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Simple Summary: Breast cancer (BC) is the most common invasive tumor in women and the second
leading cause of cancer-related death. Therefore, identification of druggable targets to improve
current therapies and overcome resistance is a major goal. In this work, we performed an in silico
analysis of transcriptomic datasets in breast cancer, and focused on those involved in DNA damage,
as were clearly upregulated using gene set enrichment analyses (GSEA), particular the following
pathways: ATM/ATR, BARD1 and Fanconi Anemia. BHLHE40, RFWD2, BRIP1, PRKDC, NBN, RNF8,
FANCD2, RAD1, BLM, DCLRE1C, UBE2T, CSTF1, MCM7, RFC4, YWHAB, YWHAZ, CDC6, CCNE1,
and FANCI genes were amplified/overexpressed in BC, and correlated with detrimental prognosis.
Finally, we selected the best transcriptomic signature of genes within this function that associated
with clinical outcome to identify functional genomic correlates of outcome.

Abstract: Among the described druggable vulnerabilities, acting on the DNA repair mechanism
has gained momentum, with the approval of PARP inhibitors in several indications, including
breast cancer. However, beyond the mere presence of BRCA1/BRCA2 mutations, the identification
of additional biomarkers that would help to select tumors with an extreme dependence on DNA
repair machinery would help to stratify therapeutic decisions. Gene set enrichment analyses (GSEA)
using public datasets evaluating expression values between normal breast tissue and breast cancer
identified a set of upregulated genes. Genes included in different pathways, such as ATM/ATR,
BARD1, and Fanconi Anemia, which are involved in the DNA damage response, were selected and
confirmed using molecular alterations data contained at cBioportal. Nineteen genes from these
gene sets were identified to be amplified and upregulated in breast cancer but only five of them
NBN, PRKDC, RFWD2, UBE2T, and YWHAZ meet criteria in all breast cancer molecular subtypes.
Correlation of the selected genes with prognosis (relapse free survival, RFS, and overall survival,
OS) was performed using the KM Plotter Online Tool. In last place, we selected the best signature
of genes within this process whose upregulation can be indicative of a more aggressive phenotype
and linked with worse outcome. In summary, we identify genomic correlates within DNA damage
pathway associated with prognosis in breast cancer.

Keywords: breast cancer; DNA damage response (DDR); ATR; Fanconi Anemia; ATM; BARD1;
biomarkers; genomic signatures

1. Introduction

Cancer is characterized by a wide range of genomic alterations, with some of them
involved in the oncogenic process [1]. The heterogeneous nature of the disease is linked
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with resistance to different therapeutics, as not all tumor cells express targetable vulnera-
bilities, and some develop mechanisms to escape therapeutic induction of cell death [1–3].
Among the different deregulated functions described as involved in cancer, regulation of
DNA repair mechanisms has been reported as one with great potential for pharmacological
intervention [4,5]. Genes involved in the process of DNA repair have been described as
functionally dysregulated in several tumors, contributing substantially to the high grade
of genomic instability observed in some cancers [6,7]. Germline mutations at BRCA1 and
BRCA2 have been described in several solid tumors, such as breast, prostate or pancreatic
cancer; and agents acting on the protein PARP have shown activity in this specific popu-
lation [6–9]. Tumors that lack functional BRCA proteins have impaired the homologous
recombination (HR) pathway and use alternative mechanisms for DNA repair, such as the
non-homologous end joining (NHEJ) pathway [6]. Targeting components of the NHEJ (e.g.,
the protein PARP) induce a synthetic lethality approach in cells with germline inactivating
mutations at BRCA1 and BRCA2 [6].

Breast cancer is a heterogeneous disease, not only by its transcriptomic profile with
different breast cancer subtypes already described, but at a genomic level, where different
modifications, including mutations or amplifications at relevant genes, can classify tumors
with different clinical outcome, and potential for therapeutic intervention [1,10]. Beyond
the classical breast cancer subtypes based on transcriptomic data, some of these genomic
alterations are expressed in different subgroups in an agnostic manner, such as fusions
at NTRK gene or BRCA1/2 mutations, among others [11]. On the other hand, some
subtypes share some phenotypic characteristics. For instance, those tumors that lack the
expression of the estrogen and progesterone receptors (ER and PR respectively) and the
HER2 membrane receptor, and are therefore termed triple negative, have more genomic
instability, respond better to platinum agents, and harbor an augmented presence of
activated immune cells [11,12].

Targeting DNA damage response (DDR) has shown efficacy in tumors where these
pathways are dysregulated, and this can be recognized by the presence of mutations in
some genes [13,14]. In addition to the presence of germline mutations at BRCA1 and
BRCA2, recent studies have shown that mutations at somatic BRCA1, BRCA2, or germline
PALB2, can also predict response to the PARP inhibitor olaparib in breast cancer [15], open-
ing the door for the evaluation of other genes of the homologous recombinant pathway as
potential biomarkers. In addition, these tumors also respond better to agents that induce
DNA damage like platinum compounds, observation already included in therapeutic guide-
lines [16]. However, beyond the presence of the mutations mentioned before, the detection
of additional biomarkers that would aid in the recognition of tumors with an extreme
dependence on DNA damage would help to select and stratify therapeutic decisions.

The use of genomic biomarkers to optimize treatment based on a risk assessment of
relapse has reached the clinical setting, as is the case with the use of genomic panels to
stratify chemotherapy in early stage breast cancer [17]. A similar approach, but based on a
genomic vulnerability and a potential family of targeted agents against that vulnerability,
has not been exploited yet, but undoubtedly would improve patient care. For the time
being, new compounds have only been developed based on the single expression of the
target without analyzing the global biological dysfunction to which that target is acting.

In our article, we aimed to explore genomic correlates that were associated with
DNA damage response in all breast cancer subtypes. Through the evaluation of different
genomic datasets and data mining, we identified a transcriptomic signature that selected
patients with a particular detrimental outcome. Of note, several of the reported genes were
amplified in breast cancer and could therefore be easily analyzed. Finally, the selection of
specific signatures was able to differentially discriminate tumors with poor prognosis.
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2. Materials and Methods
2.1. Whole Genome Transcription Profiling and Gene Set Enrichment Analyses

mRNA level data from normal breast tissues and basal-like tissues were extracted
from a public dataset (GEO DataSet accession numbers: GSE21422, GSE26910, GSE3744,
GSE65194, and GSE42568). Affymetrix CEL files were downloaded and analyzed with
Affymetrix Expression Console. We further performed gene set enrichment analysis (GSEA)
to identify transcription related gene sets that varied between normal and basal-like
tissues (Date of analysis: May of 2018). 195 Gene sets were collected from Pathway
Interaction Database (PID) [18], via the NDEx database (www.ndexbio.org) [19]; the data
were analyzed by GSEA with parameter set to 1.000 gene-set permutations. The enrichment
score corresponds to a weighted Kolmogorov–Smirnov-like statistic and reflects the extent
to which the gene set is overrepresented at the extreme (i.e. top or bottom) of the entire
ranked list. If the enrichment score is positive (e.g., the gene set is overrepresented by
top ranked genes), then the gene set is considered upregulated while it is considered
downregulated if the score is negative. The networks were construct by Cytoscape software
(version 3.4.0) [20]. Affymetrix CHP files were analyzed with Affymetrix Transcriptome
Analysis Console 3. Only genes with a maximum of 0.05 p-value differential expression
between the control and tumor were selected.

2.2. Evaluation of Molecular Alterations

We used data contained at cBioportal (www.cbioportal.org) (accessed in October
2020) [21,22], Breast Invasive Carcinoma TCGA (n = 816) to explore the role of amplifica-
tions and mutations in the identified genes.

2.3. Construction and Analysis of PPI Networks and Functional Annotation

We used the online tool STRING (http://www.string-db.org, accessed in October
2020) [23] to construct interactome maps of both amplificated and overexpressed genes in
all subtypes of breast cancer (STRING v10 data accessed: September 2020). The indicated
network properties include: nodes: number of proteins in the network; edges: number of
interactions; node degree: average number of interactions; clustering coefficient: indicates
the tendency of the network to form clusters. The closer the local clustering coefficient is to
1, the more likely it is for the network to form clusters; PPI enrichment p value: indicates
the statistical significance. Proteins are considered hubs when they have more interactions
than the average (nº interactions > node degree).

2.4. Expression Analyses

The analysis comparing the expression level of genes between normal breast samples
(n = 291) and breast invasive carcinoma samples (n = 1085) including the luminal A (n = 415),
luminal B (n = 194), HER2+ ( n = 66), and basal-like (n = 135) subgroups, was performed
using GTEx and TCGA data in GEPIA2 [24].

2.5. Outcome Analyses

The KM Plotter Online Tool (http://www.kmplot.com, accessed in October 2020) [25]
was used to evaluate the relationship between the expression of different genes and patient
clinical outcomes in different breast cancer subtypes. This open access database allows us
to investigate overall survival (OS) and relapse-free survival (RFS) in basal-like, luminal
A, luminal B, HER2+, and basal-like breast cancers. Breast cancer subtypes were defined
as follow: basal-like as ESR1-/HER2-, luminal A as ESR1+/HER2-/MKI67 low, luminal B
as ESR1+/HER2-/MKI67 high, and ESR1+/HER2+, HER2+ as ESR1-/HER2+, and finally
triple negative as ER-/PR-/HER2-.

2.6. Data Availability

The datasets, accessed in May 2018 and analyzed in the current study, are available in
the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=,

www.ndexbio.org
www.cbioportal.org
http://www.string-db.org
http://www.kmplot.com
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
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accessed in October 2020) webpage with the GEO accession number: GSE21422, GSE26910,
GSE3744, GSE65194, and GSE42568. The breast cancer transcriptome profile generated is
available by request.

3. Results
3.1. Transcriptomic Mapping and Gene Set Enrichment Analyses Identify DNA Repair Pathways
as Upregulated in Breast Cancer

To explore gene expression alterations in breast cancer, we performed a gene set
enrichment analysis comparing normal breast tissue with breast cancer using publicly
available datasets (GSE21422, GSE26910, GSE3744, GSE65194, and GSE42568). As can
be seen in Figure 1A, the functional transcriptomic map generated from this comparison
showed all gene sets represented with circles. In this picture, the circle size correlates
with the number of genes, and the color intensity with the functional enrichment by its
statistical significance. Among them, we focused on those related with DDR pathways,
including those classified by gene ontology as ATR, Fanconi Anemia, ATM, and BARD1
pathways, where a strong enrichment score (ES) and a low false discovery rate (FDR) was
observed (ATR pathway; NES: 1,93; FDR: 0.002; Fanconi Anemia pathway; NES: 1.869; FDR:
0.004; BARD1 pathway; NES: 1.78; FDR: 0.013 ATM pathway; NES: 1.746; FDR: 0.015 )
(Figure 1B). Then, the expression of these four DNA damage gene sets was analyzed in
the four described breast cancer subtypes, namely basal-like, HER2 enriched, luminal A
and luminal B, as defined in material and methods. As seen in Figure 1C, the basal-like
subtype, followed by the HER2+ group, displayed the higher overexpression of genes
within each signature. A reduced expression of genes included in the four signatures was
clearly observed in luminal tumors, particularly in the luminal A subtype (Figure 1C).
These data demonstrate that dysregulation of DDR pathways is more present in basal-like
and HER2 positive breast tumors compared with luminal subtypes.

3.2. Analysis of Breast Cancer Subtypes Display Different Expression of Transcripts and
Amplification of Genes

Analyses of raw transcriptomic data confirmed the upregulation of most of the genes
involved in the gene set, especially in basal-like tumors and in the HER2-enriched subgroup
(Figure 2A). Supplementary Figure S1A provides the full list of genes and their fold change
(FC) compared with normal breast tissue; Supplementary Figure S1B displays the full
list and the percentage of amplified genes. We identified a substantial number of genes
that were amplified in breast cancer patients, being most of them included in the basal-
like (69.5%) and HER2 (63.2%) breast cancer subtypes (Figure 2B). To get insights into
those that were upregulated and amplified, we explored the correlation between both
parameters in each specific breast cancer group (Figure 2C). To check for clinical relevance,
we selected only those that were amplified in more than 5% of cases and overexpressed
more than 1.5 times in tumors compared with normal breast. As shown in Figure 2C, only
19 genes met these criteria, and five of them were common to all breast cancer subtypes,
including NBN, PRKDC, RFWD2, UBE2T, and YWHAZ. It is worth mentioning that, most
of the highlighted genes above with more than 15% frequency of amplification appeared
only in the basal-like and/or HER2+ breast cancer subtypes, including YWHAZ, BRIP1,
CCNE1, CDC6, DCLRE1C, NBN, RFWD2, and CSTF1. A small number of amplified genes
was observed in luminal tumors, particularly in the luminal A subtype, where the most
frequently observed genes were YWHAZ and NBN, which reached 12% (Figure 2C).



Cancers 2021, 13, 2117 5 of 14

Cancers 2021, 13, x 5 of 15 
 

 

genes was observed in luminal tumors, particularly in the luminal A subtype, where the 
most frequently observed genes were YWHAZ and NBN, which reached 12% (Figure 2C). 

 
Figure 1. Upregulation of DNA damage pathways in breast cancer. (A) Gene set enrichment network comparing normal 
versus breast tumoral tissue. All gene sets from the Pathway Interaction Database are included, those overexpressed in 
the tumoral phenotype, are displayed in shades of red, and those overexpressed in the normal phenotype are displayed 
in shades of blue; while the size of the circle indicates the number of genes within the gene set. (B) ES Score profile and 
locations of DNA Damage pathways “ATR pathway”, “Fanconi Anemia pathway”, “BARD1 pathway,” and “ATM path-
way” members on the rank ordered list. Positive NES defines tumoral phenotype enrichment. (C) Blue–red diagram of all 
the genes that composed the DNA Damage pathways showing overexpressed genes in shades red, and downregulated 
genes in shades of blue. 

Figure 1. Upregulation of DNA damage pathways in breast cancer. (A) Gene set enrichment network comparing normal
versus breast tumoral tissue. All gene sets from the Pathway Interaction Database are included, those overexpressed in
the tumoral phenotype, are displayed in shades of red, and those overexpressed in the normal phenotype are displayed
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Figure 2. Amplification and expression change of DNA damage response genes in different breast cancer subtypes. (A)
Bar graph showing fold change expression or (B) the percentage of amplified cases of genes involved in the ATR, Fanconi
Anemia, ATM, and BARD1 pathways in each breast cancer subtype (red, basal-like; yellow, HER2+; blue, luminal B and
green, luminal A). The dot line represents the threshold we mark for each alteration. (C) Dot plot of DNA damage response
genes showing fold change expression in X-axes and percentage of amplified cases in Y-axes for each molecular subtype.
Those genes that exceed both thresholds are highlighted following the same color criteria than in A.
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3.3. Interacting DNA Damage Network Associates with Detrimental Prognosis

Taking in consideration that the identified gene sets share an elevated number of tran-
scripts with overlapping biological functions, we explored the protein–protein interaction
network of their components. The proteins coding by these genes showed a high protein-
protein interaction coefficient (Cluster coefficient 0.7, PPI enrichment p value <1.0 × 10−16),
confirming that most of them participate in redundant functions (Figure 3A).
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To evaluate the role of the combination of these genes in relation to clinical outcome,
we took advantage of the online tool KM Plotter, which associates gene expression levels
with patient prognosis. The analysis of individual genes showed that high expression
predicted detrimental relapse free survival (RFS) (Figure 3B) and overall survival (OS)
(Figure 3D) in the whole breast cancer population, and in most of the breast cancer subtypes.
Even considering that some individual genes did not predict for outcome (Figure 3B,D), we
decided to use the 19 genes together as a signature, due to the high PPI observed and their
significant expression in breast cancer (Supplementary Figure S2A), to explore their poten-
tial impact on clinical survival. The combination showed a stronger association with poor
prognosis for RFS (HR: 1.64, CI 1.4–1.93, log rank p = 9.6 × 10−10) (Figure 3C), and OS (HR:
1.81, CI 1.32–2.48, log rank p = 0.00018) (Figure 3E) compared with each gene individually.
We confirm these results using RNA seq data from TCGA in Supplementary Figure S2B for
RFS (HR: 1.77, CI 1.13–2.77, log rank p = 0.012) and Supplementary Figure S2C for OS (HR:
1.47, CI 106–2.04, log rank p = 0.022). When evaluating the signature in different breast
cancer subtypes, we observed that high expression of the 19-gene signature, observed in all
molecular subtypes (Supplementary Figure S2D), correlated with detrimental RFS (luminal
A, HR: 1.56, CI 1.22–1.99; log rank p = 0.00036; luminal B, HR: 1.43, CI 1.06–1.95, log rank
p = 0.02; HER2+, HR: 1.71, CI 1.08–2.7, log rank p = 0.02), with more effect in the basal-like
subgroup: basal, HR: 2.31, CI 1.65–3.22, log rank p = 4.2 × 10−7 (Figure 4A). A similar trend
was observed for OS in all breast cancer subtypes (luminal A, HR: 1.74, CI 1.03–2.93; log
rank p = 0.035; HER2+, HR: 2.57, CI 1.15–5.73, log rank p = 0.017; basal, HR: 2, CI 1.04–3.83,
log rank p = 0.034 luminal B, HR: 3.45, CI 1.42–8.36, log rank p = 0.0036, (Figure 4B).
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Figure 4. Association between gene expression and a worse survival across intrinsic subtypes of breast cancer. (A)
Association with RFS and (B) OS with the expression of 19 selected genes (BHLHE40, RFWD2, BRIP1, PRKDC, NBN, RNF8,
FANCD2, RAD1, BLM, DCLRE1C, UBE2T, CSTF1, MCM7, RFC4, YWHAB, YWHAZ, CDC6, CCNE1, and FANCI) included in
the response to DNA damage in all breast cancer subtypes.

3.4. Amplified Genes Correlated with Poor Prognosis

Next, we decided to reduce the list of the identified genes by selecting only the
5 common genes, NBN, PRKDC, RFWD2, UBE2T, and YWHAZ, that met our initial criteria
for clinical relevance (amplified in more than 5% of cases and with a transcriptomic FC
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expression of more than 1.5 in all breast cancer subtypes) (Supplementary Figure S3A). The
higher expression of this 5-gene signature in breast cancer was significant
(Supplementary Figure S3B). The combined analysis of these genes showed a strong associ-
ation with poor RFS (HR:1.65 CI 1.41–1.93, log rank p = 1.6 × 10−10)
(Supplementary Figure S3C) and OS (HR:2 CI 1.46–2.74, log rank p = 1.2 × 10−5)
(Supplementary Figure S3D) in the whole breast cancer group. The worst outcome of
patients with higher expression of these 5 genes was confirmed using a different data set
in Supplementary Figure S3E for RFS (HR:1.77 CI 1.15–2.73, log rank p = 0.0091) and Sup-
plementary Figure S3F for OS (HR:1.56 CI 1.13–2.15, log rank p = 0.0068). Supplementary
Figure S3G describes the function of each gene.

For each specific breast cancer subtype, we observed that this signature was signif-
icantly overexpressed compared with normal tissue (Supplementary Figure S3H), and
was associated with detrimental RFS in all subtypes (Figure 5A) (luminal A, HR: 1.57,
CI 1.23–2.01; log rank p = 3 × 10−4; luminal B, HR:3.78, CI 1.64–8.69, log rank p = 0.00079;
HER2+, HR: 3.2, CI 1.45–7.08, log rank p = 0.0024; basal, HR: 1.78, CI 1.27–2.49, log rank
p = 0.00063). For OS, findings in the similar direction was observed (Figure 5B): luminal
A, HR: 1.81, CI 1.09–3.02, log rank p = 0.021; luminal B, HR:3.78, CI 1.64–8.69, log rank
p = 0.00079; HER2+, HR: 3.2, CI 1.45–7.08, log rank p = 0.0024; basal, HR: 2.18, CI 1.14–4.18,
log rank p = 0.016.
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Using a permutational analysis, we selected only those genes that stronger predicted
clinical outcome in each subtype. For the basal-like subtype, CSTF1, RAD1, and YWHAB
correlated with a detrimental OS (HR:3.61, CI 1.79–7.28, log rank p = 0.00013) and RFS
(HR:1.68, CI 1.21–2.34, log rank p = 0.0019) (Figure 6A). In the case of HER2+, the over-
expression of FANCD2, MCM7, YWHAB, and BHLHE40, provided an incremented risk
of death (HR:3.92, CI 1.73–8.89, log rank p = 0.00042) and relapse (HR:2,11, CI 1.33–3.36,
log rank p = 0.0012) (Figure 6B). Similar findings were observed in luminal B tumors with
BRIP1, CDC6, CSTF1, NBN, PRKDC, RFC4, RFWD2, UBE2T, YWHAB, and YWHAZ (OS,
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HR:4.76, CI 1.96–11.56, log rank p = 0.00015; RFS, HR:1.64, CI 1.18–2.29, log rank p = 0.0032)
(Figure 6C). Finally, the increase in expression of the genes CCNE1, FANCI, RFC4, CDC6,
and YWHAZ associated with poor prognosis in luminal A breast cancer (OS, HR:2.54, CI
1.69–3.82, log rank p = 3.6 × 10−6; RFS, HR:1.84, CI 1.53–2.22, log rank p = 6.5 × 10−11)
(Figure 6D).
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Figure 6. Best signature of DNA damage response genes to indicate poor survival in each breast cancer subtype. (A)
Association with OS and RFS of gene sets in basal-like (CSTF1, RAD1, and YWHAB), (B) HER2+ (FANCD2, MCM7, YWHAB,
and BHLHE40), (C) luminal B (BRIP1, CDC6, CSTF1, NBN, PRKDC, RFC4, RFWD2, UBE2T, YWHAB, and YWHAZ), and (D)
luminal A (CCNE1, FANCI, RFC4, CDC6, and YWHAZ).

4. Discussion

Identification of genomic dysregulated functions that predict prognosis and therefore
can help to stratify patient risk to optimize therapeutic interventions, is a main goal in
cancer research. In this context, genomic and transcriptomic programs differ among the
different breast cancer subtypes and can constitute opportunities for biomarker identifica-
tion, particularly when they are related to a specific biological function. This has been the
case for the development of RNA-based panels that can stratify recurrence risk in early
stage breast cancer patients [17].

In our work, transcriptomic studies revealed that functions involved in DNA damage
such as those classified as ATM, ATR, Fanconi Anemia, and BARD1 pathways are clearly
dysregulated in breast tumors, particularly in the basal-like and HER2 subtype. The
transcripts included within these gene sets were upregulated and correlated with those
with gene amplification. These data showed that most of the amplified genes were included
within the basal-like and HER2-enriched subtype. Some genes were commonly shared
between subtypes like NBN, PRKDC, RFWD2, UBE2T, and YWHAZ (Supplementary Figure
S3A) while others were specific of a subgroup, like BLM, CCNE1, DCLRE1C, FANCD2,
FANCI, MCM7, RAD1, RFC4, and RNF8 for the basal-like and BHLHE40, BRIP1, CDC6, and
CSTF1 for the HER2 positive subgroup.

The protein-protein interacting network showed a strong correlation between proteins
coded by these genes, what demonstrates that although the gene sets were classified
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differently, most of the proteins have a common biological role and maintain some degree
of redundancy. This is relevant as we aim to identify key regulators that could be susceptible
for target inhibition. Moreover, the high clustering coefficient found in the PPI would
render it more susceptible to drugs targeting its nodes. With this in mind, we evaluated the
prognostic role of the nineteen genes included in this interacting network. The combined
analysis showed a detrimental effect of their altered expression with respect to RFS and OS
in the whole population and in different breast cancer subtypes, demonstrating the potential
oncogenic role of the network. A relevant observation was related to the worse prognosis
noted in those subtypes where less transcriptomic expression was observed, mainly in the
luminal A subgroup. This can be explained as the presence of these genes is less frequent
in this particular subtype, but once present they clearly denoted a tumorigenic behavior.

With the idea to translate these findings to the clinical setting, among the genes
included in the PPI, we selected only those that were amplified in all subtypes. As demon-
strated with the development of other prognostic biomarkers, RNA assessment using
paraffin embedded tissue is a flexible and rapid manner to evaluate sets of genes [17]. The
expression of these five selected genes correlated with detrimental prognosis in each breast
cancer subtype. Those genes included NBN, PRKDC, RFWD2, UBE2T, and YWHAZ. While
NBN is present in the four DNA damage pathways that are ATR, Fanconi Anemia, ATM,
and BARD1, YWHAZ is just present in ATR/ATM; PRKDC in BARD1; and UBE2T in Fanconi
Anemia pathway, respectively.

NBN is a component of the MRE11-RAD50-NBN (MRN complex) [26] which plays a
critical role in the cellular response to DNA damage, and the maintenance of chromosome
integrity, since it is involved in double strand break (DSB) repair, DNA recombination,
maintenance of telomere integrity, cell cycle checkpoint control and meiosis [27]. The role of
the MRN complex in tumorigenesis and cancer treatment has been already discussed [28].
PRKDC gene encodes for a 469 kDa protein called DNA-PK [29]. This protein forms part
of the phosphatidylinositol 3-kinase-related family of protein kinases and is abundantly
expressed in almost all mammalian cells [29]. It is involved in DNA non-homologous
end joining required for DSB repair and V(D)J recombination [30,31]. Since DNA-PK is
a critical component of the damage response machinery and taken in consideration that
a high number of cancer treatments produce irreparable DNA damage, its expression
correlates with decreased response to DNA damaging agents, and therefore therapeutic
resistance in multiple cancers [32–34], including breast [35,36]. RFWD2 and UBE2T are two
genes involved in ubiquitination. RFWD2 ubiquitination leads to subsequent proteasomal
degradation of target proteins [37], being among them p53 [38] and c-Jun [39]. On the other
hand, UBE2T is the E2 ubiquitin-conjugating enzyme for the Fanconi Anemia pathway [40]
and monoubiquitinates several proteins of the pathway, that also appeared in our screening
like FANCD2 and FANCI [41]. It is also involved in BRCA1 downregulation [42], one key
protein with a role in breast cancer tumorigenesis. Finally, YWHAZ codes for an adaptor
protein that belongs to the 14-3-3 proteins family [43]. It is implicated in the regulation
of a large spectrum of signaling pathways including cell growth, cell cycle, apoptosis,
migration, and invasion [44–46].

A relevant finding is that all the identified genes belonged to the same PPI network
that includes genes with different molecular roles but that participate in the same biological
function, in relation to orchestrate an adequate DNA damage response. In this context,
some proteins participate in the ubiquitination process while others belong the kinase
family of enzymes. This also suggest the redundancy of processes with the goal to maintain
the integrity of the system.

Identification of genomic correlates of a particular function is a main goal in cancer to
better select patients for a given treatment. In the immunotherapy field, transcriptomic
signatures to identify hot and pro-active immune tumors have been reported and some
were able to predict response to check point inhibitors [47–50]. In a similar manner, some
signatures have been described to predict response to PARP inhibitors and consensus
panels have provided recommendations for assessment [51]. These studies aimed to
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identify responsive patients to a particular given treatment, but not to find tumors in
which a specific biological function was more important and therefore could constitute a
druggable vulnerability.

We recognize that future studies should be performed. Our group is currently explor-
ing the role of these transcripts in relation to preclinical efficacy of these agents, and we are
designing a study using human samples from patients treated with PARP inhibitors.

5. Conclusions

In summary, we describe a DNA damage transcriptomic signature that discrimi-
nates patients with detrimental prognosis. Translational exploiting of these biomarkers
to predict outcome, as well as their value to select more effective therapies, should be
explored further.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13092117/s1, Figure S1: Upregulation of most of the genes involved in the DNA
damage gene sets in BC, Figure S2: Upregulated 19-genes signature in all breast cancer subtypes
correlates with poor breast cancer survival. Figure S3: Upregulated 5-genes signature in all breast
cancer subtypes correlates with poor breast cancer survival.
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