arrows indicate casual paths; numbers on arrows are path coefficients
(standardized regression coefficients) indicating the relative strength of each path leading to a given
response variable. Double-headed arrows represent the correlations among the predictor variables.
Arrows connecting environmental variables to the independent variable (microbial biomass) indicate
direct effects, while environmental variables linked to the independent variable via other environmental
variables constitute indirect effects. Path coefficients were calculated by SAS; structural equation modeling
for JMP 10; *, P , 0.01; **, P , 0.001.

TABLE 2Multiple regression analysis (best subsets) for natural log biomass as a function of
various physical and chemical stream parameters

Model Varsa R2 (adj)a Mallows Cpb SEa %Watera SSA %C %N C:N
1 1 60.4 30.2 0.2052 X
2 1 56.0 46.3 0.2161 X
3 2 64.4 15.9 0.1943 X X
4 2 64.0 17.6 0.1955 X X
5 3 66.7 8.4 0.1879 X X X
6 3 66.0 11.1 0.1899 X X X
7c 4 68.1 4.3 0.1839 X X X X
8 4 67.0 8.5 0.1872 X X X X
9 5 68.0 6.0 0.1845 X X X X X
aVars, variables; adj, adjusted; SE, standard error; X, explanatory variable(s) in the model; SSA, sum of squares
among groups.

bThe model giving the minimumMallows Cp statistic was used (80).
cModel 7 showing the variables that contributed the most to the variation in microbial biomass.
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eukaryotes, v6 fatty acids typically constitute ;10% of the v3 fatty acid abundances. Across
the streams in this study, the relative concentrations of v6 and v3 fatty acids are consistent
with phototrophic microeukaryotes comprising upwards of 75% of the microeukaryotic com-
munity of sediments with high percent microeukaryotes. The contribution of heterotrophic
microeukaryotes to total microbial biomass in streambed sediments is likely limited by trophic
interactions, unless seasonal and hydrodynamic conditions allow accumulation of significant
leaf litter colonized by fungi, while the contribution of phototrophic microeukaryotes is likely
limited by light availability and to a lesser extent biotic and abiotic disturbance and nutrient
availability (48–50). Thus, it is clear that the presence of phototrophic microeukaryotes alters
microbial community structure and function.

Our study showed that a critical, and often overlooked, factor in the microbial ecology
of streambed sediments is the ability of open canopy/light, as seen in the NVR and WSB
stations, to shift the ratio of microeukaryotic to prokaryotic biomass and the nature of the
reflected interactions. This is evidenced by the findings that the major component of varia-
tion in sediment microbial community structure is driven by microeukaryotic/prokaryotic
ratio, as shown in this study (Fig. 3) and others (29, 44). For watersheds where shading of
streams occurs, we posit that the ratio of microeukaryotic to prokaryotic biomass is an
essential component of any study striving to understand the critical roles that sediment
microorganisms play in the ecology and biogeochemistry of fluvial networks.

Bacterial community structure. In this study, PLFA and DGGE analysis yielded simi-
lar patterns of distinct watershed differences in bacterial community structure (Fig. 4a
and b). The variation in bacterial community structure at regional scales may involve
multiple causal pathways resulting from a complex relationship between geology, bacterial
community structure, and DOM quality. For instance, differences in watershed characteris-
tics, including bedrock geology and water chemistry, generate differences in DOM qualities
and quantities (40, 51), which in turn cause variation in stream sediment bacterial commu-
nity structure (36). The complexity arises in that streambed microorganisms can, in turn,
affect DOM quantity and quality (52). Wagner et al. (53) demonstrated clear shifts in bacterial
community structure that included direct effects (increased relative abundance of cyanobac-
teria and other phototrophic bacterial taxa) as well as apparent indirect effects, such as the
increased relative abundance of predominately heterotrophic taxa, such as Roseomonas and
Rivibacter, along with decreases in others, such as Planctomycetes and Gemmatimonadetes.
They also demonstrated, along with Rier et al. (54), a strong positive correlation among
enzyme activities associated with heterotrophic bacteria and increasing light levels, and in
the Rier et al. (54) study, these increases were greater than the increase in bacterial biomass.

Land use may be an alternative proximate cause for the observed variation in bacterial
community structure between the two watersheds. The Neversink watershed is 95% for-
ested while the WCC watershed, with its mixture of cropland, pasture, and forest, has a
long history of agricultural land use, which is known to strongly affect sediment microbial
communities (55). In addition, our data indicated significant differences in conductivity
and sediment C:N mass ratios between the two watersheds, either of which can also sig-
nificantly affect bacterial community structure. Microbial biogeography studies show that
for geographic distance relevant to our study, deterministic processes primarily govern
bacterial communities, and their structure reflects local environmental heterogeneity,
although distance effects are also noted (23–26, 56, 57). In this study, microbial community
structure was influenced by light, and total microbial biomass was strongly influenced by
sediment carbon content, water content, C:N mass ratio, and surface area (see below). It is
reasonable to assume that these factors may also influence bacterial community structure.
As a quick fingerprinting approach, PCR-DGGE primarily focuses on the most abundant
populations within a community (58, 59). The minor groups where the most microbial diver-
sity exists are undetected and escape from our analysis in this study. Therefore, PCR-DGGE
provides a quick “snapshot” of population dynamics across spatial scales, and, compared to
the detailed microbial characterization via high-throughput sequencing, it underestimates
the alpha- and beta-diversity for the streambed samples. However, a reexamination of “old”
preserved DNA with next-generation sequencing (NGS) demonstrated that DGGE catches

Akinwole et al.

Volume 9 Issue 3 e01972-21 MicrobiolSpectrum.asm.org 10

https://www.MicrobiolSpectrum.asm.org


the major picture of population spatiotemporal dynamics (60, 61). Therefore, we feel confident
that the DGGE analysis in this study along with PLFA fingerprinting were able to provide valu-
able information on community composition, albeit with lower taxonomic resolution.

Besemer et al. (44) found greater alpha and beta bacterial diversity among epilithic
headwater stream communities than in larger streams of the same network. Although
neither of the fingerprinting assays used in this study produced direct measures of diversity
and the Besemer study (44) used biofilms removed from rock surfaces, our experimental
design provides several tests of their hypothesis that headwater streams are a reservoir of
bacterial diversity. These include a comparison of the variation in community structure
found in the four 1st-order streams in the WCC watershed versus the 2nd- and 3rd-order
WCC streams and a comparison of the four 1st-order Pigeon and Biscuit Brook tributaries to
the 3rd-order Pigeon and Biscuit Brooks. In three of these comparisons, sediments from the
headwater streams showed substantially greater variation in bacterial community structure
than sediments from the corresponding downstream stations, while by one comparison
(PLFA, Neversink streams), variation in bacterial community structure was greater among
the downstream stations than among the headwater streams (Fig. 4a). These findings sug-
gest that the observed pattern of highest bacterial diversity in epilithic stream biofilms
within the smallest headwater streams likely extends to surficial streambed sediments. This
contrasts with the prediction of the RCC that highest biotic diversity would occur in mid-
order streams, but the RCC predictions were based on observations associated with higher
organisms and preceding major advances in microbial ecology (44). As dendritic ecological
networks, fluvial systems experience a broad suite of coupled physical, chemical, and biolog-
ical processes that strongly influence microbial community structure (62). In the Eastern
Deciduous biome, headwater streams are typically shaded and net heterotrophic, receiving
appreciable inputs of terrestrial organic matter. Hierarchical patch dynamics within the local
terrestrial environment, also resulting from a broad suite of coupled physical, chemical, and
biological processes, provide varied terrestrial contributions to stream water DOM, which in
turn exerts significant influence on bacterial community structure (36, 40, 44). While our
study does not allow for direct measurement of alpha- or beta-diversity, the sampling den-
sity used for PLFA analysis does address aspects of a critical question within microbial ecol-
ogy, that is, the spatial scales of patch size for streambed sediments. Given the dimensions
of our streambed sediment sampling rings, our results indicate that in these headwater
streams, there is a spatial scale of variation on the order of #10 cm. In addition, each reach
contains multiple patches, a given patch (defined by microbial community structure, as in
reference 63) can occur at multiple spatial sizes and boundaries within a stream and in mul-
tiple streams within the watershed (Fig. S1 in the supplemental material). Using PC1 scores,
we calculated that the adjacent triplicate cores taken within a station encompassed any-
where from 10% to 100% of the variation observed for that stream. While this study did not
directly investigate the impact of local heterogeneity on streambed microbial community
structure, the factors explaining variation in total microbial biomass likely contribute to varia-
tion observed in community structure.

Microbial biomass and environmental variables. At spatial scales of the watershed
and stream, total microbial biomass showed significant differences but did not show a consist-
ent trend within stations or triplet cores. Multiple regression analysis indicated that percent
sediment carbon content, percent water content, C:N mass ratio, and sediment surface area
explained nearly 70% of the variance in sediment biomass. Path analysis indicated that pri-
mary direct control was via sediment organic carbon, C:N ratios, and sediment water content,
while sediment surface area affected sediment biomass indirectly via its impact on the other
three variables. All four are known to be important environmental constraints of streambed
microbial biomass, and sediment organic carbon reflects a combination of several biogeo-
chemical processes (64, 65) that influence microbial biomass through its quantity, quality, or
a combination thereof. Previous studies of stream sediments and terrestrial soils have shown
the quantity of carbon significantly influenced microbial biomass (66–69). The results from
this study further corroborate those observations and show that increasing sediment
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organic carbon concentration leads to greater total microbial biomass both directly and
indirectly via interactions with C:N mass ratio and sediment water content (Fig. 6).

In addition, Findlay et al. (70) showed that variation in quality of sediment detritus,
as measured by C:N mass ratio, was negatively correlated with bacterial abundance,
while Schallenberg and Kalff (66) found either negative correlations or no correlation
in lake sediments. Our results that total microbial biomass correlated positively with
both sediment organic carbon and C:N mass ratio suggest that organic carbon quantity
can supersede the effects of quality, although increasing sediment C concentration
combined with increasing C:N ratio might indicate an increased presence of fine partic-
ulate organic matter, which is known to be positively correlated with microbial biomass (71,
72). The cause of the difference between our findings and those of previous researchers is not
known; however, the Findlay et al. (70) study did focus on particulate organic carbon, while in
this study, total sediment carbon was measured, and the range of C:N mass ratios did differ in
the two studies (9 to 27 versus 6 to 17; reference 70 versus this study, respectively).

Schallenberg and Kalff (66) working with lake sediments that ranged from 46% to
99% water content found that percent water content was the single most important
variable in predicting sediment bacterial biomass. In this study, sediments exhibited a
wide range of sediment water content and required the recommended normalization
to fresh weight (66). This is reflected in our finding that percent water content was the sec-
ond most important variable in predicting sediment microbial biomass. High percent water
content allows for greater aqueous connectivity within sediment, which in turn allows nutri-
ent and substrate transfer, providing microorganisms with a continuous supply of nutrients
as well as means to move to more favorable locations (73, 74). Nogaro et al. (75) working
with sediment porosity (sediment water content corrected for adsorbed water) extended its
importance to a deterministic process governing riverbed bacterial community.

Finally, sediment surface area has long been known to impact microbial commun-
ities, although many early studies (before the popularization of the Brunauer-Emmett-
Teller method [76]) report this parameter in terms of sediment grain size (77, 78).
Surface area of streambed sediments can influence microbial biomass through its
effects on flow rates and availability of nutrients (79, 80) and quantity and quality of or-
ganic carbon (81, 82). In this study, path analysis indicated that the effect of sediment
surface area on microbial biomass was indirect via its direct effects on sediment C:N
mass ratio and carbon and water content.

CONCLUSION

Our study revealed regional-level patterns in microeukaryotes and bacterial community
structures and adds to the growing number of studies suggesting that regional-scale envi-
ronmental factors influence the biogeography of microbes. At the same time, we observed
that local environmental factors strongly influence sediment microbial biomass, which can
vary greatly among streams within a watershed, particularly among its 1st-order streams.
Our findings highlight that variations in microbial community structures within streams
reflect a mosaic of small-scale patches and suggest that the type and spatial arrangement of
patches is an important and often overlooked component of studies of metacommunity
ecology of fluvial networks. Lastly, the fact that bacteria in headwater streams are typically
components of a mixed-phylum community (83) and a growing literature that documents
the impacts of microeukaryotes on microbial community structure underscore a need to
place research on bacterial community structure based on molecular methods into a
broader phylogenetic context (84).

MATERIALS ANDMETHODS
Study sites. Study streams were located within the 1st- to 3rd-order, 7.3-km2 East Branch White Clay

Creek (WCC) within the southern Pennsylvania Piedmont (39°539N, 75°479W) and the 1st- to 5th-order,
171-km2 Neversink River in the Catskill Mountains of New York (41°579N, 85°299W) (Fig. 1). Predominant land
uses within the WCC watershed upslope of an intact forested riparian zone are row crop agriculture (52%),
hayed/grazed fields (22%), and wooded lands (23%) (85, 86) arrayed across elevations ranging from 100 m to
146 m. At the 3rd-order site, mean annual streamflow, stream water temperature, and local precipitation are
115 L/s, 10.6°C, and 105 cm, respectively (85). Soils are deep, unglaciated Utisols, and streambed sediments
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consist of clay-, silt-, and sand-sized particles in pools and runs, with gneiss- and schist-derived gravel and cob-
ble throughout all of the riffles; riffles from the western tributary and main stem of WCC also contain metamor-
phic materials derived from Cockeysville Marble. The dominant tree species are American beech (Fagus grandi-
folia), red oak (Quercus rubra), black oak (Quercus velutina), and tulip poplar (Liriodendron tulipifera) (85, 86).
WCC flows into the Christina River, a tributary of the Delaware. The Neversink River watershed is contained
within a mountainous region in northeast New York state with elevations ranging from 480 m to 1,280 m. The
hill slopes are steep with several deeply incised headwater channels, and the soils in the Catskills region are
predominantly acidic Inceptisols (87). The glacial till was deposited in the most recent glaciation and generally
thicker in stream valleys than along ridge tops. Streambed sediments consist of clay-, silt-, and sand-sized par-
ticles and shale-, siltstone-, sandstone-, and conglomerate-derived gravel and cobble in riffles. At the 5th-order
site (United States Geological Survey [USGS] station 01435000), mean annual streamflow, stream water temper-
ature, and local precipitation are 5.49 m3/s, 8.3°C, and 131 cm, respectively. The watershed is sparsely popu-
lated and 95% forested, primarily of mixed northern hardwood species dominated by American beech (Fagus
grandifolia), sugar maple (Acer saccharum), and yellow birch (Betula alleghaniensis). Balsam fir (Abies balsamea)
is common above 1,000-m elevation, and eastern hemlock (Tsuga canadensis) stands grow in a few areas that
have poorly drained soils (87, 88). The Neversink River is a tributary of the East Branch Delaware River.

Experimental design. We used a hierarchical design to evaluate spatial patterns of microbial bio-
mass and community structure along a stream order gradient, where stream order refers to the Strahler
(89) modification of the Horton (90) classification system. Our nested sampling design (Fig. 1) focused
on four spatial scales: (i) between watersheds (.350 km), (ii) among streams within a watershed (50 m
to 10 km), (iii) among sampling stations within a stream reach (2 m to 25 m), and (iv) among cores within
a sampling station (,1 m). In WCC, we sampled one 3rd-order reach adjacent to the Stroud Water
Research Center in Avondale, PA (WCC), the two 2nd-order tributaries, White Clay Creek West (WCW)
and White Clay Creek East (WCE), and four 1st-order tributaries, two for each 2nd-order stream, Ledyard
Spring Brook (LSB) and Water Cress Spring (WCS), which flow into WCW, and Dirty Dog Spring (DDS),
and Walton Spring Brook (WSB), which flows into WCE. The forest canopy varied between dense and open
along the WSB bank. In Neversink, we sampled the 5th-order Neversink River (NVR), two 3rd-order tributaries
of the West Branch Neversink River, Biscuit Brook (BBR) and Pigeon Brook (PBR), and four 1st-order tributaries
(Biscuit Brook Tributary A [BBA] and B [BBB] and Pigeon Brook Tributary A [PBA] and B [PBB]). The United
States Geological Survey maintains stream gauges at two of the Neversink sites (USGS 01434025, Biscuit Brook
300 m above the confluence with Pigeon Brook, and USGS 01435000, Neversink River near Claryville). Within
each stream, three stations within a reach (downstream, midstream, and upstream) were established, and tripli-
cate sediment cores were collected across each station as independent samples. In summary, the design con-
sisted of 2 stream networks, 7 streams per network, 3 stations per stream, and 3 replicate sediment cores per
station, yielding 126 samples. Within the watersheds sampled, both rivers are unregulated. All streams within a
watershed were sampled in the same week, and both watersheds were sampled within a 2-week period in
July and August 2010 to reduce seasonal differences.

Sampling procedures. Samples were delimited with a 100-mm diameter plastic ring that was inserted
2 cm deep into the streambed (a 75-mm diameter ring was used for 1st-order streams whenever large rocks,
cobbles, or stones dominated the streambed). Plexiglas plates were slipped under and over the ring to effec-
tively trap the sediments and allow them to be lifted intact from the streams with minimal disturbance.
Sediments in the top 2 mm within the ring were transferred with a sterile spatula to prelabeled Whirl-Pak sam-
pling bags and stored on ice before subsampling. Stream water conductivity and water temperature readings
were measured with a YSI model 32 conductance meter. Within 6 h of sampling, sediments were transferred
to a clean plastic weigh boat, thoroughly homogenized, subsampled for phospholipids, DNA, surface area, or
elemental analyses, and frozen. Frozen samples were shipped to the appropriate laboratory for analysis.

Sediment surface area, particle size, and elemental analyses. Frozen subsamples for surface area
and particle size analyses were dried at 60°C and split, with one subsample being processed through a
US standard sieve series (W. S. Tyler Co., Menton, OH) for sediment particle size distributions. The other
subsample was heated to 350°C to remove organic matter and analyzed by the Brunauer-Emmett-Teller
(three-point adsorption isotherm) method using a Micromeritics Tristar surface area and porosity ana-
lyzer (Micromeritics Corporation, Norcross, GA) and N2 as the adsorbate (76).

The frozen subsamples for elemental analysis were freeze-dried and finely ground, and inorganic
carbonate was removed (gaseous HCl). Approximately 35 mg of sediment was analyzed on a Costech
4010 elemental analyzer for percent carbon and nitrogen and atomic carbon-to-nitrogen ratios (C:N).

Phospholipid analysis. Microbial biomass and community structure were determined using phos-
pholipid phosphate (PLP) and phospholipid fatty acid (PLFA) analyses following the methods of Findlay
(45). Briefly, cellular lipids were extracted from the frozen sediment samples transferred directly into
dichloromethane/methanol/water and partitioned into aqueous and organic fractions. The organic frac-
tion containing the lipids was subsampled for PLP analysis (91). PLFAs were recovered from other lipids
by differential elution from silicic acid columns (J. T. Baker, Center Valley, PA, USA) and were analyzed as
their methyl esters. Purified fatty acid methyl esters (FAME) were identified and quantified using gas
chromatography. The FAME were analyzed by gas chromatography in an Agilent gas chromatograph
equipped with an automatic sampler, a 60 m � 0.25 mm nonpolar DB-1 column, and a flame ionization
detector. Hydrogen was used as the carrier gas at a flow rate of 2.3 mL/min. The oven temperature was
80°C at injection, increased at 4°C/min to 250°C, and held at 250°C for 10 min. FAME identification was
based on relative retention times, coelution with standards, and mass spectral analysis. The FAME no-
menclature used followed Findlay and Dobbs (92). Using polyenoic fatty acids as indicators of microeu-
karyotes, total microbial biomass was partitioned between prokaryotic and microeukaryotic organisms,
and the results were presented as percentages (92).
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Bacterial community structure analyses by PCR-DGGE. Genomic DNA was extracted from 0.3-g
subsamples of the frozen subsamples using the Power Soil DNA extraction kit (MoBio Laboratories,
Carlsbad, CA, USA) following the instructions from the manufacturer. DNA was quantified by spectro-
photometric absorption at 260 nm, and the purity was assessed from absorbance ratios at 260/280 and
260/230 nm using a ND-2000 Nanodrop spectrometer (Thermo Scientific, Wilmington, DE). 16S rRNA
genes were amplified with 1070f (ATGGCTGTCGTCAGCT) and GC-clamped 1392r (ACGGGCGGTGTGTAC)
primers (58). The PCRs were performed using an automated Eppendorf Mastercycler thermal cycler
(PerkinElmer, Norwalk, CT). PCR-DGGE was performed using the Dcode system (Universal Mutation
Detection System, Bio-Rad) as previously described (58, 59). Briefly, equal amounts of PCR products were
loaded onto an 8% vertical polyacrylamide gel containing a 50 to 70% denaturing gradient made of
urea and formamide. Gels were electrophoresed at 60°C and 70 V for 16 h and visualized with SYBR Gold
staining (Life Technologies, NY). Digital photographs of gel images were analyzed using GelComparII
v.5.10 (Applied Maths, Austin, TX, USA) and visually checked for accuracy. Distinguishable bands repre-
sented distinct bacterial taxa that occurred in each sample (58, 59), and these data were used for com-
munity structure and downstream multivariate statistical analyses.

Statistical analyses. Nested analysis of variance (stations nested within streams and streams within
watersheds) with Turkey’s honestly significant difference (HSD) test (P , 0.05) was performed on sedi-
ment organic content and microbial biomass to determine significant differences across spatial scales
(JMP 10 and Minitab 16). Across streams, sediments varied greatly in their percent water content, violat-
ing the assumption necessary for standardizing data to sediment dry weight (66). Hence, we reported
biomass and abundance per gram of sediment fresh weight rather than the customary dry weight. It is
our experience that sediments within individual studies were confined to a much narrower range of
water content such that normalization to sediment dry weight corrected for differences in sample size
and far outweighed the risk of error introduction (36, 93). Relationships among variables were investi-
gated using linear regression and multiple regression analyses (Minitab 16). We tested data for normality
with the Shapiro-Wilk test and homogeneity of variance with the Bartlett test with appropriate transfor-
mations applied as needed. For multiple linear regression analysis, predictor variables (environmental
variables) were selected using the “best subsets” algorithm in Minitab. This algorithm fits a small fraction
of all possible regression models and reports the “best subset.” We identified the best model based on
several selection criteria, including adjusted r2 and Mallows Cp (94). We used path analysis, a specific
form of structural equations modeling (SEM), to explore further the direct and indirect influence of envi-
ronmental variables (as independent variables) on microbial biomass (as dependent variable) using the
SAS structural equation modeling subroutines for JMP 10. SEM is a multivariate statistical technique that
tests the importance of pathways in hypothesized models and allows for comparison of models to ex-
perimental data (95). Standardized regression coefficients between variables were calculated and plot-
ted as path coefficients on path diagrams constructed for microbial biomass. Natural log-transformed (ln
[weight% 1 1]) PLFA relative abundance data were subjected to principal-component analysis (PCA) to
identify patterns of variation in the microbial community structure across spatial scales and stream
orders. PCA was performed for the combined data set of Neversink and WCC networks (SPSS 19). PLFA
profiles were interpreted using a functional group approach (92). DGGE data were entered as presence
or absence of bands, and pairwise comparisons were calculated and bacterial community structures
were analyzed by nonmetric multiple dimensional scaling (NMDS) using the MDS procedure in SAS/
STAT software (v 9.3, SAS Institute Inc., Cary, NC). The bacterial community distributions were illustrated
in two-dimensional NMDS plots.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.3 MB.

ACKNOWLEDGMENTS
Sherman Roberts, Michael Gentile, and Laura Zgleszewski (Stroud Water Research

Center, Avondale, PA), and Janna Brown (University of Alabama, Tuscaloosa, AL) assisted in
sample collection and processing. Christina Staudhammer provided invaluable advice on
the application of path analysis; however, the authors take full responsibility for the
application and interpretation of all statistical analyses. Funding for this project was
provided by the National Science Foundation grants to R.H.F. (DEB-0516235 and DEB-
1119922), L.A.K. (DEB-0516449), and J.K. and L.A.K. (DEB-1120717, DEB-1052716, and DEB-
1557063), and Endowment Fund to J.K. and L.A.K. from StroudWater Research Center.

REFERENCES
1. Curtis TP, Sloan WT. 2004. Prokaryotic diversity and its limits: microbial

community structure in nature and implication for microbial ecology. Curr
Opin Microbiol 7:221–226. https://doi.org/10.1016/j.mib.2004.04.010.

2. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW,
Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM. 2005.

Comparative metagenomics of microbial communities. Science 308:554–557.
https://doi.org/10.1126/science.1107851.

3. Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML. 2010. A
review of allochthonous organic matter dynamics and metabolism in streams.
J North Am Benthol Soc 29:118–146. https://doi.org/10.1899/08-170.1.

Akinwole et al.

Volume 9 Issue 3 e01972-21 MicrobiolSpectrum.asm.org 14

https://doi.org/10.1016/j.mib.2004.04.010
https://doi.org/10.1126/science.1107851
https://doi.org/10.1899/08-170.1
https://www.MicrobiolSpectrum.asm.org


4. Kaplan LA, Newbold JD. 1993. Biogeochemistry of dissolved organic car-
bon entering streams, p 139–166. In Ford TE (ed), Aquatic microbiology,
an ecological approach. Blackwell, Boston, MA.

5. Pusch M, Fiebig D, Brettar I, Eisenmann H, Ellis BK, Kaplan LA, Lock MA,
Naegeli MW, Traunspurger W. 1998. The role of micro-organisms in the
ecological connectivity of running waters. Freshw Biol 40:453–495.
https://doi.org/10.1046/j.1365-2427.1998.00372.x.

6. Fischer H, Pusch M. 2001. Comparison of bacterial production in sedi-
ments, epiphyton, and the pelagic zone of a lowland river. Freshw Biol 46:
1335–1348. https://doi.org/10.1046/j.1365-2427.2001.00753.x.

7. Findlay S. 2010. Stream microbial ecology. J North Am Benthol Soc 29:
170–181. https://doi.org/10.1899/09-023.1.

8. Findlay RH, Battin TJ. 2016. The microbial ecology of benthic environments, p.
4.2.1-1–4.2.1-20. In Yates MV, Nakatsu CH, Miller RV, Pillai SD (ed), 4th ed, Man-
ual of environmental microbiology. ASM Press, Washington, DC.

9. Hart DD. 1992. Community organization in streams: the importance of
species interactions, physical factors, and chance. Oecologia 91:220–228.
https://doi.org/10.1007/BF00317787.

10. Poff NL, Ward JV. 1992. Heterogeneous currents and algal resources
mediate in situ foraging activity of a mobile stream grazer. Oikos 65:
465–478. https://doi.org/10.2307/3545564.

11. Hall RO, Meyer JL. 1998. The trophic significance of bacteria in a detritus-
based stream food web. Ecology 79:1995–2012. https://doi.org/10.1890/0012
-9658(1998)079[1995:TTSOBI]2.0.CO;2.

12. Thompson RM, Dunne JA, Woodward G. 2012. Freshwater food webs:
towards a more fundamental understanding of biodiversity and commu-
nity dynamics. Freshw Biol 57:1329–1341. https://doi.org/10.1111/j.1365
-2427.2012.02808.x.

13. Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson
S, Grossart HP, Philippot L, Bodelier PL. 2014. Trait-based approaches for
understanding microbial biodiversity and ecosystem functioning. Front
Microbiol 5:251.

14. Loreau M, Mouquet N, Holt RD. 2003. Meta-ecosystems: a theoretical
framework for a spatial ecosystem ecology. Ecol Lett 6:673–679. https://
doi.org/10.1046/j.1461-0248.2003.00483.x.

15. Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI,
Newbold JD, Sabater F. 2008. Biophysical controls on organic carbon fluxes in
fluvial networks. Nat Geosci 1:95–100. https://doi.org/10.1038/ngeo101.

16. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The
river continuum concept. Can J Fish Aquat Sci 37:130–137. https://doi
.org/10.1139/f80-017.

17. Newbold JD, Elwood JW, O’Neill RV, Winkle WV. 1981. Measuring nutrient
spiraling in streams. Can J Fish Aquat Sci 38:860–863. https://doi.org/10
.1139/f81-114.

18. Guckert JB, Antworth CP, Nichols PD, White DC. 1985. Phospholipid,
ester-linked fatty acid profiles as reproducible assays for changes in pro-
karyotic community structure of estuarine sediments. FEMS Microbiol
Ecol 31:147–158. https://doi.org/10.1111/j.1574-6968.1985.tb01143.x.

19. Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-termi-
nating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467. https://doi.org/
10.1073/pnas.74.12.5463.

20. Woese CR, Kandler O, Wheelis ML. 1990. Towards a natural system of
organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc
Natl Acad Sci U S A 87:4576–4579. https://doi.org/10.1073/pnas.87.12
.4576.

21. Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE,
Stromberg JC. 1997. The natural flow regime. Bioscience 47:769–784. https://
doi.org/10.2307/1313099.

22. Peterson EE, Ver Hoef JM, Isaak DJ, Falke JA, Fortin M-J, Jordan CE,
McNyset K, Monestiez P, Ruesch AS, Sengupta A, Som N, Steel EA,
Theobald DM, Torgersen CE, Wenger SJ. 2013. Modelling dendritic eco-
logical networks in space: an integrated network perspective. Ecol Lett
16:707–719. https://doi.org/10.1111/ele.12084.

23. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL,
Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S,
Ovreås L, Reysenbach A-L, Smith VH, Staley JT. 2006. Microbial biogeogra-
phy: putting microorganisms on the map. Nat Rev Microbiol 4:102–112.
https://doi.org/10.1038/nrmicro1341.

24. Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JB. 2012. Beyond
biogeographic patterns: processes shaping the microbial landscape. Nat
Rev Microbiol 10:497–506. https://doi.org/10.1038/nrmicro2795.

25. Martiny JB, Eisen JA, Penn K, Allison SD, Horner-Devine MC. 2011. Drivers of
bacterial beta-diversity depend on spatial scale. Proc Natl Acad Sci U S A 108:
7850–7854. https://doi.org/10.1073/pnas.1016308108.

26. Zhang K, Delgado-Baquerizo M, Zhu YG, Chu H. 2020. Space is more im-
portant than season when shaping soil microbial communities at a large
spatial scale. mSystems 5:e00783-19.

27. Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM, Stanish LF,
Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S. 2013. Patterns
and processes of microbial community assembly. Microbiol Mol Biol Rev
77:342–356. https://doi.org/10.1128/MMBR.00051-12.

28. Hullar MA, Kaplan LA, Stahl DA. 2006. Recurring seasonal dynamics of mi-
crobial communities in stream habitats. Appl Environ Microbiol 72:
713–722. https://doi.org/10.1128/AEM.72.1.713-722.2006.

29. Findlay RH, Yeates C, Hullar MAJ, Stahl DA, Kaplan LA. 2008. Biome-level
biogeography of streambed microbiota. Appl Environ Microbiol 74:
3014–3021. https://doi.org/10.1128/AEM.01809-07.

30. Gao X, Olapade OA, Leff LG. 2005. Comparison of benthic bacterial com-
munity composition in nine streams. Aquat Microb Ecol 40:51–60. https://
doi.org/10.3354/ame040051.

31. Battin TJ, Kaplan LA, Newbold JD, Cheng X, Hansen CM. 2003. Effects of
current velocity on the nascent architecture of stream microbial biofilms.
Appl Environ Microbiol 69:5443–5452. https://doi.org/10.1128/AEM.69.9
.5443-5452.2003.

32. Pohlon E, Mätzig C, Marxsen J. 2013. Desiccation affects bacterial commu-
nity structure and function in temperate stream sediments. Fundam Appl
Limnol 182:123–134. https://doi.org/10.1127/1863-9135/2013/0465.

33. Franken RJ, Storey RG, Williams DD. 2001. Biological, chemical and physi-
cal characteristics of downwelling and upwelling zones in the hyporheic
zone of a north-temperate stream. Hydrobiologia 444:183–195. https://
doi.org/10.1023/A:1017598005228.

34. Sutton SD, Findlay RH. 2003. Sedimentary microbial community dynamics
in a regulated stream: East Fork of the Little Miami River, Ohio. Environ
Microbiol 5:256–266. https://doi.org/10.1046/j.1462-2920.2003.00396.x.

35. Feris KP, Ramsey PW, Frazar C, Rillig MC, Gannon JE, Holben WE. 2003.
Structure and seasonal dynamics of hyporheic zone microbial communities in
Free-Stone Rivers of the western United States. Microb Ecol 46:200–215.

36. Mosher JJ, Findlay RH. 2011. Direct and indirect influence of parental bed-
rock on streambed microbial community structure in forested streams. Appl
EnvironMicrobiol 77:7681–7688. https://doi.org/10.1128/AEM.06029-11.

37. Pradeep Ram AS, Sime- Ngando T. 2014. Distinctive patterns in prokaryotic
community composition in response to viral lysis and flagellate grazing in
freshwater microcosms. Freshw Biol 59:1945–1955. https://doi.org/10.1111/
fwb.12398.

38. Langworthy DE, Stapleton RD, Sayler GS, Findlay RH. 1998. Genotypic and
phenotypic responses of a riverine microbial community to polycyclic aromatic
hydrocarbon contamination. Appl Environ Microbiol 64:3422–3428. https://doi
.org/10.1128/AEM.64.9.3422-3428.1998.

39. Smith RJ, Jeffries TC, Adetutu EM, Fairweather PG, Mitchell JG. 2013.
Determining the metabolic footprints of hydrocarbon degradation using
multivariate analysis. PLoS One 8:e81910. https://doi.org/10.1371/journal
.pone.0081910.

40. Mosher JJ, Klein GC, Marshall AG, Findlay RH. 2010. Influence of bedrock
geology on dissolved organic matter quality in stream water. Org Geo-
chem 41:1177–1188. https://doi.org/10.1016/j.orggeochem.2010.08.004.

41. Zeglin LH. 2015. Stream microbial diversity in response to environmental
changes: review and synthesis of existing research. Front Microbiol 6:454.

42. Findlay RH, Watling L. 1998. Seasonal variation in the structure of a ma-
rine benthic microbial community. Microb Ecol 36:23–30. https://doi.org/
10.1007/s002489900089.

43. Widder S, Besemer K, Singer GA, Ceola S, Bertuzzo E, Quince C, Sloan WT,
Rinaldo A, Battin TJ. 2014. Fluvial network organization imprints onmicrobial
co-occurrence networks. Proc Natl Acad Sci U S A 111:12799–12804. https://
doi.org/10.1073/pnas.1411723111.

44. Besemer K, Singer G, Quince C, Bertuzzo E, Sloan W, Battin TJ. 2013. Head-
waters are critical reservoirs of microbial diversity for fluvial networks.
Proc Biol Sci 280:20131760.

45. Findlay RH. 2004. Determination of microbial community structure using
phospholipid fatty acid profiles, p 983–1004. In Kowalchuk GA, de Bruijn FJ,
Head IM, Akkermans AD, van Elsas JS (ed), Molecular microbial ecology man-
ual, 2nd ed. Kluwer Academic Publishers, Dordrecht, the Netherlands.

46. Bobbie RJ, White DC. 1980. Characterization of benthic microbial community
structure by high-resolution gas-chromatography of fatty-acid methyl-esters.
Appl Environ Microbiol 39:1212–1222. https://doi.org/10.1128/aem.39.6.1212
-1222.1980.

47. Lang I, Hodac L, Friedl T, Feussner I. 2011. Fatty acid profiles and their dis-
tribution patterns in microalgae: a comprehensive analysis of more than 2000

Spatial Variability in Microbial Community Structure

Volume 9 Issue 3 e01972-21 MicrobiolSpectrum.asm.org 15

https://doi.org/10.1046/j.1365-2427.1998.00372.x
https://doi.org/10.1046/j.1365-2427.2001.00753.x
https://doi.org/10.1899/09-023.1
https://doi.org/10.1007/BF00317787
https://doi.org/10.2307/3545564
https://doi.org/10.1890/0012-9658(1998)079[1995:TTSOBI]2.0.CO;2
https://doi.org/10.1890/0012-9658(1998)079[1995:TTSOBI]2.0.CO;2
https://doi.org/10.1111/j.1365-2427.2012.02808.x
https://doi.org/10.1111/j.1365-2427.2012.02808.x
https://doi.org/10.1046/j.1461-0248.2003.00483.x
https://doi.org/10.1046/j.1461-0248.2003.00483.x
https://doi.org/10.1038/ngeo101
https://doi.org/10.1139/f80-017
https://doi.org/10.1139/f80-017
https://doi.org/10.1139/f81-114
https://doi.org/10.1139/f81-114
https://doi.org/10.1111/j.1574-6968.1985.tb01143.x
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1073/pnas.74.12.5463
https://doi.org/10.1073/pnas.87.12.4576
https://doi.org/10.1073/pnas.87.12.4576
https://doi.org/10.2307/1313099
https://doi.org/10.2307/1313099
https://doi.org/10.1111/ele.12084
https://doi.org/10.1038/nrmicro1341
https://doi.org/10.1038/nrmicro2795
https://doi.org/10.1073/pnas.1016308108
https://doi.org/10.1128/MMBR.00051-12
https://doi.org/10.1128/AEM.72.1.713-722.2006
https://doi.org/10.1128/AEM.01809-07
https://doi.org/10.3354/ame040051
https://doi.org/10.3354/ame040051
https://doi.org/10.1128/AEM.69.9.5443-5452.2003
https://doi.org/10.1128/AEM.69.9.5443-5452.2003
https://doi.org/10.1127/1863-9135/2013/0465
https://doi.org/10.1023/A:1017598005228
https://doi.org/10.1023/A:1017598005228
https://doi.org/10.1046/j.1462-2920.2003.00396.x
https://doi.org/10.1128/AEM.06029-11
https://doi.org/10.1111/fwb.12398
https://doi.org/10.1111/fwb.12398
https://doi.org/10.1128/AEM.64.9.3422-3428.1998
https://doi.org/10.1128/AEM.64.9.3422-3428.1998
https://doi.org/10.1371/journal.pone.0081910
https://doi.org/10.1371/journal.pone.0081910
https://doi.org/10.1016/j.orggeochem.2010.08.004
https://doi.org/10.1007/s002489900089
https://doi.org/10.1007/s002489900089
https://doi.org/10.1073/pnas.1411723111
https://doi.org/10.1073/pnas.1411723111
https://doi.org/10.1128/aem.39.6.1212-1222.1980
https://doi.org/10.1128/aem.39.6.1212-1222.1980
https://www.MicrobiolSpectrum.asm.org


strains from the SAG culture collection. BMC Plant Biol 11:124. https://doi.org/
10.1186/1471-2229-11-124.

48. Francoeur SN, Biggs B. 2006. Short-term effects of elevated velocity and
sediment abrasion on benthic algal communities. Hydrobiologia 561:
59–69. https://doi.org/10.1007/s10750-005-1604-4.

49. Prieto DM, Devesa-Rey R, Rubinos DA, Diaz-Fierros F, Barral MT. 2016. Bio-
film formation on river sediments under different light intensities and nutrient
inputs: a flume mesocosm study. Environ Eng Sci 33:250–260. https://doi.org/
10.1089/ees.2015.0427.

50. Fanta SE, Hill WR, Smith TB, Roberts BJ. 2010. Applying the light: nutrient
hypothesis to stream periphyton. Freshw Biol 55:931–940. https://doi
.org/10.1111/j.1365-2427.2009.02309.x.

51. Mosher JJ, Kaplan LA, Podgorski DC, McKenna AM, Marshall AG. 2015.
Longitudinal shifts in dissolved organic matter chemogeography and
chemodiversity within headwater streams: a river continuum reprise. Bio-
geochemistry 124:371–385. https://doi.org/10.1007/s10533-015-0103-6.

52. Bourguet N, Goutx M, Ghiglione JF, Pujo-Pay M, Mevel G, Momzikoff A,
Mousseau L, Guigu C, Garcia N, Raimbault P, Pete R, Oriol L, Lefevre D.
2009. Lipid biomarkers and bacterial lipase activities as indicators of or-
ganic matter and bacterial dynamics in contrasted regimes at the
DYFAMED site, NW Mediterranean. Deep Sea Res Part II Top Stud Ocean-
ogr 56:1454–1469. https://doi.org/10.1016/j.dsr2.2008.11.034.

53. Wagner K, Besemer K, Burns NR, Battin TJ, Bengtsson MM. 2015. Light avail-
ability affects stream biofilm bacterial community composition and function,
but not diversity. Environ Microbiol 17:5036–5047. https://doi.org/10.1111/
1462-2920.12913.

54. Rier ST, Shirvinski JM, Kinek KC. 2014. In situ light and phosphorus manip-
ulations reveal potential role of biofilm algae in enhancing enzyme-mediated
decomposition of organic matter in streams. Freshw Biol 59:1039–1051. https://
doi.org/10.1111/fwb.12327.

55. Gibbons SM, Jones E, Bearquiver A, Blackwolf F, Roundstone W, Scott N,
Hooker J, Madsen R, Coleman ML, Gilbert JA. 2014. Human and environ-
mental impacts on river sediment microbial communities. PLoS One 9:
e97435. https://doi.org/10.1371/journal.pone.0097435.

56. Lindström ES, Langenheder S. 2012. Local and regional factors influenc-
ing bacterial community assembly. Environ Microbiol Rep 4:1–9. https://
doi.org/10.1111/j.1758-2229.2011.00257.x.

57. Wang J, Shen J, Wu Y, Tu C, Soininen J, Stegen JC, He J, Liu X, Zhang L,
Zhang E. 2013. Phylogenetic beta diversity in bacterial assemblages
across ecosystems: deterministic versus stochastic processes. ISME J 7:
1310–1321. https://doi.org/10.1038/ismej.2013.30.

58. Kan J, Wang K, Chen F. 2006. Temporal variation and detection limit of an
estuarine bacterioplankton community analyzed by denaturing gradient
gel electrophoresis (DGGE). Aquat Microb Ecol 42:7–18. https://doi.org/10
.3354/ame042007.

59. Muyzer G, De Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial
populations by denaturing gradient gel-electrophoresis analysis of polymer-
ase chain reaction-amplified genes coding for 16S ribosomal RNA. Appl Envi-
ron Microbiol 59:695–700. https://doi.org/10.1128/aem.59.3.695-700.1993.

60. Kan J, Crump BS, Wang K, Chen F. 2006b. Bacterioplankton community in
Chesapeake Bay: predictable or random assemblages. Limnol Oceanogr
51:2157–2169. https://doi.org/10.4319/lo.2006.51.5.2157.

61. Wang H, Zhang C, Chen F, Kan J. 2020. Spatial and temporal variations of
bacterioplankton in the Chesapeake Bay: a re-examination with high-
throughput sequencing analysis. Limnol Oceanogr 65:3032–3045. https://
doi.org/10.1002/lno.11572.

62. Battin TJ, Besemer K, Bengtsson MM, Romani AM, Packmann AI. 2016. The
ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol 14:
251–263. https://doi.org/10.1038/nrmicro.2016.15.

63. Pringle CM, Naiman RJ, Bretschko G, Karr JR, Oswood MW, Webster JR,
Welcomme RL, Winterbourn MJ. 1988. Patch dynamics in lotic systems—the
stream as a mosaic. J North Am Benthol Soc 7:503–524. https://doi.org/10
.2307/1467303.

64. Hedges JI. 1992. Global biogeochemical cycles: progress and problems.
Mar Chem 39:67–93. https://doi.org/10.1016/0304-4203(92)90096-S.

65. Wang YP, Houlton BZ, Field CB. 2007. A model of biogeochemical cycles
of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixa-
tion and phosphatase production. Global Biogeochem Cycles 21. https://
doi.org/10.1029/2006GB002797.

66. Schallenberg M, Kalff J. 1993. The ecology of sediment bacteria in lakes
and comparisons with other aquatic ecosystems. Ecology 74:919–934.
https://doi.org/10.2307/1940816.

67. Steenwerth KL, Jackson LE, Calderón FJ, Stromberg MR, Scow KM. 2002.
Soil microbial community composition and land use history in cultivated

and grassland ecosystems of coastal California. Soil Biol Biochem 34:
1599–1611. https://doi.org/10.1016/S0038-0717(02)00144-X.

68. Fierer N, Morse J, Berthrong S, Bernhardt ES, Jackson RB. 2007. Environ-
mental controls on the landscape-scale biogeography of stream bacterial
communities. Ecology 88:2162–2173. https://doi.org/10.1890/06-1746.1.

69. Nemergut DR, Cleveland CC, Wieder WR, Washenberger CL, Townsend
AR. 2010. Plot-scale manipulations of organic matter inputs to soils corre-
late with shifts in microbial community composition in a lowland tropical
rain forest. Soil Biol Biochem 42:2153–2160. https://doi.org/10.1016/j
.soilbio.2010.08.011.

70. Findlay S, Tank J, Dye S, Valett HM, Mulholland PJ, McDowell WH,
Johnson SL, Hamilton SK, Edmonds J, Dodds WK, Bowden WB. 2002. A
cross-system comparison of bacterial and fungal biomass in detritus
pools of headwater streams. Microb Ecol 43:55–66. https://doi.org/10
.1007/s00248-001-1020-x.

71. Yoshimura C, Gessner MO, Tockner K, Furumai H. 2008. Chemical proper-
ties, microbial respiration, and decomposition of coarse and fine particu-
late organic matter. J North Am Benthol Soc 27:664–673. https://doi.org/
10.1899/07-106.1.

72. Hedin L. 1990. Factors controlling sediment community respiration in wood-
land stream ecosystems. Oikos 57:94–105. https://doi.org/10.2307/3565742.

73. Treves DS, Xia B, Zhou J, Tiedje JM. 2003. A two-species test of the hy-
pothesis that spatial isolation influences microbial diversity in soil. Microb
Ecol 45:20–28. https://doi.org/10.1007/s00248-002-1044-x.

74. Nogaro G, Datry T, Mermillod- Blondin F, Descloux S, Montuelle B. 2010.
Influence of streambed sediment clogging on microbial processes in the
hyporheic zone. Freshw Biol 55:1288–1302. https://doi.org/10.1111/j.1365-2427
.2009.02352.x.

75. Nogaro G, Datry T, Mermillod- Blondin F, Foulquier A, Montuelle B. 2013.
Influence of hyporheic zone characteristics on the structure and activity
of microbial assemblages. Freshw Biol 58:2567–2583. https://doi.org/10
.1111/fwb.12233.

76. Mayer LM, Rossi PM. 1982. Specific surface areas in coastal sediments:
relationships with other textural factors. Mar Geol 45:241–252. https://doi
.org/10.1016/0025-3227(82)90112-8.

77. Hargrave BT. 1972. Aerobic decomposition of sediment and detritus as a
function of particle surface area and organic content. Limnol Oceanogr
17:583–597. https://doi.org/10.4319/lo.1972.17.4.0583.

78. Fenchel T, Blackburn TH. 1979. Bacteria and mineral cycling. Academic
Press, London, UK.

79. Woessner WW. 2000. Stream and fluvial plain groundwater interactions:
rescaling hydrogeologic thought. Ground Water 38:423–429. https://doi
.org/10.1111/j.1745-6584.2000.tb00228.x.

80. Vervier P, Gibert J, Marmonier P, Dole-Olivier MJ. 1992. A perspective on
the permeability of the surface freshwater-groundwater ecotone. J North
Am Benthol Soc 11:93–102. https://doi.org/10.2307/1467886.

81. Kaplan LA, Newbold JD. 2000. Surface and subsurface dissolved organic
carbon, in streams and ground waters, p 237– 258. In Jones JA, Mulholland PJ
(ed), Streams and groundwaters. Academic Press, San Diego, CA.

82. Wilcox HS, Wallace JB, Meyer JL, Benstead JP. 2005. Effects of labile car-
bon addition on a headwater stream food web. Limnol Oceanogr 50:
1300–1312. https://doi.org/10.4319/lo.2005.50.4.1300.

83. Battin TJ, Kaplan LA, Newbold JD, Hansen CME. 2003. Contributions of mi-
crobial biofilms to ecosystem processes in stream mesocosms. Nature
426:439–442. https://doi.org/10.1038/nature02152.

84. Lewe N, Hermans S, Lear G, Kelly LT, Thomson-Laing G, Weisbrod B, Wood
SA, Keyzers RA, Deslippe JR. 2021. Phospholipid fatty acid (PLFA) analysis
as a tool to estimate absolute abundances from compositional 16S rRNA
bacterial metabarcoding data. J Microbiol Methods 188:106271. https://
doi.org/10.1016/j.mimet.2021.106271.

85. Newbold JD, Bott TL, Kaplan LA, Sweeney BW, Vannote RL. 1997. Organic
matter dynamics in White Clay Creek, Pennsylvania, USA. J North Am Ben-
thol Soc 16:46–50. https://doi.org/10.2307/1468231.

86. Wiegner TN, Kaplan LA, Newbold JD, Ostrom PH. 2005. Contribution of
dissolved organic C to stream metabolism: a mesocosm study using 13C-
enriched tree-tissue leachate. J North Am Benthol Soc 24:48–67. https://
doi.org/10.1899/0887-3593(2005)024,0048:CODOCT.2.0.CO;2.

87. Lawrence GB, Burns DA, Baldigo BP, Murdoch PS, Lovett GM. 2001. Con-
trols of stream chemistry and fish populations in the Neversink Water-
shed, Catskill Mountains, New York. USGS Report WRIR 00-4040, Troy, NY.

88. Lovett GM, Weathers KC, Arthur MA. 2002. Control of nitrogen loss from
forested watersheds by soil carbon:nitrogen ratio and tree species composi-
tion. Ecosystem 5:712–718. https://doi.org/10.1007/s10021-002-0153-1.

Akinwole et al.

Volume 9 Issue 3 e01972-21 MicrobiolSpectrum.asm.org 16

https://doi.org/10.1186/1471-2229-11-124
https://doi.org/10.1186/1471-2229-11-124
https://doi.org/10.1007/s10750-005-1604-4
https://doi.org/10.1089/ees.2015.0427
https://doi.org/10.1089/ees.2015.0427
https://doi.org/10.1111/j.1365-2427.2009.02309.x
https://doi.org/10.1111/j.1365-2427.2009.02309.x
https://doi.org/10.1007/s10533-015-0103-6
https://doi.org/10.1016/j.dsr2.2008.11.034
https://doi.org/10.1111/1462-2920.12913
https://doi.org/10.1111/1462-2920.12913
https://doi.org/10.1111/fwb.12327
https://doi.org/10.1111/fwb.12327
https://doi.org/10.1371/journal.pone.0097435
https://doi.org/10.1111/j.1758-2229.2011.00257.x
https://doi.org/10.1111/j.1758-2229.2011.00257.x
https://doi.org/10.1038/ismej.2013.30
https://doi.org/10.3354/ame042007
https://doi.org/10.3354/ame042007
https://doi.org/10.1128/aem.59.3.695-700.1993
https://doi.org/10.4319/lo.2006.51.5.2157
https://doi.org/10.1002/lno.11572
https://doi.org/10.1002/lno.11572
https://doi.org/10.1038/nrmicro.2016.15
https://doi.org/10.2307/1467303
https://doi.org/10.2307/1467303
https://doi.org/10.1016/0304-4203(92)90096-S
https://doi.org/10.1029/2006GB002797
https://doi.org/10.1029/2006GB002797
https://doi.org/10.2307/1940816
https://doi.org/10.1016/S0038-0717(02)00144-X
https://doi.org/10.1890/06-1746.1
https://doi.org/10.1016/j.soilbio.2010.08.011
https://doi.org/10.1016/j.soilbio.2010.08.011
https://doi.org/10.1007/s00248-001-1020-x
https://doi.org/10.1007/s00248-001-1020-x
https://doi.org/10.1899/07-106.1
https://doi.org/10.1899/07-106.1
https://doi.org/10.2307/3565742
https://doi.org/10.1007/s00248-002-1044-x
https://doi.org/10.1111/j.1365-2427.2009.02352.x
https://doi.org/10.1111/j.1365-2427.2009.02352.x
https://doi.org/10.1111/fwb.12233
https://doi.org/10.1111/fwb.12233
https://doi.org/10.1016/0025-3227(82)90112-8
https://doi.org/10.1016/0025-3227(82)90112-8
https://doi.org/10.4319/lo.1972.17.4.0583
https://doi.org/10.1111/j.1745-6584.2000.tb00228.x
https://doi.org/10.1111/j.1745-6584.2000.tb00228.x
https://doi.org/10.2307/1467886
https://doi.org/10.4319/lo.2005.50.4.1300
https://doi.org/10.1038/nature02152
https://doi.org/10.1016/j.mimet.2021.106271
https://doi.org/10.1016/j.mimet.2021.106271
https://doi.org/10.2307/1468231
https://doi.org/10.1899/0887-3593(2005)024&lt;0048:CODOCT&gt;2.0.CO;2
https://doi.org/10.1899/0887-3593(2005)024&lt;0048:CODOCT&gt;2.0.CO;2
https://doi.org/10.1007/s10021-002-0153-1
https://www.MicrobiolSpectrum.asm.org


89. Strahler AN. 1957. Quantitative analysis of watershed geomorphology.
Eos 38:913–920. https://doi.org/10.1029/TR038i006p00913.

90. Horton RE. 1945. Erosional development of streams and their drainage basins:
hydro-physical approach to quantitative morphology. Geol Soc Am Bull 56:
275–370. https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2.

91. Findlay RH, King GM, Watling L.1989. Efficacy of phospholipid analysis in deter-
miningmicrobial biomass in sediments. Appl EnvironMicrobiol 54: 2888–2893.

92. Findlay RH, Dobbs FC. 1993. Quantitative description of microbial commun-
ities using lipid analysis, p 271–284. In Kemp PF, Sherr BF, Sherr EB, Cole JJ

(ed), Handbook of methods in aquatic microbial ecology, 1st ed. CRC Press,
Boca Raton, FL.

93. Smoot JC, Findlay RH. 2001. Spatial and seasonal variation in a reservoir
sedimentary microbial community as determined by phospholipid analy-
sis. Microb Ecol 42:350–358.

94. Mallows CL. 1973. Some comments on Cp. Technometrics 15:661–675.
https://doi.org/10.2307/1267380.

95. Mitchell RJ. 1992. Testing evolutionary and ecological hypotheses using
path analysis and structural equation modeling. Funct Ecol 6:123–129.

Spatial Variability in Microbial Community Structure

Volume 9 Issue 3 e01972-21 MicrobiolSpectrum.asm.org 17

https://doi.org/10.1029/TR038i006p00913
https://doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
https://doi.org/10.2307/1267380
https://www.MicrobiolSpectrum.asm.org

	RESULTS
	Microbial community structure.
	Bacterial community structure.
	Total microbial biomass.
	Water chemistry and sediment organic content.

	DISCUSSION
	Spatial variability of microbial community structure and the role of phototrophic microeukaryotes.
	Bacterial community structure.
	Microbial biomass and environmental variables.

	CONCLUSION
	MATERIALS AND METHODS
	Study sites.
	Experimental design.
	Sampling procedures.
	Sediment surface area, particle size, and elemental analyses.
	Phospholipid analysis.
	Bacterial community structure analyses by PCR-DGGE.
	Statistical analyses.

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

