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Abstract: Esophageal cancer (EC), an aggressive and poorly understood disease, is one of the top
causes of cancer-related fatalities. GLOBOCAN 2020 reports that there are 544,076 deaths and
604,100 new cases expected worldwide. Even though there are various advancements in treatment
procedures, this cancer has been reported as one of the most difficult cancers to cure, and to increase
patient survival; treatment targets still need to be established. Nuclear receptors (NRs) are a type
of transcription factor, which has a key role in several biological processes such as reproduction,
development, cellular differentiation, stress response, immunity, metabolism, lipids, and drugs, and
are essential regulators of several diseases, including cancer. Numerous studies have demonstrated
the importance of NRs in tumor immunology and proved the well-known roles of multiple NRs
in modulating proliferation, differentiation, and apoptosis. There are surplus of studies conducted
on NRs and their implications in EC, but only a few studies have demonstrated the diagnostic and
prognostic potential of NRs. Therefore, there is still a paucity of the role of NRs and different ways
to target them in EC cells to stop them from spreading malignancy. This review emphasizes the
significance of NRs in EC by discussing their diverse agonists as well as antagonists and their response
to tumor progression. Additionally, we emphasize NRs’ potential to serve as a novel therapeutic
target and their capacity to treat and prevent EC.

Keywords: esophageal cancer; nuclear receptors; agonists; antagonists; biomarkers; treatment

1. Introduction

Esophageal cancer (EC) is an aggressive and poorly understood disease that remains
one of the leading causes of cancer-related deaths around the world [1,2]. This cancer
is fundamentally resistant to systemic therapy due to morphological, molecular, and
etiological heterogeneity [3]. Even though there are various advancements in treatment
procedures, this cancer has been reported as one of the most difficult cancer to cure,
and a favorable prognosis is only possible in the pilot stages [4]. EC is one of the most
common types of cancer in people; GLOBOCAN 2020 estimated 604,100 new cases and
544,076 fatal cases worldwide [5]. Individuals with EC have dismal 5-year overall survival
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(OS) rates [3]. The incident rate of EC varies a lot depending on their location [1,2,6,7].
Squamous cell carcinoma (SCC), adenocarcinoma (AC), and other subtypes of EC are
histologically classified, and more than 95 percent of esophageal malignancies are squamous
cell carcinoma and adenocarcinoma [1,2,6,7]. The histological subtype of EC with the
highest incidence is esophageal squamous cell carcinoma (ESCC). The histology of human
ESCC follows a stepwise pattern of dysplasia, hyperplasia, and SCC, and it originates from
precancerous lesions [8].

Common risk factors for ESCC include smoking tobacco, excessive alcohol consump-
tion, and chronic inflammation, which have been proven to have some synergistic impact
on the development of EC [8,9]. Moreover, dietary variables, genetic factors, microbes, and
other environmental factors may all have a role in the disease’s etiopathogenesis [8,9]. The
geographical disparities show that genetic factors, ethnicity, and lifestyle play a significant
influence in the development of ESCC, as demonstrated by the high incidence rates of
ESCC in Southern Europe, Southern and Eastern Africa, and East Asia compared to North
America and other regions of Europe [2]. Adenocarcinoma is the most predominant EC in
Europe and North America [7]. Esophageal adenocarcinoma (EAC) and gastric cardiac ade-
nocarcinoma (GCA) are two types of ACs that arise at the junction of the distal esophagus
and the proximal stomach [10]. EAC is becoming a common source of mortality and mor-
bidity, where patients who are suffering from this disease have a 17 percent survival rate,
as this cancer is detected in later stages following the local invasion and/or metastasis [7].
Smoking, obesity, alcohol consumption, nutritional deficit, genetic factors, Helicobacter
pylori infection, Barrett’s esophagus (BE), and chronic gastroesophageal reflux disease
(GERD) are the main risk factors for EAC [1].

BE, a metaplastic alteration of the typical squamous mucosa of the esophagus into a
columnar lining, is the solely recognized precursor for EAC [11]. Moreover, the presence of
BE is linked to an elevated risk of EC by 30 to 40 folds [11]. Currently, only 5% of individuals
with EAC have the precancer diagnosis of BE [2,12,13]. Although EC is asymptomatic in
its initial stages; dysphagia, unintended weight loss, nausea, anorexia, abdominal pain,
odynophagia, and bloating are the most common presenting symptoms at the early stage,
which makes the diagnosis difficult [7,14,15]. Patients with EC have had a better general
prognosis in recent decades because of surgical and medicinal advances, although overall
survival remains dismal [16]. EC treatment is complicated and varies between nations and
centers [17]. However, there is a need for a more effective biomarker for the treatment of
EC because of its complications and aggressiveness.

The most utilized therapeutic modality before esophagectomy is radiochemother-
apy [17,18]. However, the development of chemoresistance, significant adverse medication
reactions, and high treatment costs present the main therapy hurdles for this disease at an
advanced stage [19]. Therefore, the development of medications that are safe, effective, and
economical continues to be a challenge in the field of EC research.

Many human diseases, such as metabolic disorders, autoimmune diseases, and cancer,
are linked to dysregulated tissue metabolism and inflammation [20–25]. The transcrip-
tional changes in metabolic and immunological cells in response to pathogenic stimuli
received from the microenvironment are largely associated with transcription factor (TFs)
abnormalities [20]. Nuclear receptors (NRs) are a type of TFs found in cell nuclei that bind
with certain ligands, respond to hormones, and regulate several physiological processes
in the cell [26,27]. They also act as a key regulator in reproduction, development, cellu-
lar differentiation, stress response, immunity and metabolism [28–31]. Moreover, these
receptors have an impact on a wide range of genes and are involved in a complex network
of signaling pathways [27,32,33]. NRs are essential for controlling several disease states,
including diabetes, obesity, atherosclerosis, and cancer, in addition to normal homeostatic
and metabolic processes [30]. Depending on the cell type, numerous coregulators and
NR functions have been studied together in various contexts [34]. There are 48 TFs in
the human NR family, including receptors for lipophilic vitamins, cholesterol metabolites
such as retinoic acid and oxysterols, thyroid hormones, steroid hormones, and fatty acids,
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whose dysregulation frequently results in disease states [28,35–37]. Most NRs are notable
therapeutic targets because of the ability of small compounds to specifically activate or
inactivate them [28,36,38,39]. The classification of NRs’ superfamily was based on evo-
lutionary sequence conservation observed among various receptors. These receptors are
thought to have split into seven subfamilies thus far [27,28]. Adopted-Orphan-Receptors
(Lipid-sensors and Enigmatic-Orphans), Endocrine-Receptors, and Orphan-Receptors are
the three main groups of the 48 members of the superfamily of NRs [40]. The first category
consists of receptors with a high affinity for their ligands, such as seco-steroidal receptors
(VDR and RARs) and steroidal receptors (AR and ER). The FXRs, LXRs, and PPARs have
modest binding affinities for a wider variety of lipophilic compounds and are included
in the second category. NR4A1/NUR77 and ERRs are examples of the final group that
have not yet been identified as ligands or do not have a ligand binding domain [40,41].
The structure is common by all members of the NR superfamily consists of a variable
N-terminal region, a ligand-independent transactivation function (AF-1) domain, and a
highly conserved DNA-binding domain (DBD), which binds to particular DNA sequences
known as hormone response elements (HREs). These proteins’ C-terminal region contains
the dimerization interface, ligand-dependent activation function (AF-2), and ligand binding
domain (LBD) (Figure 1). The activation state of the NR is altered by ligand interaction,
which either activates or inactivates its transcriptional output [42,43]. The majority of NR
ligands are tiny, lipophilic molecules that may easily diffuse across the plasma membrane
of cells and bind their associated receptors [28]. Most of the NRs’ activities can be regulated
by endogenous and exogenous substances, such as metabolites, steroid hormones, and
synthetic compounds [20].

Figure 1. Structure of different domains of NRs: N-terminal domain, DNA-binding domain, hinge,
ligand/hormone binding domain, and C-terminal domain; Structure of the progesterone receptor-
DNA complex at a resolution of 2.50 Å (PDB ID: 2C7A); Crystal structure of the complex between
PPAR gamma ligand binding domain and the ligand AM-879 at a resolution of 2.69 Å (PDB ID: 6AN1).
Visualization of the structures was performed using PyMOL and saved them as .jpg files [44–48].

Moreover, NRs have been intensively studied in cancer biology because they have
shown tremendous promise as new therapeutic targets for various cancer types due to
their high druggability and actionability qualities [26]. As a result, around 16 percent of
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FDA-approved medications now target NRs, emphasizing the relevance of NRs in human
disease [49]. Moreover, NRs have become promising targets for anticancer drug develop-
ment due to their impact on a variety of cancer-related processes (e.g., tumor initiation
and therapeutic response) [49]. NRs are adaptable cellular ‘sensors’ because of their ability
to respond fast and dynamically to numerous developmental and environmental signals
by altering gene programs. As a result, NRs have long been used as biomarkers for the
classification of a variety of solid tumors, including breast and prostate malignancies, as
well as hormone therapy targets [50].

According to the growing number of data, NRs function as a modulator of signaling
that connects the inflammatory response to the development and progression of cancer, and
they control particular genes with tumor-suppressive or cancer-causing properties [34,51–
57]. For example, the impact of steroid hormones on prostate cancer has been demonstrated
by one of the earliest research projects on NRs. They demonstrated the activation of prostate
cancer by androgen injections [58]. A surfeit number of investigations have demonstrated
the significant role of NRs in tumor immunology and proved the roles of multiple NRs in
modulating proliferation, differentiation, and apoptosis suggest that NRs and their ligands
have direct antitumor effects on cancer cells and can be used as cancer immunotherapeutic
targets [26,30]. It is well established that various NRs such as androgen receptors (ARs),
estrogen receptors (ERs), farnesoid X receptors (FXRs), peroxisome proliferator-activated
receptor γ (PPARγ), retinoic acid receptors (RARs), retinoid X receptors (RXRs), and
vitamin D receptor (VDR), which shows association with cancer development [28,36,59,60].
Surprisingly, important roles of AR and ER in the etiological factors of breast cancer
and prostate cancer have been discovered, respectively. AR expression in epithelial cells
is thought to cause prostate cancer, and this cell type’s role in the development of the
disease is significant. Moreover, prostate cancer is assumed to be caused by the excessive
stimulation of the ER system because of increased ER levels [34]. Moreover, the oncogenic
role of AR, ER, GR, PPAR and VDR in tumor-supporting cells is well characterized [31].
Further, estrogen and progesterone receptor expression remain therapeutically significant in
predicting prognosis and deciding therapy options for breast cancer [36]. An in vitro study
has demonstrated that NR4A1, which is an orphan receptor, is overexpressed in pancreatic
cancer and regulates cancer cell survival and death [8]. According to a tissue-specific and
FXR-null mice study, it has been shown that FXR has been linked to the development
of gastrointestinal and liver malignancies and operates as a suppressor of hepatocellular
cancer, primarily via maintaining BA homeostasis [61]. All other NRs, including RARs,
RXRs, PPARs, GRs, and PRs, have also been extensively studied as cancer-therapeutic
targets [62,63]. It was intriguing to discover that numerous NRs have been associated with
EC and can be targeted as a new therapeutic target to prevent the disease’s progression.
For instance, in a study, inhibition of FXR by FXR shRNA or guggulsterone decreased
EC tumor development and growth in nude mice xenografts, as well as decreased tumor
cell viability and incited apoptosis in vitro. Therefore, it is clear that EC can be effectively
controlled by inhibiting FXR expression or activity and could be a therapeutic target [64].

There are a surplus number of studies conducted on NRs and their implications in EC,
but there is still a lot to learn about how to target EC cells and stop them from spreading
malignancy. The significance of NRs involved in EC using agonists and antagonists and
their response to tumor growth is highlighted by this review. Synthetic medications have
continued to exhibit severe side effects and the development of chemoresistance despite
recent advancements in treatment approaches, restricting their applicability [65–68]. Be-
cause they have few adverse effects, phytochemicals are increasingly being used [69–72].
Furthermore, research over the previous four decades has illuminated the therapeutic and
cancer-prevention potential of natural compounds as well as their underlying mechanisms
of action [35,73–79]. Some natural substances have been discovered to be more effective
in treating various types of cancer than the various modern chemotherapies [80–88]. Nu-
merous studies have discovered the huge potential of a variety of non-toxic, multi-targeted
natural compounds/agents in overcoming drug resistance in cancer cells and sensitizing
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them to chemotherapeutic medicines [89–96]. For example, a study on Daphne altaica Pall,
a traditional Kazhak medicine, has demonstrated the anticancer effect of the medicine
in EC through modulating PPARγ. The D. altaica extract (Da-Ea) has inhibited the cell
proliferation of Eca-109 cells through upregulating PPARγ, which also induced apoptosis
and S phase cell cycle arrest [97]. According to another study, inhibiting FXR with FXR
shRNA or guggulsterone reduced tumor cell survival and metastasis and induced apopto-
sis in vitro, as well as decreased EC growth in nude mice xenografts [64]. Therefore, we
have also concluded the role of natural products in modulating the expression of NRs in
EC. Additionally, we emphasize NRs’ potential to serve as a novel therapeutic target and
their capacity to treat and prevent EC.

2. Nuclear Receptor Signaling

NRs are a class of TFs, which are significant in both the development and progres-
sion of cancer [50]. The majority of NRs activate transcription as either homodimers or
heterodimers with the RXR, even though a small fraction of NRs can bind and stimulate
transcription as monomers [42]. When the ligand is bound, NRs undergo a conformational
shift that allows the recruitment of coactivator proteins, which stimulate transcription, and
co-ordinately dissociate the corepressor [42]. NR family members control transcription in
several ways and can both activate and repress gene expression [98]. A subset of NRs that
heterodimerize with RXR, including LXR, RAR, and TR, can actively silence target genes
by binding to HREs in the absence of ligands [99,100]. Other NRs, such as LXR, PPAR,
and GR, can inhibit the actions of other TFs, such as activator protein-1 (AP-1) and nuclear
factor (NF)-κB, in a ligand-dependent manner [42].

NRs are divided into four categories based on their method of action: Type I-IV [101].
Type-I steroidal NRs, which include GR, PR, ER, and AR, are entrenched in the cytoplasmic
membrane and connected to heat shock proteins (HSP90), and when the receptors bind to
their ligand, the receptors release the chaperone, allowing homodimerization and are trans-
ported into the nucleus [101]. The type II category includes the non-steroidal NRs such as
thyroid receptor, VDR, RAR, PPAR, and LXR, which are found in the nucleus and form an
obligatory heterodimer with the RXR [102]. The heterodimeric complex is normally associ-
ated with corepressor proteins (e.g., NCoR and SMRT) in the absence of a ligand. However,
when a ligand binds, corepressor proteins are released and coactivators are recruited, which
modify chromatin structure and allow target genes to be activated [98,101,102] (Figure 2).
The type III category contains orphan receptors which function as same as the Type I
receptors but create a monomer that identifies an elusive DNA sequence, whereas Type
IV, as monomers, attach to the half-site in HREs and function [38,101]. ER and AR sig-
naling networks regulate reproduction, RAR and all-trans retinoic acid (ATRA) signaling
pathways regulate mammalian embryonic development, VDR and metabolism regulate
immune function and bone homeostasis, and GR and PPAR signaling pathways regulate
inflammatory response [103–110]. Although ligands and coregulators are significant regu-
latory nodes in NR signaling pathways, different tissues and cell types have different ways
of communicating the afferent physiologic signal through each channel [111].
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Figure 2. The mode of action of NRs; NRs exert their transcriptional stimulation of target genes
via two distinct mechanisms. Class I—In the class I type, the ligand is bound in the cytoplasm,
which causes the chaperons that are bound to the receptors to dissociate, causing the receptor to
move and dimerize. Class II—For the class II type, the receptor dimerizes with another receptor
(heterodimerization) to bind to nuclear response elements; ligand binding then releases the co-
repressor, activating the receptor’s transcriptional unit.

3. Nuclear Receptors in Esophageal Cancer

NRs are important not only in normal physiology but also in a variety of pathological
disorders, the most prominent of which is cancer, where they regulate apoptosis, cellular
growth, migration, and invasion [112]. NRs govern a range of biological activities that
overlap with cancer cell characteristics; therefore, their functions in carcinogenesis and
cancer progression have been extensively studied in recent decades [26,113]. Studies have
shown that NRs expression and activation are highly expressed in cancer cells, and that
leads to the survival of these cells. Therefore, inappropriate NR activation may contribute
to the development and spread of cancer [114]. The significant role of numerous NRs such
as ARs, ERs, FXRs, PPARs, RARs, RXRs, PXRs, and VDRs, has been identified in EC cells,
and they likely contribute to the development and progression of this cancer by controlling
several TFs and signaling pathways (Figure 3). In view of this, the main focus of this
study is on relevant NRs associated with EC and the therapeutic value of utilizing small
compounds such as agonists and antagonists. Tables 1–3 summarize the role of nuclear
receptors in esophageal cancer in clinical, in vitro, and in vivo studies.
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Figure 3. Various NRs involved in esophageal cancer and their 3D structures: Androgen receptors
(ARs) (UniProt ID: P10275), Estrogen receptor alpha (ERα) (UniProt ID: P03372), Estrogen receptor
beta (ERβ) (UniProt ID: PQ92731), Farnesoid X receptors (FXRs) (UniProt ID: F1DAL1), Peroxisome
proliferator-activated receptor gamma (PPARγ) (UniProt ID: P37231), Pregnane X receptors (PXRs)
(UniProt ID: F1DAL3), Retinoic acid receptor alpha (RARα) (UniProt ID: P10276), Retinoic acid
receptor beta (RARβ) (UniProt ID: P10826), Retinoic acid receptor gamma (RARγ) (UniProt ID:
P13631), Retinoid X receptor alpha (RXRα) (UniProt ID: P19793), Retinoid X receptor beta (RXRβ)
(UniProt ID: P28702), Retinoid X receptor gamma (RXRγ) (UniProt ID: P48443) and Vitamin D
receptors (VDRs) (UniProt ID: P11473). These proteins’ primary structures were taken from the
UniProt database. Using the AlphaFold protein structure database, the structures of these proteins
were predicted. The image generation and visualization of the structures of these proteins were
performed using PyMOL [47,48,115–118].

Table 1. Nuclear receptor (NR) expression in esophageal cancer and various ESCC and EAC cell
lines.

Nuclear Receptors
(NRs)

In Vitro/In Vivo/
Clinical

Model/Cell
Lines/Tissues

Expression
(Up/Downregulation) References

AR Clinical ESCC tissues Up [119]
Clinical ESCC tissues Up [120]

In vitro EC109, EC9706,
HKESC-2, TE12 Up [120]

ERα Clinical ESCC tissues Down [121]
Clinical EC tissues Up [122]
In vitro EC-GI-10 + ERα Up [123]

ERβ Clinical EAC tissues Up [124]
Clinical EAC tissues Up [125]
Clinical ESCC tissues Up [121]
Clinical EC tissues Up [122]
In vitro EC-GI-10 + ERβ Up [123]
Clinical ESCC tissues Up [126]
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Table 1. Cont.

Nuclear Receptors
(NRs)

In Vitro/In Vivo/
Clinical

Model/Cell
Lines/Tissues

Expression
(Up/Downregulation) References

FXR Clinical BE and EAC tissues Up [127]
Clinical EAC tissues Up [64]
Clinical GERD tissues Up [128]

PPARγ Clinical ESCC tissues Down [129]
Clinical BE tissues Up [130]
Clinical EC tissues Up [131]
Clinical BE tissues Up [132]
Clinical EC tissues Down [133]

PXR Clinical EAC tissues Up [134]

RARα Clinical EC tissues Up [135]
Clinical EC tissues Up [136]

RARβ Clinical EC tissue Up [135]
Clinical EC tissues Down [137]
Clinical ESCC tissues Down [138]

RARβ2 Clinical ESCC tissues Down [139]

In vitro KYSE410, KYSE510,
COLO680N Down [140]

Clinical ESCC tissues Down [141]
Clinical ESCC tissues Up [142]

RARβ4 Clinical ESCC tissues Up [141]

RARγ Clinical EC tissues Down [135]

VDR Clinical EAC tissues Down [143]
Clinical EAC tissues Up [144]
Clinical BE tissues Up [145]
Clinical ESCC tissues Down [146]

Table 2. Mechanistic role of various nuclear receptors (NRs) in esophageal cancer in the presence of
their agonists/antagonists.

Nuclear Receptors
(NRs)

In Vitro/
In Vivo

Model/Cell
Lines Agonists/Antagonists Results References

AR In vitro OE33-AR DHT
↑ FKBP5, HMOX1,
FBXO32, WNT5A,
VEGFA, KLK3

[147]

In vitro KYSE450 siRNA duplexes ↓ AR, Cell invasion,
MMP2, p-Akt [119]

In vitro EC9706 shRNA

↓ AR, Cell viability, Cell
growth, Colony
formation,
Anchorage-independent
growth, S and G2/M
phase, IL-6, TNF
↑ G1/G0 arrest

[120]
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Table 2. Cont.

Nuclear Receptors
(NRs)

In Vitro/
In Vivo

Model/Cell
Lines Agonists/Antagonists Results References

TE-1 pPYCAGIP-AR-GFP

↑ AR,
Anchorage-independent
growth, Cell growth,
Colony formation, S and
G2/M phase, IL-6
↓ G1/G0 arrest

EC9706 and
HKESC-2 siRNA ↓ AR

In vivo

EC9706-shAR
cells injected
mice
TE-1 cells
injected mice

↓ Tumor size and weight
↑ Tumor size and weight [120]

In vitro
OE33-AR,
JH-AR,
OE19-AR

DHT

↓ Cell proliferation,
NDRG1
↑ FKBP5, HMOX1, Cell
Cycle Arrest, Cell
Senescence

[148]

OE33-AR Enzalutamide ↑ Cell count
↓ FKBP5

ER In vitro EC109 17β-estradiol ↓ Cell proliferation [149]

↑ Ca2+ signaling

In vitro OE-19 and
OE-33 17β-estradiol/SERM ↓ Cell growth

↑Apoptosis [150]

Tamoxifen ↓ Cell growth

Raloxifene ↓ Cell number, Ki67 ↑
E-cadherin, Apoptosis

ERα In vitro EC-GI-10+ERα Propyl-pyrazole-triol ↓ Cell proliferation [123]

In vitro OE-19, OE-33 MPP ↓ Cell proliferation [122]

OE-33 MPP + E2 ↑ Apoptosis, Caspase
3/7, LDH activity

ERβ In vitro EC-GI-10+ERβ Estradiol, DPN ↑ Cell proliferation [123]

ICI1 82,780 ↓ Cell proliferation

In vitro OE-19, OE-33 PHTPP ↓ Cell proliferation [122]

OE-33 PHTPP + E2 ↑ Apoptosis, Caspase
3/7

FXR In vitro TE-3, TE-12,
SKGT-5 Guggulsterone ↓ FXR, Cell viability,

COX-2, MMP-9 [64]

↑ Apoptosis

Chenodeoxycholic
acid

↑ FXR, COX-2
↓ RAR-β2

SKGT-4 cells sh-RNA ↓ FXR, Cell growth

In vivo SKGT-4 cells
injected mice

FXR shRNA/
Guggulsterone

↓ Tumor formation,
Tumor growth [64]
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Table 2. Cont.

Nuclear Receptors
(NRs)

In Vitro/
In Vivo

Model/Cell
Lines Agonists/Antagonists Results References

In vitro KYSE150,
EC109, TE-1 GW4064

↓ Cell proliferation,
Migration, pERK1/2
↑ G0/G1 arrest

[151]

KYSE150 GW4064

↑ p53, Caspase 3,
Cleaved-PARP, SHP,
BSEP
↓ c-fos, CyclinD1, IL-6,
MMP7, TNF-α-induced
proinflammatory genes
levels

EC109 GW4064

↑ p21, p53, Bak1, Bim,
Bax, Caspase 3,
Cleaved-PARP
↓ IP-10, TNF-α levels

In vivo
BALB-C nude
mice (EC109
xenografts)

GW4064 ↓ Tumor volume, Tumor
weight, pERK1/2 [151]

PPARγ In vitro T. Tn Troglitazone
↑ p27Kip1, p21Cip1/Waf1,
p18Ink4c, G1 arrest
↓ DNA synthesis

[152]

EC-GI-10 Troglitazone ↑ IL-1α

T. Tn Pioglitazone, 15d-PGJ2 ↑ Cell cycle arrest in G1
phase

In vitro
TE-1, TE-7,
TE-8, TE-12,
TE-13

Troglitazone
↓ Cell growth, Cyclin E,
p16, MDM2, Cyt C,
Caspase 8, Bcl-XL

[153]

↑ p27, G1 arrest, Bid,
Bax, PARP, Caspase 3

In vitro OE33cells Ciglitazone ↓ Cell proliferation [130]

↑ Caspase 3

In vitro KYSE70 T0070907 and GW9662

↓ Cell adherence, pERK,
pFAK
↑Morphological
changes, Apoptosis

[131]

In vitro OE33 Pioglitazone ↑ PPARγ, Apoptosis,
Caspase 3 activity [132]

↓ Cell growth

In vivo
OE33 cells
injected nude
mice

Pioglitazone
↑ Tumor development
↓ Apoptosis, Insulin
level

[132]

In vitro TE series Efatutazone, sh-RNA
↓ Cell proliferation, S
and G2/M phases,
p-p21, pAkt

[154]

↑ PDK4, p21Cip1,
p-EGFR/MAPK

In vivo TE-4 cells
injected mice Efatutazone ↓ Tumor growth, pAkt,

p21, Ki67 [154]
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Table 2. Cont.

Nuclear Receptors
(NRs)

In Vitro/
In Vivo

Model/Cell
Lines Agonists/Antagonists Results References

↑ PLIN2, p21Cip1,
pEGFR, pERK1/2

In vitro EC109 and
TE10 Cisplatin (DDP) ↑ Apoptosis, Bax [133]

↓ Cell viability, Colony
formation, Bcl-2

In vivo
Female
BALB/C nude
mice

DDP ↓ Tumor volume, Tumor
weight [133]

In vivo
NMBzA
induced F344
rats

Lycopene
↑ PPARγ, Cleaved
caspase 3
↓ NF-κB, COX-2

[155]

In vitro Eca-109 Da-Ea

↑ PPARγ,
Morphological
alterations, Apoptosis, S
phase cell cycle arrest

[97]

↓ Cell proliferation

In vitro OE33, ESO26 T0070907

↓ PPARγ, Cell
proliferation, Colony
growth
↑ Apoptosis

[156]

In vivo
Nude mice
(ESO26 cells)
xenografts

T0070907 ↓ Tumor growth, FASN,
ACC, ACLY, SCD [156]

PPARγ/RXRα In vitro KYSE series Troglitazone + ↓ Cell growth [157]

9-cis retinoic acid ↑ G1 arrest, Apoptosis,
Cleaved PARP

In vivo

KYSE 270 cells
injected
Balb/c-nu/nu
mice

Troglitazone + 9-cis
retinoic acid ↓ Tumor growth [157]

PXR In vitro OE19, HET1A Lithocholic acid ↑ Nuclear translocation
of PXR protein levels [134]

RARα In vitro TE-10 and
Eca-109 siRNA

↓ RARα, Cell
proliferation, Invasion,
Migration, PCNA, Ki67,
MMP7, MMP9,
P-Glycoprotein,
Wnt/β-catenin pathway
activation, p-GSK3βSer9,
Cell viability
↑ p-GSK3βTyr216,
p-β-cateninSer33/37,
Susceptibility to 5-FU or
CDDP

[136]

RARβ In vitro HET-1A, TE-3,
TE-12 BPDE ↓ RARβ, G1 phase [158]

↑ COX-2, S phase

HET-1A, TE-3,
TE-12 ATRA ↑ RARβ, G1 phase

↓ S phase
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Table 2. Cont.

Nuclear Receptors
(NRs)

In Vitro/
In Vivo

Model/Cell
Lines Agonists/Antagonists Results References

In vitro TE-3 cell line 13-cis RA ↑ RARβ, Apoptosis [159]

AGN193109 ↓ Cell growth, COX-2,
Prostaglandin E2

↑ COX-2

In vitro KYSE30 and
TE-1 5-Aza-2-dC ↑ RARβ [138]

Het-1A NNK ↑ Cell proliferation,
DNMT1

↓ RARβ, Apoptosis

RARβ2 In vitro EC109 4HPR ↓ Cell growth [160]

↑ RARβ2, G0/G1 phase
cell cycle arrest,
Apoptosis

RA ↑ RARβ2

In vitro KYSE4103 5-aza-dc ↑ RARβ2 [140]

In vitro KYSE150,
KYSE410 5-aza-dc ↑ RARβ2 ↓Cell growth [139]

In vitro
TE-1, TE-8

TE-3-V1

BPDE

BPDE

↓ RARβ2
↑ EGFR, pERK1/2,
COX-2, c-Jun, AP-1
↑ COX-2

[161]

In vivo

nu/nu nude
mice (RARβ2
antisense-
transfected
TE3-A5cells)

↑ Tumor growth, EGFR,
pERK1/2, COX-2 [161]

In vitro TE-1, TE-3,
TE-8, TE-12 13-cis RA ↑ RARβ2 [162]

↓ COX-2

In vivo

nu/nu nude
mice (RARβ2
transfected
TE-8 and sub
cell lines)

↑ COX-2
↓ Tumor development [162]

In vitro TE-3, TE-12,
SKGT4 BPDE ↓ RARβ2 [163]

↑ c-Jun, pERK1/2,
COX-2

In vitro TE-3, TE-8,
HCE-4, SKGT-4 4-NQO ↓ RARβ2 [164]

↑ p-ERK1/2, c-FOS,
COX-2

In vivo

4-NQO
induced
C57LB6/129Sv
mice

↓ RARβ2
↑ Tumor formation,
p-ERK1/2, COX-2

[164]

RARγ1 In vitro EC109 4HPR, RA ↑ RARγ1 [160]

↑—Increase/Upregulation; ↓—Decrease/Downregulation.



Int. J. Mol. Sci. 2022, 23, 10952 13 of 35

Table 3. Mechanistic role of various nuclear receptors (NRs) in esophageal cancer in clinical studies.

Nuclear
Receptors (NRs) Model/Cell Lines Results References

AR EAC tissues ↓ AR [165]
EAC tissues ↑ AR, FKBP5 [147]
ESCC tissues ↑ AR, Tumor progression [119]

ESCC tissues ↑ AR, Tumor growth, Tumor invasion
Overexpressed AR leads to poor prognosis [120]

ERα ESCC tissues ERα positive leads to lymph node metastasis,
venous invasion and poor survival [166]

ESCC tissues Absence of ERα leads to poor prognosis [121]
ESCC tissues ERα negative favors better prognosis [167]

ERβ EAC tissues ↑ ER-B isoforms [124]
ESCC tissues ERβ negative leads to poor survival [166]
EAC and ESCC tissues ↑ ERβ, Dedifferentiation, Tumor stage [125]

Thoracic ESCC tissues ↑ ERβ, Tumor differentiation, Ki67/MIB1 LI,
Poor survival [123]

ESCC tissues ↑ ERβ, Poor prognosis [121]
ESCC tissues ERβ positive favors better survival [167]

FXR EAC tissues ↑ FXR, Tumor grade, Tumor size, Lymph
node metastasis ↓ RARβ2 [64]

GERD tissues ↑ FXR, TLR2 ↓ TLR4 [128]

PPARγ ESCC tissues ↑ SIRT1, PPARγ, EGFR, Survivin [168]
EC tissues ↓ PPARγ [133]

RARα EC tissues ↑ RARα, Metastasis [136]

RARβ EC tissues ↓ RARβ [169]
EC tissues ↓ RARβ ↑ p53, Ki67 [170]
ESCC tissues ↓ RARβ, CRBP1, TIG1 ↑ Tumor stage [171]
ESCC tissues ↓ RARβ ↑ Metastasis [172]
ESCC tissues ↓ RARβ ↑ DNMT1 [138]

RARβ1 ESCC tissues ↓ RARβ1 ↑ Cyclin D1, EGFR [141]

RARβ2 ESCC tissues ↑ Methylation of RARβ2, p16, MGMT,
CLDN3, CRBP, MT1G [173]

EC tissue ↑ RARβ2 ↓ COX-2 [162]

EC tissues ↑ p-ERK1/2, COX-2, Tumor
de-differentiation [164]

ESCC tissues ↓ RARβ2, LINE-1 ↑ Metastasis [174]
ESCC tissues ↓ RARβ2, COUP-TFI, COUP-TFII [141]

RARβ4 ESCC tissues ↓ COUP-TFI, COUP-TFII ↑ RARβ4 [141]

RXRα EAC tissues ↓ RXRα [175]
EC tissues ↑ RXRα, TNM stage, Metastasis [176]

RXRβ EAC tissues ↓ RXRβ [175]
ESCC tissues ↓ RXRβ ↑ Metastasis [172]

RXRγ EAC tissues ↑ RXRγ [175]

VDR BE tissues ↑ VDR [177]
EAC tissues ↓ VDR, Tumor de-differentiation [143]
EAC and ESCC tissues ↑ VDR, TGR5, Claudin-2 [178]
EAC tissues ↓ VDR, CYP27B1 ↑ CYP24A1 [179]

↑—Increase/Upregulation; ↓—Decrease/Downregulation.

3.1. Androgen Receptors (ARs)

AR is a ligand-activated TFs in the steroid receptor family [180]. Growth factors,
natural hormones, peptides, and synthetic compounds are all examples of ligands that can
activate these receptors [180]. The AR is found in skeletal muscle, the prostate, the testes, the
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uterus, the breast, and other tissues [181]. The AR gene, which is 90 kb in size and situated
on the X chromosome, is coded by eight exons [182]. Different domains in the AR include
the N-terminal domain (NTD), DNA-binding domain (DBD), and ligand-binding domain
(LBD). The least homologous section of the AR is its N-terminal region (amino acids 1–559),
with less than 15–20% similarity among the class I members. AF-1, crucial for AR activity,
is present in the NTD [183]. AR’s AF-1 contains all of AR’s phosphorylation sites except for
three and is a target for several growth factors that phosphorylate the sites and activate the
AR ligand on their own [184,185]. The DBD helps the AR to bind to the androgen Response
Elements (ARE) in the regulatory regions of androgen-responsive genes. The DBD contains
two zinc finger motifs necessary for DNA binding and dimerization and is highly conserved
among receptors. The DBD and LBD’s lysine-rich hinge regions are essential for the nuclear
localization of the receptor [186]. The AR’s LBD is responsible for ligand binding, is
only minimally conserved among receptors, and contains AF-2, which is required for full
receptor activation in the presence of ligand [180]. AF-2 refers to residues in the LBD that
are implicated in transcription control. In a hormone-dependent way, this region of the AR
recruits a set of coregulatory proteins known as p160 coactivators (e.g., steroid receptor
coactivator-1 (SRC-1)) [187]. Interestingly, it was reported that AR is implicated in the
development and progression of various cancer types, including prostate, breast, ovarian,
etc. [188–192]. Therefore, AR’s expression and function are often investigated in cell lines
and tumor specimens. However, the role of AR expression and function in the development
and progression of EC is still poorly understood.

Increasing lines of evidence suggest that AR and AR responsive are highly overex-
pressed and activated in EC and controls the survival and prognosis of patients. For
example, a study in 40 ESCC tumor tissues demonstrated high levels of AR expression
in invasive ESCC tissues. In addition, this study also showed that the knockdown of
the KYSE450 EC cell line with AR shRNA decreased the expression of AR, cell invasion,
pAkt, and matrix metalloproteinase 2 (MMP2) [119]. Another clinical study showed high
expression of AR in tissues from tobacco using ESCC patients compared with normal
esophageal squamous tissues. Besides, higher expression of AR was also observed in
the EC109, EC9706, HKESC-2, and TE-12 EC cell lines. Moreover, the inhibition of AR
by shRNA reduced cell viability, cell growth, colony formation, anchorage-independent
growth, and the S and G2/M phase. In addition, in mice with various androgen status, the
overexpression of AR enhanced tumor growth. Further, AR promotes interleukin 6 (IL6), a
common AR target gene in ESCC, transcription by binding directly to the IL6 promoter,
and IL6 can then activate AR expression. Furthermore, prominent levels of AR and IL6
expression in human ESCC predict a worse clinical outcome in tobacco users [120]. Another
clinical study demonstrated that AR gene expression was substantially higher in normal
squamous epithelium than in esophageal adenocarcinomas [165]. According to another
study, higher levels of dihydrotestosterone (DHT) inhibited the proliferation and cell divi-
sion, induced cell cycle arrest and cell senescence and also altered androgen-responsive
genes in OE33-AR, JH-AR, and OE19-AR EAC cell lines [148]. In addition, another study
showed an increase of FK506-binding protein 5 (FKBP5), which is an androgen-responsive
gene in AR-transduced OE33 cells (OE33-AR) [147]. Taken together, these findings demon-
strated the significance of AR in the development and spread of EC, and additional research
is required to identify the potential use AR as a therapeutic target in EAC and ESCC.

3.2. Estrogen Receptors (ERs)

Estrogen receptors (ERs) belong to the NR superfamily, which also comprises receptors
that mediate the effects of thyroid hormones, steroid hormones, retinoids, and vitamin
D [193]. ERs, similar to other steroid receptors, primarily serve as ligand-inducible TFs that
bind chromatin at specific response regions as homodimers [193]. To interact with estrogen
response elements (EREs) or other TFs, ERs dimerize and move to the nucleus, where they
interact with them. This causes the recruitment of coregulatory proteins (coactivators or
corepressors), an increase or decrease in mRNA levels and associated protein synthesis, as
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well as physiological responses [194–196]. The ligand-induced transcriptional activity of
ER is mediated by two distinct activation functions, AF-1 and AF-2 [194–196]. ERs, similar
to other members of the NR family, have structurally and functionally different domains.
The DNA recognition and binding are carried out by the C or DNA-binding domain (DBD),
which is the protein’s central and most conserved domain, while the COOH-terminal
multifunctional D/E/F or ligand-binding domain (LBD) is responsible for ligand binding.
The NH2-terminal or A/B domain is the least conserved and has the greatest variation
in sequence and length [197,198]. Based on sequence homology with other receptors, the
domains in the receptor have been split into six regions, A-F. Exon 1 codes for the N-terminal
domain (regions A and B), exons 2 and 3 for the DNA-binding domain (region C), exon
4/hinge region (region D), and exons 5-8 for the hormone binding domain (regions E and
F) [199]. ERs are divided into two subtypes: estrogen receptors α (ERα, also known as ER1
or ESR1) and estrogen receptors β (ERβ, also known as ER2 or ESR2), which are encoded
by the estrogen receptor 1 (ESR1) and 2 (ESR2) genes, respectively. They are members who
belong to the NR superfamily and carry out a range of biological processes [194,200,201].

In humans, ERα and ERβ play a critical role in the control of various intricate physio-
logical processes. A multitude of disorders is linked to abnormal ER signaling, including
cancer, metabolic and cardiovascular disease, neurodegeneration, inflammation, and osteo-
porosis [202–204]. For years, scientists have known that estrogen and its receptors play a
critical role in cancer development [205]. Multiple investigations using esophageal tissues
and various cell lines have demonstrated higher expression of both ERα and ERβ at variable
levels, pointing to the significance of ER in the development of EC. For example, a recent
study on EC has proved that apart from typical risk factors, the hormonal environment may
play a crucial role in EC development [206]. Studies have demonstrated that positive ERα
expression in combination with negative ERβ expression is an unfavorable independent
prognostic predictor in ESCC [166,167]. In tumor tissues, the expression of ERβ is higher
in AC and poorly differentiated SCC, and it increases with tumor stage and dedifferenti-
ation. As a result, ERβ seems to be a sign of poor biological function, dedifferentiation,
or a more advanced stage of disease [125]. Further studies on ESCC tissues showed that
the levels of ERα and ERβ were inversely connected, and the downregulation of ERα
and the overexpression of ERβ could indicate a poor prognosis [121]. Another study has
demonstrated that the different isoforms of ERβ (ER-B1, ER-B2, ER-B3, and ER-B5) were
shown to be overexpressed in EA tissues and suggests a possible role of antiestrogens in
the treatment of EA [124]. Interestingly, it was noted that in EC cells, estrogen ligands
such as 17β-estradiol and selective estrogen receptor modulators (SERM) inhibited cell
proliferation. The amount of anti-growth effects caused by receptor agonists was propor-
tional to the quantity of ER expression in the cell lines. Therefore, this research revealed
that selective ER ligand treatment in EC and BE cells results in decreased cell growth and
induced apoptosis [126,150]. In a distinct study, 1, 3, 5-tris (4-hydroxyphenyl)-4-propyl-1H-
pyrazole (PPT), an ERα agonist, was shown to reduce the number of ECGI10 + ERα cells.
Moreover, estradiol significantly increased the cell proliferation of ECGI10 + ERβ cells, and
the addition of ICI 182780 dramatically reduced estradiol-mediated cell proliferation. In
conclusion, this study’s findings unequivocally show that the presence of ERβ was strongly
correlated with poor prognosis in ESCC, possibly by affecting the proliferation of carcinoma
cells [123]. Another study showed that the ER system contributes to the spread of EC, and
a highly selective ERα antagonist (MPP) and an ERβ-specific antagonist (PHTPP) elicited a
concentration-dependent reduction in proliferation in EC cell lines. In addition, caspase
3/7 activity was significantly elevated in OE33 cell lines treated with MPP and PHTPP, and
there was an increase in LDH activity in the presence of MPP-treated OE-33 cell lines [122].
However, a recent study showed that 17β-E2 inhibited the proliferation of human EC109
ESCC cells in a dose-dependent manner, which was inhibited by the ER antagonist ICI
182,780. Additionally, 17β-E2 significantly increased the release of intracellular Ca2+ and the
entry of extracellular Ca2+ into ESCC cells, which was also inhibited by the ER antagonist
IC1 82,780. When combined, this study shows that estrogen inhibits the proliferation of
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human ESCC cells, most likely via the ER-Ca2+ signaling pathway and it could a reason for
the male predominance of ESCC [149]. In conclusion, it is evident that in a vast majority
of cases of EC, ERs are markedly overexpressed and play a critical role in cell survival.
Moreover, ES cancer cell invasion, migration, and proliferation have all been demonstrated
to be inhibited by ER targeting, which also causes apoptosis. Additionally, the development
of particular ER modulators would help in the prevention and treatment of ESCC patients.

3.3. Farnesoid X Receptors (FXRs)

The farnesoid X receptor (FXR) is a ligand-activated TF that belongs to the family of
the NR, which is also classified as a nuclear bile acid (BA) receptor [207]. BAs operate
as powerful endogenous ligands for FXR activation in the body [207]. FXR is a common
receptor present in the intestine and liver that regulates bile acid, glucose, lipid metabolism,
and energy balance to aid in maintaining systemic metabolic equilibrium [207,208]. FXR
is encoded by the NR1H4 gene and controls the activities of several organs, including
the brain, breast, cardiovascular system, gut, kidney, liver, and pancreas. As a result,
FXR has become a popular therapeutic target for a wide range of disorders [207,208].
FXR detects physiologic and pathological metabolic changes and alters by regulating
the transcription of genes related to cholesterol, fatty acid (FA), glucose, and amino acid
balance. FXRα (NR1H4) and FXRβ (NR1H5) are two FXR genes that have been discovered,
and the FXRα gene encodes four physiologically active versions (FXRα1, α2, α3, α4) as
a result of several promoters and RNA splicing [209,210]. FXRα1/α2 and FXRα3/α4 are
expressed at equal levels in the liver, whereas FXRα3/α4 isoforms are mostly expressed
in the gut [211]. FXR binds to DNA (i.e., FXR response elements) as a monomer or as a
heterodimer with the retinoid X receptor (RXR), another ligand-activated TF [210]. The N-
terminal ligand-independent transcriptional activation AF-1 domain, DBD, a hinge region,
and the C-terminal LBD comprising a transcriptional AF-2 comprises the structure of FXR,
which is the same as the typical NR structure [212]. The hinge region sequence and the
length of the AF-1 region differ between the four FXR isoforms. FXR agonists bind to the
pocket produced by LBD, promoting its binding to FXR response regions in downstream
target genes, which stimulates transcriptional activation [213].

According to recent research, FXR overexpression has been linked to the development
and progression of breast, lung, pancreas, and esophageal malignancies. It has also been
linked to tissue and cell-specific involvement in a variety of malignancies. It was also noted
that FXR is strongly expressed in esophagitis, BE, and EAC [39]. For example, a study
has demonstrated that FXR is overexpressed in BE, and guggulsterone, an FXR antagonist,
significantly enhances apoptosis in a human BE-derived cell line which implies that FXR
may play a role in apoptosis regulation [127]. According to another similar study, the
suppression of FXR with FXR shRNA or guggulsterone reduced tumor cell survival and
metastasis and induced apoptosis in vitro, as well as decreased EC growth in nude mice
xenografts [64]. Another study demonstrated that, FXR was expressed in GERD tissues,
and the level of expression has greatly increased in esophagitis [128]. In addition, the
same study showed that FXR and basal TLR2 expression were linked, and TLR2 and FXR
were significantly elevated during reflux esophagitis [128]. On the contrary, an in vitro and
in vivo investigation has reported that the activation of FXR performs an antitumor role in
the ESCC. FXR activation by its ligand GW4064 inhibited the ERK1/2 pathway and cell
growth, increased apoptosis, and caused cell cycle arrest in ESCC cells. Further, the FXR
ligand GW4064 reduced the growth of ESCC in a mouse xenograft model [151]. Altogether,
it was identified that FXR could be a potential target for the management of ESCC.

3.4. Peroxisome Proliferator-Activated Receptors (PPARs)

Peroxisome proliferator-activated receptors (PPARs) are fatty acid-activated TFs, which
belong to the nuclear hormone receptor superfamily, that control energy metabolism.
PPARα (NR1C1), PPARγ (NR2C2), and PPARδ (NR3C3) (also known as PPARβ) are the
three PPAR subtypes that have been discovered so far [214–219]. All PPARs, which have
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four functional domains termed A/B, C, D, and E/F, share the fundamental structural char-
acteristics of the majority of NRs. The PPAR is phosphorylated by the ligand-independent
AF-1 in the N-terminal (A/B) domain [220]. PPARs bind to the peroxisome proliferator
response element (PPRE) in the promoter of PPAR target genes, and this interaction is
mediated by the two-zinc fingered conserved core DBD, also referred to as the C domain.
The cofactor docking site is the D domain, and the E domain is also known as the LBD. The
E/F domain’s ligand-dependent AF-2 mediates the recruitment of PPAR cofactors involved
in the transcription processes [220].

PPARα and PPARδ are also expressed in oxidative tissues and control gene expres-
sion involved in oxidative phosphorylation (OXPHOS), substrate delivery, and oxidation.
PPARα stimulates energy dissipation and is found mostly in the brown adipose tissue
(BAT), gut, heart, kidney, liver, and skeletal muscles [221,222]. PPARα influences ester-
ification, fatty acid transport, and oxidation to mediate its actions. PPARβ/δ is widely
expressed and plays a role in fatty acid oxidation as well as blood glucose control. White
adipose tissue (WAT) has the highest levels of PPARγ expression, which is largely engaged
in energy storage through promoting adipogenesis and lipid synthesis [220]. The PPARγ is
expressed mainly in the gut, immune cells, liver, and skeletal muscles [221,223].

The binding of cognate lipid ligands, heterodimerization with another NR (RXR), the
interaction of a few transcriptional coactivators, including PPAR coactivator-1 (PGC-1),
as well as binding of the complex to PPAR response elements (PPREs) in the promoter of
target genes are necessary for PPARs to function as NRs for transcription [223]. PPARs are
triggered by several ligands. Eicosanoids and long-chain fatty acids (FAs) are examples
of some common endogenous ligands for PPARα and PPARβ/δ, PPARγ on the other
hand, is activated by arachidonic acid metabolites [224,225]. Pioglitazone, GW1929, and
GW2090 are anti-diabetic thiazolidinedione (TZD) substances that specifically activate
PPARγ, whereas GW501516 is a highly selective PPARβ/δ ligand [216,226].

The activation of PPAR by ligands has been linked with several malignancies. In vitro
investigations on human cancer cells indicated growth-inhibitory effects such as cell-cycle
arrest, differentiation, and death induced by PPAR ligands [227]. For example, a study has
demonstrated the expression of PPARγ in T. Tn, and EC-GI-10 ESCC cell lines and revealed
the marked growth inhibitory ability of PPARγ-ligands (Troglitazone, Pioglitazone, and
15d-PGJ2) to prevent the growth of human ESCC. Moreover, this effect was evident by
the dose-dependent inhibition of deoxyribonucleic acid synthesis and G1 arrest and an
increased level of cyclin-dependent kinase inhibitor p27 (Kip1), p21 (Cip1/Waf1), and
p18(Ink4c). In addition, troglitazone treatment increased the expression of interleukin-1
alpha in EC-G1-10 cells [152]. Similarly, another study showed that troglitazone, a PPARγ-
ligand, treatment in TE-13 cells inhibited the development of human ESCC through G1
cell cycle arrest by increasing p27 expression and induced apoptosis by increasing the
expression of Bid, Bax, PARP, and caspase 3 and reducing the expression of cyclin E,
MDM2, p16, cytochrome C, caspase 8, and Bcl-XL [153]. Interestingly, another study using
55 primary ESCC tissue samples has shown that the expression level of PPARγ mRNA was
decreased in ESCC compared with normal esophageal mucosa, and this was correlated
with poor prognosis [129]. Moreover, PPARγ and SIRT1 were substantially expressed in
ESCC tissues, but high PPARγ expression was correlated with tumor grading but not with
poor prognosis [168]. In this study, it was observed that increased tumor growth and poor
prognosis were associated with the high expression of SIRT1, a protein that supports cell
survival and angiogenesis in ESCC patients. However, SIRT1 expression was positively
linked with EGFR but not with PPARγ or survivin [168]. In another study, it was observed
that miR-10b was elevated while the expression of PPARγ was downregulated in EC
tissues and ESCC cell lines EC109 and TE10, which established that PPARγ is a legitimate
miR-10b target. Additionally, miR-10b suppression improved the chemosensitivity of EC
cells to DDP in vitro and in vivo, and the overexpression of miR-10b decreased the PPARγ-
mediated DDP sensitivity. The Akt/mTOR/p70S6K signaling pathway was also activated
as a result of the overexpression of miR10b, and the deactivation of Akt/mTOR/p70S6K by
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Akt inhibitor (GSK690693) reduced miR-10b-induced DDP resistance in EC cells. Together,
these findings show that PPARγ inhibition by miR-10b increased DDP resistance in EC
by increasing Akt/mTOR/P70S6K signaling. Moreover, it was observed that after DDP
treatment, the activation of PPARγ significantly aided DDP-induced apoptosis in EC109
and TE10 cells. In addition, elevated PPARγ consistently resulted in a rise in Bax levels
and a decrease in Bcl2 levels after DDP treatment [133]. Interestingly, lycopene, a natural
compound, was shown to suppress NF-κB and COX-2 expression and enhance the protein
expression of PPARγ and cleaved caspase 3, which leads to an increase in apoptotic proteins
and a decrease in inflammatory cytokines. These findings showed that an effective amount
of lycopene could prevent the development of EC in NMBzA-injected F344 rats through
potential anti-inflammatory and pro-apoptotic pathways [155]. Another study showed that
Da Ea (ethyl acetate extract of D. altaica), which has anti-cancer effects, increased PPARγ
expression levels, induced apoptosis and S phase cell cycle arrest, which prevented the
proliferation of ECA 109 cells [97]. In addition, an in vitro and in vivo study in EC cells
and ESO26 cells injected mice treated with T0070907 has demonstrated the transcriptional
feedback loop between the PPARγ and the master regulator transcription factors (MRTF)
that are particular to EC and fatty acid production. PPARγ overexpression was caused by
MRTFs functioning together to promote PPARγ transcription by directly controlling its
promoter and a distal EAC-specific enhancer. Moreover, this study also shows a decrease in
cell proliferation and induced apoptosis in T0070907 treated OE33 AND ESO26 cell lines. In
addition, in vivo study has demonstrated a decrease in the expression of FASN, ACC, ACLY,
SCD and tumor growth in ESO26 cells injected mice [156]. Another study showed increased
expressions of PPARγ, COX-2, HGF, gastrin, and NF-κB activity in BE tissues. Moreover, the
increased NF-κB activity is probably linked to increased IL-8 and COX-2 expression [130].
Similarly, in EC tissues, upregulation of PPARγ was observed, and the treatment of EC
cell lines with PPARγ antagonists (T0070907 and GW9662) decreased EC cell adhesion,
expression of p-focal adhesion kinase (p-FAK) and pERK and induced apoptosis [131].
Another study has reported the reduced expression of PPARγ in esophageal tumor lesions
and proved that ESCC cell proliferation could be inhibited by efatutazone, a PPARγ agonist,
by inactivating the PI3K–Akt and MAPK pathways [154]. Interestingly, an in vitro and
in vivo study demonstrated that the activation of PPARγ inhibits cancer cell growth in vitro
by inducing apoptosis through increasing caspase 3 activity, but systemic PPARγ activation
increased the growth of OE33-derived transplantable adenocarcinomas in vivo due to
increased cell proliferation [132]. Collectively, these data suggest that PPARs play a critical
role in the emergence of EC and might serve as a novel therapeutic target.

3.5. Retinoic Acid Receptors (RARs)

RARs are TFs that belong to the NR superfamily which can have non-genomic ef-
fects by triggering kinase signaling pathways that regulate the transcription of RA target
genes [228,229]. RARs have a significant role in a variety of physiological processes, in-
cluding embryonic development and organ homeostasis. RARs also help to regulate gene
networks that control cell growth, differentiation, survival, and cell death at the cellular
level [228,229]. RARs are divided into three different subtypes: RARα, RARβ, and RARγ
and each subtype has different isoforms. RARβ is divided into four isoforms (β1, β2, β3,
and β4), each with differing affinities for retinoids and biological roles [230]. The first
nuclear RAR in humans, RARα (NR1B1), has a high affinity for ATRA and has preserved
the NR modular organization structure. RARβ (NR1B2) and the RARγ (NR1B3) are the
second and the third RAR gene respectively [228].

RAR’s modular structure, which includes many domains and functions, allows them
to process both ligand binding and transcription [231]. The transactivation domain, AF-1, is
found in the amino terminus (A/B region) and forms a recognition surface for co-activators
and other TFs [231]. For DNA recognition, the DBD holds two zinc finger motifs, and the
LBD of the family members are highly conserved. It has a ligand-induced activation factor
called AF-2, which is important in transcriptional coregulator interactions [231]. RARs
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can bind to specific enhancer regions in DNA, known as retinoic acid response elements
(RAREs) in target gene promoters, after dimerization with RXR, resulting in transcriptional
activation of target genes in the presence of ligand [228,232].

Retinoids can induce cell differentiation and inhibit proliferation, which is one of the
reasons why they are used to treat cancer [233]. Surfeit numbers of clinical evidence have
demonstrated that RARβ2 expression is usually inversely linked with tumor grade and
frequently lost or epigenetically silenced in human malignancies [230,234]. According to
a clinical investigation, the state of squamous differentiation and the increase in RARβ-
expression are early events connected to EC [169]. Several clinical, in vitro, and in vivo
studies have reported the leading role of RARs in the development and growth of EC cells.
For example, it was found that expression levels of RARα and RARβ increased significantly
in the higher stages of Barrett’s adenocarcinoma while expression of RARγ was significantly
reduced. Therefore, RARγ may have a tumor suppressor role in Barrett’s carcinogene-
sis [135]. In EC cases, RARβ2 mRNA expressions were markedly decreased, whereas
RARβ4 mRNA expression was elevated. Additionally, when compared to normal tissues,
tumors had higher expressions of cyclin D1 and EGFR, while lower expressions of RARβ1,
COUP-TFI (COUP transcription factor 1), and COUP-TFII were observed. Therefore, in
tumor samples, decreased RARβ2 expression was linked with increased RARβ4 expression
and the inhibition of COUP-TFI and COUP-TFII [141]. Another study has proven that
RARα was overexpressed in human EC tissues, and further, it was demonstrated that RARα
knockdown by siRNA inhibited EC cell proliferation by downregulating proliferating
cell nuclear antigen (PCNA), Ki67, MMP7, and MMP9 expression and increased the drug
sensitivity to 5-fluorouracil and cisplatin [136]. Benzo-[a]pyrene diol epoxide (BPDE) is
found to be an active metabolite of tobacco procarcinogens, and a study has proven that by
suppressing RARβ2 transcription, BPDE reduced RARβ2 mRNA and protein levels. More-
over, retinoic acid was able to partially block BPDE’s inhibitory effect on RARβ2 expression
while increasing the cell cycle G1 phase. Additionally, BPDE-induced COX-2 expression
was linked to RARβ2 inhibition. The expression of EGFR, ERK1/2 phosphorylation, c-Jun,
and COX-2 were decreased after the RARβ2-expression vector was transfected into EC cells.
Additionally, there was little change in the expression of c-Jun and COX-2 after co-treatment
of RARβ2 positive cells with BPDE. These studies have proved that BPDE may cause EC
via inhibiting RARβ2 [158,161,163]. Another study showed that RARβ2′s tumor suppressor
function may be linked to its ability to decrease COX-2 expression, which plays a role in
carcinogenesis and metastasis, and 13 cis-RA mediated activation of RARβ2 suppressed
COX-2 expression, implying that COX-2 inhibition is dependent on RARβ2 expression.
BPDE significantly caused time-dependent methylation of the RARβ2 gene promoter in
esophageal cancer cells, as well as suppression of EGFR, ERK1/2 phosphorylation, c-Jun,
and COX-2 expression. RARβ2 expression is decreased by BPDE, and the restoration of
RARβ2 expression lowers COX-2 protein in esophageal cancer cells, implying that RARβ2
plays a significant role in preventing esophageal carcinogenesis [159,162]. It was also
observed that RARβ expression was gradually lost, starting with the mildly dysplastic
stage of esophageal mucosae. Additionally, the expression of RARβ was reduced as a result
of the differentiation of esophageal squamous. Further, P53 and Ki67 were accumulated
in the later precancerous stage of EC. This study suggests that the expression of RARβ,
P53, and Ki67 could be used as biomarkers for early EC diagnosis in high-risk popula-
tions [137,170,172]. In ESCC, DNA methylation frequently results in the inactivation of the
genes RARβ, RARβ2, CRBP1, and TIG1, which are linked to retinoic acid signaling, and in
contrast, another study revealed that RARβ2, p16, MGMT, CLDN3, CRBP, and MT1G were
increased in ESCC tissues [171,173]. In mice tumors, 4- nitroquinoline 1-oxide (4-NQO),
a carcinogen, inhibited RARβ2 but increased the expression of p-ERK1/2, c-FOS, and
COX-2 proteins, as well as the methylation of the RARβ2 gene promoter. Moreover, it was
shown that RARβ2 expression was decreased and p-ERK1/2, and COX-2 expression were
increased by treatment with 4-NQO in human EC cells in vitro. Moreover, upregulated
p-ERK1/2 and COX-2 expression were found in EC tissues, and p-ERK1/2 expressions



Int. J. Mol. Sci. 2022, 23, 10952 20 of 35

were linked to a more advanced clinical tumor stage [164]. In addition, it was observed that
overexpression of RARβ2 induced retinoid receptor-induced gene 1 (RRIG1) and inhibited
Erk1/2 phosphorylation and COX-2 expression [142]. Another study showed that the
knockdown of DNA (cytosine-5)-methyltransferase1 (DNMT1) in KYSE30 and TE-1 EC
cells led to promoter demethylation and RARβ overexpression. This study showed that
smoking status and low RARβ expression were associated with DNMT1 overexpression
in esophageal SCC patients. Through the activation of DNMT1 in esophageal squamous
epithelial cells, NNK, a tobacco-specific carcinogen, might cause RARβ promoter hyper-
methylation, which ultimately increased cell proliferation and inhibited apoptosis [138].
Another study showed that N-(4-hydroxyphenyl) retinamide (4HPR) but not RA sup-
pressed the proliferation of the ESCC cell line EC109 in vitro. In addition, RARβ2 induction
is correlated with growth inhibition in RA-responsive cells, whereas a failure in RARβ2
inducibility is correlated with RA resistance. These results suggest that 4HPR may operate
as a growth inhibitor through direct or indirect interactions with RARβ2 [160]. Several
clinical studies investigated the methylation status and the expression of the RARβ2 pro-
moter area and revealed a significant relationship between RARβ2 methylation status and
tumor grade. Further, only G2 stage (intermediate grade) tumors showed a link between
methylation status and lower expression of RARβ2, and its restoration was accompanied by
growth inhibition after 5-aza-dc treatment [139,140,174]. Therefore, RARs (α, β, γ) can be
targeted and used as markers for the prevention and treatment of both EACs and ESCCs.

3.6. Retinoid X Receptors (RXRs)

Retinoid X receptors (RXRs) are heterodimeric partners of other members of the
NR superfamily [235]. There are three types of RXRs: RXRα, RXRβ, and RXRγ, all of
which are nuclear transcriptional transactivator proteins that bind to DNA and are ligand-
dependent [175]. The “permissive” subclass of heterodimers, such as PPAR, LXR, and
FXR, is transcriptionally activated by RXR ligands (“rexinoids”) either independently or
in conjunction with partner ligands in the “non-permissive” subclass, such as RAR, VDR,
and TR [235]. The morphogenesis, development, growth, and differentiation of cells are all
regulated by RXR, and its expression is found to be altered in several solid tumors [175].
RXR modulators have therapeutic potential for cancer and other disorders involving the
acquisition and disposal of nutrients, such as metabolic diseases [236].

A surfeit number of studies have proven that RXR is essential for the development
of EC. For example, in a study, it was demonstrated that the mRNA expression of the
three different subtypes of RXR is significantly different in EC tissues and RXR mRNA
expression levels may be useful biomarkers for BE and related adenocarcinoma since
changes in the mRNA expression of all three RXR subtypes (RXRα, RXRβ, and RXRγ) are
frequently observed in the development and progression of these diseases [175]. According
to another study, EC tissues had higher levels of RXR mRNA and protein than normal
esophageal tissues. The level of RXR overexpression was linked to tumor differentiation,
TNM stage, and lymph node metastasis in EC patients. Further, EC patients with high
RXR expression had considerably worse disease-free survival (DFS) and overall survival
rates (OS). Moreover, multivariate analysis showed that the expression of RXR may be a
predictor of DFS and OS in EC patients [176]. Another study showed that all six retinoid
receptor subtypes, including RXR, were active in the tissues of EC patients. RXRβ was
inversely correlated with patient lymph node metastatic status and was linked with a
better clinical outcome across these receptor subtypes. According to these findings, retinoid
receptors, particularly, RXRs play significant roles in ESCC and are associated with patient
prognosis [172]. Furthermore, another study has revealed that both mRNA and protein of
PPARγ and RXRα were expressed in ESCC cell lines from the KYSE series. Moreover, EC
cell growth was decreased by the PPARγ ligand troglitazone (TRO), and RXRα ligand 9-cis
retinoic acid (9CRA) administration had a synergistic impact. The combined treatment
with TRO and 9CRA, which also markedly elevated the sub-G1 phase, showed that ligand
administration was predominantly responsible for inducing apoptotic cell death in EC
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cells. Additionally, TRO + 9CRA treatment significantly inhibited the growth of tumors
implanted in nude mice [157].

3.7. Vitamin D Receptor (VDR)

The vitamin D receptor (VDR) belongs to the NR superfamily and is involved in vita-
min D’s biological activities [237]. The VDR ligand regulates the expression of many genes
involved in calcium/phosphate balance, cellular proliferation and differentiation, and
immunological response [237]. VDR is abundantly expressed in cardiomyocytes, vascular
endothelial cells, and vascular smooth muscle cells [238]. One of three retinoid X receptors
(RXRα, RXRβ, and RXRγ) forms dimers with VDR. The VDR homodimer or VDR-RXR
heterodimer attaches to vitamin D response elements (VDREs), which are enhancer ele-
ments [239]. In combination with the RXR, ligand binding induces VDR nuclear localization
and promotes VDR–DNA complexation. Particular VDREs have been discovered in the
promoter sequences of genes that are activated or repressed by VDR. Interactions with
coregulators are required for VDR-mediated gene regulation (coactivator and corepres-
sor) [240]. The natural ligand of the VDR is 1,25-dihydroxy vitamin D (1,25(OH)2D3), a
hormonal metabolite of vitamin D. VDR enters the nucleus after binding to 1,25(OH)2D3
and forms a heterodimer with retinoid X receptor (RXR), which regulates gene transcription
by interacting with response elements in target gene promoters [241].

An N-terminal domain, a conserved DNA-binding domain, a flexible hinge region,
and a conserved ligand-binding domain make up VDR’s structure [241,242]. The LBD has
12 helices and takes the form of a small, 3D structure when bound to a ligand. Deep inside
the receptor, the ligand-binding pocket enables highly selective interactions with natural
ligands such as 1,25(OH)2D3 [240].

In a study, it was demonstrated that through a bile acid ligand, VDR plays a role in the
early development of EC. Interestingly, it has been shown that in both EAC and columnar
cell metaplasia (CCM), VDR expression was considerably higher in male patients than
in females. Moreover, VDR amplification was linked to a worse prognosis but not VDR
protein expression [144]. However, another study has shown that both JNK1 and VDR
were decreased in ESCC epithelial cells in comparison to the normal esophagus. JNK1 and
VDR stromal expression also reduced the motility, migration, and proliferation of ESCC
cells by blocking signaling pathways involved in proliferation and metastasis. Therefore,
stromal JNK1 and VDR function as tumor suppressors in ESCC, and the degree of their
stromal expression may affect the prognosis of ESCC [146]. Moreover, it was observed that
EAC exhibits VDR expression, and as the tumor dedifferentiates, the expression level of
VDR also decreases [143,177]. In contrast, another clinical study has demonstrated that the
mRNA expression of VDR was higher in BE tissues compared to the normal squamous
epithelium tissues [145]. In addition, it was shown that variable polymorphisms in genes
involved in vitamin D metabolism are connected to the probability of reflux-BE-EAC
development. In addition, low expression of VDR and CYP27B1 and high expression of
CYP24A1 were observed in EAC tumor tissues compared to normal esophageal tissues [179].
Another study showed that claudin-2 was found to be strongly expressed in EAC and
ESCC tissues, and its expression was linked to the expression of the bile acid receptors
VDR and TGR5 [178]. These studies showed that dysregulation of VDR plays a critical role
in the development of EC.

3.8. Other Nuclear Receptors

Several other NRs have also been thoroughly investigated and examined for their
crucial function in esophageal carcinogenesis. One such receptor is the pregnane X receptor
(PXR, NR1I2), also known as PAR (the receptor activated by pregnane) and SXR (steroid
and xenobiotic receptor), which is the NR super family’s archetypal member [243]. Both
endobiotics and xenobiotics can activate PXR. PXR’s biological function as a major xeno-
biotic receptor is primarily mediated by its ligand-dependent binding to regulatory gene
sequences [244]. The 50 kDa PXR protein is composed of the DBD, the relatively short hinge
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region, and LBD with AF-1 and AF-2 regions [245]. PXR signaling has also been linked to
cancer-related processes such as cell survival, proliferation, angiogenesis, and oxidative
stress [246]. It was noted that PXR is associated with the development of EC. For example, a
study has reported that PXR is highly overexpressed in BE and EAC patients and revealed
their nuclear localization in adenocarcinoma tissues. Furthermore, PXR translocates to the
nuclei of adenocarcinoma cells after being stimulated with lithocholic acid. This result,
together with the discovery of a link between a PXR polymorphism and BE, suggests that
PXR may have a role in esophageal illness prognosis and treatment [134]. Hence, insights
into NRs and how they interact with TFs can lead to the discovery of novel drug targets
that can be used to treat esophageal carcinogenesis.

4. NRs as Biomarkers in Esophageal Cancer

Biomarkers are any objective testing and evaluation characteristics that serve as indi-
cations for normal biological processes, case processes, or pharmaceutical responses [247].
Biomarkers are widely used for human illness investigation and play an essential role in
early diagnosis, disease prevention, and the discovery of targeted drugs and drug reac-
tions [247]. Patients with poorly differentiated esophageal carcinoma often have a bad
prognosis, and various agonists and antagonists of NRs have been widely used for the
treatment of EC. Agonists and antagonists with the structure-based design that can either
induce or impede NR activity will give practical treatment methods for this disease [248].
The role of NRs as a potential biomarker has been suggested by the research undertaken
for the early detection, prevention, and treatment of esophageal carcinogenesis. Moreover,
some studies noted that AR is implicated in tumor growth, so it could be a good target
for molecularly targeted ESCC therapies [119]. For example, a study on 77 EAC patients
reported that 94.7% (75/77) of them were seen with high AR expression, and it also implies
that AR influences overall survival. Therefore, this study suggests new treatment options
for EAC, such as drugs that target AR signaling or androgen-responsive genes [147]. In
tumor tissues, the ERβ is expressed more in AC and in poorly differentiated SCC. ER
seems to be a marker of poor biological behaviour, such as dedifferentiation or an ad-
vanced stage of disease ER expression rises with tumor stage and dedifferentiation in both
AC and SCC [125]. In EC tissues, the low expression of PPARγ was observed compared
with normal esophageal epithelium; therefore, PPARγ mRNA expression level can act
as a prognostic marker in post-operative EC patients [129]. According to another study,
Barrett’s tissues have significantly different levels of RAR mRNA expression than normal
esophageal tissues, while Barrett’s dysplasia and adenocarcinoma tissues have dramatically
different RAR mRNA levels. Therefore, these findings suggest that RAR mRNA levels may
be useful biomarkers for this disease [135]. Even though NRs have the potential to serve
as biomarkers and have been the subject of numerous studies, further clinical research is
required to demonstrate their ability to serve as diagnostic and prognostic biomarkers for
the treatment of EC.

5. Epigenetic Alterations in NRs in Esophageal Cancer

The majority of epigenetic regulation of gene expression is dependent on DNA methy-
lation and histone modifications because there are no inherent changes in the DNA se-
quence [249–251]. In human tumors, abnormal epigenetic alterations are more common
than gene mutations, and in the preliminary stages of cancer, epigenetic dysregulation
is a common event [252–254]. Therefore, the disruption of the “epigenetic machinery” is
significant in the genesis of cancer [249,255]. It is well-established that epigenetic changes
play a crucial role in the development and progression of EC [256]. Further, epigenetic
changes, especially in the form of DNA hypermethylation of tumor suppressor genes,
have been seen in ESCC and EAC, as well as the EAC precursor lesion BE. A subset of
these abnormal methylation of tumor suppressor genes is thought to be involved in the
etiology of esophageal malignancies [257,258]. In a study, 125 ESCC tissues were analyzed
and found that 98/125 patients (78.4%) had RARβ2 hypermethylation and concluded that
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hypermethylation of the tumor suppressor gene RARβ2 has been linked to the onset and
severity of ESCC [174]. Another similar study reported that RARβ2 gene methylation is
frequent in the esophageal mucosa of ESCC patients, and it tends to grow in prevalence in
mucosal foci as the disease’s histological severity worsens [173]. In another investigation
of 28 ESCC tissues, diminished RARβ expression was found in 42.9% (12/28) of the cases,
with half of these instances showing RARβ DNA methylation. Although RARβ DNA
methylation was found in non-neoplastic samples (10.0%), the incidence of methylation
in ESCC (25.0%) was higher, suggesting that methylation of the RARβ gene may play a
pivotal role in esophageal carcinogenesis [171].

6. Conclusions

ECs are one of the most aggressive and poorly understood deadliest diseases world-
wide and better treatment options are urgently needed. Despite the recent advances in
oncological and surgical treatment, new methods for predicting disease outbreaks and cur-
ing EC must be investigated to enhance results. For developing a better treatment system,
understanding the vital roles played by the proteins and genes that are being altered due to
epigenetics and mutations is necessary. NRs play a key role in the initiation, development,
and progression of various cancers. Some of the NRs involved in EC development are
ARs, ERs, FXRs, PPARs, RARs, RXRs, and VDRs, and their subtypes. A surfeit number
of studies have reported the role of these receptors in esophageal carcinogenesis, and are
expressed differently depending on the receptor’s function. Interestingly, a few studies
have shown that NRs exhibit both tumor-promoting and tumor-inhibiting properties. In
most cases, the majority of the NRs (ARs, ERs, PPARs, and RARs) are overexpressed in the
ESCC and EAC tissues and cell lines. Moreover, NRs are also involved in the development,
growth, and progression of ESCC and EA. This implies that NRs can be a suitable target for
the diagnosis and prognosis of EC. Further, NRs also has the potential to be a biomarker
for the early detection, prevention, and treatment of esophageal carcinogenesis. Multiple
studies have reported the importance of agonists and antagonists that play a vital role in
the function and expression of NRs in EC. Agonists and antagonists have the potential
to inhibit tumor growth, migration, and invasion and cause apoptosis by modifying the
expression of NRs and by controlling a wide range of genes involved in cell differentiation,
proliferation, and apoptosis. Furthermore, epigenetic changes also play a significant role in
the development and progression of EC. Several studies have proved that hypermethyla-
tion alters the expression patterns of RARβ and RARβ2 in EC [171,173,174]. It is also noted
that there are very few major clinical trials conducted on NRs’ influence on EC. Therefore,
more clinical studies on the role of NRs in the development of EC will aid in the discovery
of novel therapeutic targets for better management of this disease.
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5-aza-dc-5-aza-20 deoxycytidine
4HPR N-(4-hydroxyphenyl) retinamide
AC Adenocarcinoma
AF Activation function
AR Androgen receptors
ARE Androgen Responsive Elements
ATRA All-trans retinoic acid
BA Bile acid
BE Barrett’s esophagus
BPDE Benzo-[a]pyrene diol epoxide
CCM Columnar cell metaplasia
CCK2 Cholecystokinin 2
CDDP Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II)
COUP TF Chicken ovalbumin upstream promoter transcription factor
COX-2 Cyclooxygenase-2
CRBP-1 Cellular retinol-binding protein-1
CTD C-terminal domain
Da-Ea Ethyl acetate extract of D. altaica
DBD DNA-binding domain
DDP Diamminedichloroplatinum
DFS Disease-free survival
DHT Dihydrotestosterone
DNMT1 DNA (cytosine-5)-methyltransferase1
DNMT3A DNA (cytosine-5)-methyltransferase 3A
DPN Diarylpropionitrile
E2 17β-estradiol
EAC Esophageal adenocarcinoma
EC Esophageal cancer
EGFR Epidermal growth factor receptor
ER Estrogen receptor
EREs Estrogen response elements
ERK Extracellular-signal regulated kinase
ERRs Estrogen related receptors
ESCC Esophageal squamous cell cancer
ESR Estrogen receptor
FAK Focal adhesion kinase
FBXO32 F-Box Protein 32
FDA Food and drug administration
FGFR Fibroblast growth factor receptors
FKBP5 FK506-binding protein 5
FU Fluorouracil
FXR Farnesoid X receptor
GCA Gastric cardia adenocarcinoma
GERD Gastroesophageal reflux disease
GRs Glucocorticoid receptors
HGF Hepatocyte growth factor
HMOX1 Heme Oxygenase 1
HREs Hormone response elements
HSP90 Heat shock protein 90
IL-6 Interleukin-6



Int. J. Mol. Sci. 2022, 23, 10952 25 of 35

JNK c-Jun N-terminal kinases
KLK3 Kallikrein Related Peptidase 3
LBD Ligand binding domain
LCA Lithocholic acid
LDH Lactate dehydrogenase
LINE-1 Long Interspersed Element-1
LXRs Liver X receptor
MAPK Mitogen-activated protein kinase
MMP Matrix metalloproteinase
MPP Methyl-piperidinopyrazole
MRTF Master Regulator Transcription Factors
NCoR Nuclear receptor corepressor
NF-κB Nuclear factor kappa B
NNK 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone
NQO Nitroquinoline 1-oxide
NRs Nuclear receptors
NR1H4 Nuclear Receptor Subfamily 1 Group H Member 4
NR4A1 Nuclear receptor 4A1
NTD N-terminal domain
OS Overall survival
PAR Pregnane-activated receptor
PCNA Proliferating cell nuclear antigen
PG Prostaglandin
PGC-1 PPAR coactivator-1
PHTPP 4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol
PLIN2 Perilipin 2
PPAR Peroxisome Proliferator Activated Receptor
PPRE Peroxisome proliferator response element
PPT 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole
PRs Progesterone receptors
PXR Pregnane X receptor
RA Retinoic acid
RAR Retinoic acid receptor
RAREs Retinoic acid receptor elements
RRIG1 Retinoid receptor-induced gene-1
RXR Retinoid X receptor
SERMs Selective estrogen receptor modulators
SCC Squamous cell carcinoma
SIRT1 Sirtulin 1
SMRT Silencing mediator of retinoic acid and thyroid hormone receptor
STAT3 Signal Transducer and Activator of Transcription 3
SXR Steroid and xenobiotic receptor
TFs Transcription factors
TGR5 Takeda G protein-coupled receptor 5
TIG1 Tazarotene-induced gene-1
TLRs Toll-like receptors
TNM Tumor nodes metastases
TR Thyroid hormone receptor
TRO Troglitazone
TZD Thiazolidinedione
VDR Vitamin D receptor
VDR Vitamin D receptor elements
VEGFA Vascular endothelial growth factor A
WNT5A Wnt Family Member 5A
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