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Abstract: Background: Multiple sclerosis (MS) is frequently characterized by a variety of clinical
signs, often exhibiting little specificity. The diagnosis requires a combination of medical observations
and instrumental tests, and any support for its objective assessment is helpful. Objective: Herein, we
describe the application of thermal liquid biopsy (TLB) of blood plasma samples, a methodology
for predicting the occurrence of MS with a noninvasive, quick blood test. Methods: TLB allows one
to define an index (TLB score), which provides information about overall real-time alterations in
plasma proteome that may be indicative of MS. Results: This pilot study, based on 85 subjects (45 MS
patients and 40 controls), showed good performance indexes (sensitivity and specificity both around
70%). The diagnostic methods better discriminate between early stage and low-burden MS patients,
and it is not influenced by gender, age, or assumption of therapeutic drugs. TLB is more accurate for
patients having low disability level (≤3.0, measured by the expanded disability status scale, EDSS)
and a relapsing–remitting diagnosis. Conclusion: Our results suggest that TLB can be applied to
MS, especially in an initial phase of the disease when diagnosis is difficult and yet more important
(in such cases, accuracy of prediction is close to 80%), as well as in personalized patient periodic
monitoring. The next step will be determining its utility in differentiating between MS and other
disorders, in particular in inflammatory diseases.

Keywords: multiple sclerosis; thermal liquid biopsy; plasma proteome profile; differential scanning
calorimetry; multivariate analysis
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1. Introduction

Multiple sclerosis (MS) is the most common neurodegenerative disease of the central
nervous system (CNS) in young adults, ultimately leading to long term disability [1]. It is
characterized by a chronic inflammatory status causing demyelination of neurons and ax-
onal loss. MS incidence is increasing worldwide (more than 2.8 million people are believed
to be currently affected), prevailing in more-developed countries, high-income people,
and with women showing a greater propensity (female to male ratio is 3 to 1) to develop
the disease [2,3]. On a clinical basis, a variety of neurological signs and symptoms may
occur, including sensory disturbances, motor weakness, visual complaints, incoordination,
fatigue, sphincteric, and sexual dysfunction [4].

Due to the variety of potential indicators, MS diagnosis is very challenging. Its
identification is primarily clinical and relies on the documentation of symptoms and signs
attributable to white matter lesions, along with the exclusion of other conditions that may
mimic MS. There is no single pathognomonic clinical feature or diagnostic test of MS,
and its detection is based on the integration of clinical, imaging, and laboratory findings.
Diagnosis can be supported by cerebrospinal fluid (CSF) analysis, whereas blood tests
are commonly used only to rule out other diseases. In such a complex picture, physical
disability is commonly quantified by the expanded disability status scale (EDSS), which
integrates neurological findings concerning eight functional systems and mainly relies on
the assessment of the patient walking ability. The EDSS score ranges from 0 (completely
normal neurological examination) to 10 (death due to MS), with values >7 indicating a very
compromised clinical picture.

The rate of MS misdiagnosis is about 10% and represents an issue in the clinical
practice [5]. The risk of misdiagnosis is particularly present in the early stages of the
disease, when symptoms are often mild, generic, or common to other different disorders.
Moreover, there is a high interest in attaining a timely diagnosis to allow the patient to
benefit of an early treatment, which may further increase misdiagnosis risks based on such
mild symptoms. In order to make a diagnosis of MS, the 2017 McDonald criteria stress
the need for no better explanation to account for the variety of symptoms observed [6].
In this framework, it would be very desirable to combine current diagnostic methods
with innovative complementary biomarkers able to identify new indicative parameters,
especially in the early stage of the disease, when the current methods may not fully capture
the pathological signs.

In the latest years, a new area of interest is the search of novel biomarkers to help
diagnosis and to monitor ongoing disease activity. CSF represents the ideal source of
biomarkers, but lumbar puncture is a high-risk relatively invasive procedure and unpleas-
ant for the patients; therefore, it is not an optimal tool. In contrast, easily collected blood
samples may reflect the status of both peripheral immune system and, indirectly, of CNS
functioning mechanisms [7–10]. In fact, about 0.5 L of CSF is adsorbed into the blood
every day, suggesting that plasma may be a source of disease biomarkers originating from
CSF [11].

To detect and quantify biological materials ranging from proteins to disease-specific
biomarkers, high-sensitivity biophysical techniques are available [12–15]. These methods
include differential scanning calorimetry (DSC), a thermoanalytical technique widely ap-
plied in life science to measure the thermal denaturation profiles of biomolecules and their
interaction with various metabolites [16–20]. More recently, this method is expanding in
the biomedical area to monitor the thermal behavior of complex biological fluids, such as
plasma, CSF, or other extracts obtained from homogenates tissue [21–25]. The plasma ther-
mal profile (thermogram) reflects the thermal denaturation of the major plasma proteins,
revealing changes in composition and the presence of post-translational modifications
and/or interacting metabolites in a global way. Interestingly, comparison of the thermal
profiles of biological samples among healthy and pathologic individuals has revealed
distinctive alteration, contributing to validate DSC as a complementary noninvasive tool
for the diagnosis and discrimination of several autoimmune diseases and malignancies,
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including gastric adenocarcinoma [24], lupus [26], glioblastoma [25], lung cancer [27], and
melanoma [28].

A further and more ambitious step in this direction is the clinical implementation of
the thermal liquid biopsy (TLB), which combines the extraction of physical parameters
derived from the experimental DSC thermograms of blood samples with a multiparametric
mathematical analysis [27,28]. The aim of TLB is to obtain a score value representing a
single diagnostic indicator able to predict the occurrence of a disease, to be easily compared
with a control reference value. The TLB has already been applied to study lung cancer,
providing a prediction score that strongly correlates with the presence of disease, with high
accuracy, sensitivity, and specificity [27].

In the present work, we apply TLB to discriminate MS patients from healthy individ-
uals by analyzing their plasma thermograms. The plasma thermal profile (thermogram)
reflects the thermal denaturation of the major plasma proteins, revealing changes in compo-
sition, and the presence of post-translational modifications and/or interacting metabolites
in a global way. The results show clear statistical differences between the two groups
of individuals. The TLB score is able to capture, with a good reliability, thermal profile
alterations of plasma of MS patients. Thus, we suggest that TLB can help to improve MS
diagnostic and monitoring, in combination with other tests, and constitutes a noninvasive,
low-risk, quick diagnostic tool.

2. Materials and Methods
2.1. Subjects

MS patients, with a confirmed MS diagnosis according to the revised McDonald
criteria [6,29], were recruited in the MS Center of the Annunziata Hospital (Cosenza, Italy).
Exclusion criteria were: concomitant autoimmune disorders other than MS, pregnancy, and
a high degree of cognitive decline preventing the expression of an informed consent. The
collected clinical and personal data of the patients included gender, age, disease duration,
disease severity expressed in terms of EDSS, and current pharmacological treatment.

The MS group consisted of 45 patients (31 females and 14 males), in the range of age
22–69 years (average 42.7 years) (Table 1). Most of the patients had a relapsing–remitting
clinical form of MS (RRMS), and few of them were in the secondary progressive (SPMS)
phase (Table 1). The EDSS values in the MS cohort ranged from 0.5 to 7.0 (0.5–3.0: mild
disability; 3.5-7.0: moderate/severe disability). Most of the patients (32 individuals) had
EDSS values in the 0.5–3.0 range, whereas 13 of them belonged to the 3.5–7.0 range (Table 1).
Within the MS group, the median age of patients in the EDSS = 3.5–7.0 group (49.85
(8.59)) is significantly higher (p = 0.003, T-test) than the median age of patients in the
EDSS = 0.5–3.0 group (39.75 (11.04)). The time from the onset of the disease was very
variable, ranging from 1 to 47 years (Table 1 and Figure 1). All the patients, with the
exception of seven of them, were treated with immunomodulatory or suppressive therapy
(Table 1).

The HC group consisted of 40 individuals, including 21 females and 19 males (Table 1).
They were recruited at the same Annunziata Hospital (21 subjects) or among blood donors
in the Centro Sanitario of the University of Calabria (19 subjects). According to the Fisher
test (p = 0.181), there were no statistical difference in the proportion of males and females
in the HC group and in the MS group. The age range was 24–60 years with a single outlier
of 71 years (average age: 37.3 years), and all of them showed no evidence of inflammatory
and neurological diseases. There were statistically significant differences (p = 0.020, Wilcox
test) between the median age of the HC group (35.00 [29.00;42.25]) and the median age of
the MS group (45.00 [33.00;50.00]), being higher in the MS group.

All MS and HC subjects had the same ethnic origin (Calabria, Italy). They were
fully informed about the purpose of the study and gave a written consent. The study
was approved by the Ethics Committee of the Northern Area of the Calabria Region
(protocol n. 50 of 14 February 2017).
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Table 1. Age distribution and boundaries (Q1 to Q3) for its partition in quartiles.

Groups (1) Gender N (%) Minimum Q1 Q2 Mean Q3 Maximum

HC
Male 19 (47.50%) 24.00 26.00 32.00 36.58 40.50 71.00

Female 21 (52.50%) 27.00 30.00 38.00 37.95 43.00 52.00
Total 40 24.00 29.00 35.00 37.30 42.25 71.00

MS
Male 14 (31.11%) 24.00 31.25 39.00 41.21 49.50 63.00

Female 31 (68.89%) 22.00 34.50 45.00 43.32 50.50 69.00
Total 45 22.00 33.00 45.00 42.67 50.00 69.00

Diagnosis (2) Gender N (%) Minimum Q1 Q2 Mean Q3 Maximum

RRMS
Male 12 (31.58%) 24.00 31.00 33.50 38.42 47.25 58.00

Female 26 (68.42%) 22.00 33.75 45.00 43.23 50.75 69.00
Total 38 22.00 32.25 43.50 41.71 50.00 69.00

SPMS
Male 2 (28.57%) 53.00 55.50 58.00 58.00 60.50 63.00

Female 5 (71.43%) 30.00 43.00 46.00 43.80 48.00 52.00
Total 7 30.00 44.50 48.00 47.86 52.50 63.00

EDSS (3) Gender N (%) Minimum Q1 Q2 Mean Q3 Maximum

0.5–3.0
Male 10 (31.25%) 24.00 31.00 32.50 35.90 43.75 50.00

Female 22 (68.75%) 22.00 33.00 42.00 41.50 50.00 69.00
Total 32 22.00 31.00 38.00 39.75 49.25 69.00

3.5–7.0
Male 4 (30.77%) 44.00 50.75 55.50 54.50 59.25 63.00

Female 9 (69.23%) 30.00 45.00 48.00 47.78 52.00 59.00
Total 13 30.00 45.00 52.00 49.85 55.00 63.00

Disease onset (4) Gender N (%) Minimum Q1 Q2 Mean Q3 Maximum

≤10 years
Male 10 (37.04%) 29.00 31.25 33.50 39.30 47.75 58.00

Female 17 (62.96%) 22.00 30.00 39.00 40.59 52.00 59.00
Total 27 22.00 30.50 37.00 40.11 50.50 59.00

>10 years
Male 4 (22.22%) 24.00 39.00 48.50 46.00 55.50 63.00

Female 14 (77.78%) 33.00 43.50 46.00 46.64 49.75 69.00
Total 18 24.00 43.25 46.00 46.50 50.00 69.00

Therapy (5) Gender N (%) Minimum Q1 Q2 Mean Q3 Maximum

No
Male 2 (28.57%) 32.00 39.75 47.50 47.50 55.25 63.00

Female 5 (71.43%) 30.00 36.00 39.00 43.80 45.00 69.00
Total 7 30.00 34.00 39.00 44.86 54.00 69.00

Yes
Male 12 (31.58%) 24.00 31.00 39.00 40.17 48.50 58.00

Female 26 (68.42%) 22.00 34.00 46.00 43.23 50.75 59.00
Total 38 22.00 33.00 45.50 42.26 50.00 59.00

(1): Healthy control (HC) or multiple sclerosis (MS). (2): MS patients with relapsing–remitting clinical form of MS (RRMS) and secondary
progressive (SPMS) diagnosis. (3): MS patients, either with mild (expanded disability status scale (EDSS) = 0.5–3.0) or moderate/severe
disability (EDSS = 3.5–7.0). (4): MS patients with short (≤10 years) and long (>10 years) time from the onset of the disease. (5): MS patients
with (Yes) and without (No) therapy.
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2.2. Blood Sample Processing

Samples (3 mL) of peripheral venous blood of the subjects were collected in EDTA
tubes, and plasma was separated by centrifugation at 1500 rpm for 15 min. Processed
plasma was dispensed in 0.1 mL aliquots and stored at −20 ◦C until use. Total protein
concentration was measured before freezing, by using the Biuret method [30].

2.3. Sample Preparation and DSC Measurements

After thawing, plasma samples were diluted 1:20 (v/v) with Dulbecco phosphate
buffer saline (DPBS) solution (Sigma Aldrich, St. Louis, MO, USA), 10 mM at pH 7.4,
and properly degassed before being loaded into the cell. Thermograms were registered
with a high-sensitivity VP-DSC microcalorimeter (MicroCal, Northampton, MA, USA)
at a scan rate of 1 ◦C/min between 10 and 100 ◦C, after 20 min of equilibration time
at the starting temperature. Solvent–solvent baselines acquisition followed the same
experimental conditions. Samples were given a code, and lab technicians (performing the
thermal denaturation experiments and analyzing the experimental data) did not know the
nature of each sample, ensuring that this study was conducted in a blind manner.

2.4. Thermogram Analysis and Deconvolution

Correction and processing of the raw data was performed using Origin software
(OriginLab, Northampton, MA) as previously described [24]. In brief, a multiparametric
procedure was applied, based on a deconvolution analysis of each thermogram with six
individual components. The mathematical model for each of the individual transitions is
the logistic peak function:

Cp(T) = Cp,0 +
i=6

∑
i=1

4Aiexp
(
−(T−Tc,i)

wi

)
(

1 + exp
(
−(T−Tc,i)

wi

))2 (1)

where each peak is characterized by three parameters: the height, Ai, the center temperature,
Tc,i, and the width, wi. Moreover, Cp,0 is an adjustable parameter to offset the baseline
correction. The deconvolution analysis provides parameters describing phenomenological
physical features for each experimental thermogram. Observed thermogram alterations
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due to up- or down-regulation of proteins/components in plasma or due to interactions
among proteins and metabolites would be reflected in such parameters. These eighteen
parameters represent the primary set of the transition parameters for the subsequent
mathematical processing.

2.5. Multiparametric Data Analysis

The 18 primary parameters obtained directly from the thermogram deconvolution
were combined to define a new final set of 14 parameters, {pk}, more convenient for
extracting and summarizing the essential geometric thermogram features to be used for
calculating the TLB score and comparing thermograms, as defined in [24]. The final
parameters obtained from the calorimetric curves were defined as follows:

The average temperature, Tav, describes the average temperature of the thermogram
Cp(T) when considered as a density distribution function:

Tav =
∑j Cp

(
Tj
)
Tj

∑j Cp
(
Tj
) (2)

with j running over the entire range of the experimental points in the thermogram.
The skewness, G1, describes the asymmetry of the thermogram:

G1 = m3
m3/2

2

mk =
∑j Cp(Tj)(Tj−Tav)

k

∑j Cp(Tj)

(3)

The normalized area under the curve, AUCni, provides an Ai-normalized area under
the thermogram:

AUCni =
∑j Cp

(
Tj
)

Ai
(4)

The normalized area of the height polygon, APni, provides the Ai-normalized area of
the irregular hexagonal plot constructed with the heights of the six individual components:

APni =
s=6

∑
s=1

√
3

4
As As+1

A2
i

(5)

In addition, finally, the normalized distance value, Dvi, provides the Euclidean dis-
tance, using Tav, G1, and APni, as Cartesian coordinates, from the center of the HC group
ellipsoid (geometric point with coordinates equal to the average values for those parameters
within the set of the healthy individuals):

Dvi =

√√√√(Tav − Tav

Tav

)2

+

(
G1 − G1

G1

)2

+

(
APni − APni

APni

)2

(6)

2.6. Statistical Model

The final set of parameters {pk} obtained in the multiparametric data analysis were
used to derive the TLB score by using a generalized linear model (GLM), which represents
the probability, P, of an individual to show plasma alterations in the thermogram according
to its plasma thermogram characterized by {pk}, which could be associated to disease:

TLB score = P(alterations|{pk} ) =
e(µ({pk}))

1 + e(µ({pk}))
(7)

where µ({pk}) is a linear combination of the final parameters derived in the previous section
(see Equations (2)–(6)).

µ({pk}) = a0 + ∑
k=1

ak pk (8)
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The coefficients optimal ak are estimated by means of a maximum likelihood estimator
(binomial GLM with logit link model). Because the purpose is predicting a binary variable
(healthy vs. diseased), the binomial GLM becomes a suitable tool to estimate a logistic
regression with the outcome being the probability plasma alteration (i.e., disease) according
to a given TLB thermogram. Such a TLB score is the single value employed for classifying
a given subject as healthy or diseased (diagnostic test). As any probability, the TLB score
ranges between 0 and 1: the model classifies the subjects as having plasma alterations
(diseased) for TLB score values >0.5 and lacking relevant plasma alterations (healthy) for
values <0.5.

The performance of the diagnostic test was evaluated by calculating common perfor-
mance indexes (sensitivity, specificity, positive predictive value, and negative predictive
value) and the receiver operating characteristic (ROC) curve.

Sensitivity = TP
TP+FN

Speci f icity = TN
TN+FP

PPV = TP
TP+FP

NPV = TN
TN+FN

(9)

where TP, TN, FP, and FN refer to true positives, true negatives, false positives, and false
negatives, respectively.

Previously, we employed the TLB score for lung cancer patient classification, and
three closely related predictive models were constructed using the complete set or partial
multiparametric sets of parameters mentioned above: model 1 based on Tav, G1, AUCni,
and APni (10 parameters); model 2 based on Dvi (4 parameters); and model 3 based on all
the 14 parameters [27]. In this work, we have applied the same methodology to MS for
designing a model useful for patient diagnosis and monitoring.

3. Results
3.1. Thermograms of Plasma Samples for Subjects from HC and MS Groups

Thermograms reflecting the thermal behavior of the plasma proteins against thermal
denaturation were acquired for all the subjects. Figure 2 shows some representative exam-
ples. The thermograms from the 40 HC individuals are very similar, providing a robust
reference group for identifying differential features in MS patients. Visual inspection of
thermograms from patients with EDSS ≤ 3 and EDSS > 3.5 did not provide any hints about
key specific features of MS at any stage. Apart from individual variability, profile patterns
seemed to be quite similar at a first glance.
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Figure 2. Thermogram comparison. (A) Average and standard deviation of the 40 thermograms from the HC group; (B)
thermograms from 20 MS patients with EDSS ≤ 3.0; and (C) thermograms from 20 MS patients with EDSS > 3.5.

3.2. Analysis of Individual TLB-Derived Parameters

There were no statistically significant differences (p > 0.05, ANOVA test/Kruskal–
Wallis test) of the mean/median of each TLB parameter as a function of group age (Table S1
included in the Supplementary Material). Within the MS group, there are no statistically
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significant differences (p > 0.05, ANOVA/Kruskal–Wallis test) of the mean/median of each
TLB parameter as a function of the EDSS group, except for the parameter Tav (p = 0.011)
(Table S2 included in the Supplementary Material). The thermograms for each individual
were analyzed with the phenomenological six-component deconvolution curve, and the
final set of fourteen TLB-associated parameters were calculated. As a preliminary statistical
evaluation of the ability of each parameter to classify subjects into HC and MS groups, we
determined the three boundaries (Q1, Q2, Q3) between the four quartiles for the distribution
of each TLB-associated parameter within the two groups (Figure 3; Tables S3 and S4).
According to Wilcoxon and t-Student tests, only Tav, AUCn4 and APn4 showed statistically
significant differences between HC and MS groups (p-value < 0.05) (Table S4).
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Subsequently, to further evaluate the predictive capabilities of each single TLB-
associated parameter, we performed an individual ROC curve analysis. The idea behind
such analysis is the identification of an optimal cut-off value for each parameter that might
be employed for classifying subjects as either healthy or diseased (Table S5). The Youden
method was employed [31]. It is evident that AUCn3, AUCn4, APn4, AUCn5, APn5, and Dv5
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are the most successful individual parameters (high success rate, sensitivity, and specificity
values) in correctly classifying the subjects.

3.3. TLB Score: A Classifying Predictor for MS

Because individual parameters are not able to discriminate efficiently between HC
and MS groups, a multivariant logistic regression approach was applied employing the
generalized linear model [27]. Three models were considered depending on the set of TLB-
associated parameters included in this analysis (Supplementary Material, Table S6). Each
model provided a TLB score for classifying subjects as healthy or diseased (<0.5 or >0.5,
respectively). Model 3 (including all fourteen TLB-associated parameters) performed better
compared to the other two models (Table 2 and Table S7), with a 68.24% success rate in
correctly classifying individuals, 32.50% false positive rate (i.e., classifying a healthy subject
as diseased), and 31.11% false negatives (i.e., classifying a diseased subject as healthy). No
single parameter exhibited a statistical significance in the discrimination between HC and
MS groups (Table S6); the combination of all parameters provided a TLB score with the
highest ability to distinguish between HC and MS groups.

Table 2. Model comparison based on the ability to classify subjects.

Model Success Rate Sensitivity Specificity PPV NPV

1 63.53% 64.44% 62.50% 65.91% 60.98%
2 56.47% 64.44% 47.50% 58.00% 54.29%
3 68.24% 68.89% 67.50% 70.45% 65.85%

The ability to discriminate between the two groups of subjects also reflected in the
global ROC curve (Figure 4). The area under such curve was 0.79, indicating good accuracy
of the methodology in terms of predictive power.
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Figure 4. Receiver operating characteristic (ROC) curve illustrating the statistical performance of
model 3 for calculating the thermal liquid biopsy (TLB) score.

Figure 5 shows the distribution of the TLB score calculated with model 3. The TLB
score is a continuous variable taking values between 0 and 1; the closer to 1, the higher
the probability of plasma alterations. HC and MS groups showed markedly different
distribution in the TLB score: Q1 = 0.22, Q2 = 0.37 and Q3 = 0.55 for HC group, and
Q1 = 0.45, Q2 = 0.64 and Q3 = 0.89 for MS group. The difference in the medians of the
two groups is statistically significant (p-value < 0.001). This provides a visual assessment
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for the correlation between the TLB score and the absence or presence of MS. As the TLB
score increases, the percentage of subjects predicted to be MS patients increases and the
percentage of controls decreases: below a predicted TLB score of 0.25, all individuals are
HC subjects, whereas above a TLB score of 0.75, all individual are patients diagnosed from
MS (Figure 6).
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Figure 5. Distribution of the TLB score within healthy individuals (HC group) and multiple sclerosis
patients (MS group). The lines represent an equivalent Gaussian distribution. The TLB score threshold
for discriminating between an unaltered and altered thermal liquid biopsy (TLB) thermogram is 0.5.
There are 13 HC subjects with TLB score > 0.5 (32.50% false positive rate) and 14 MS patients with
TLB score < 0.5 (31.11% false negative rate).
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3.4. Distinctive Features of MS Patients versus HC Individuals according to TLB Values

To study the performance of the proposed TLB score for detecting MS, we carried
out a descriptive analysis using the data distribution in quartiles and the rank-based
t-Student/Wilcoxon test or ANOVA/Kruskal–Wallis test, depending on the normality
character of the parameter distribution, to address whether the distribution by group is
similar or not. It can be observed (Figure 7, Table 3; Table S8) that there are no significant
differences in the distribution of TLB score in the HC group according to gender and age
of the individuals (p-value > 0.05; Table S8). Thus, in healthy individuals, the probability
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of having a normal/altered TLB thermogram does not depend on either gender or age.
When looking at the behavior of the classification established by the TLB score, a number
of subjects (13 individuals) are classified as having an altered TLB thermogram (32.50%
false positives) (Table 3). There is no significant departure from independence between the
variables involved (age, gender, etc.).
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Figure 7. Distribution of the probability score (TLB score) within healthy individuals (HC group, black) and multiple
sclerosis patients (MS group, red) according to gender (left) and age (right). The p-value (t-Student and ANOVA test in HC
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subcategories (gender and age) within HC and MS groups (p-value > 0.05).

Table 3. Contingency table for gender and age for model 3.

Group Gender TLB Score < 0.5 TLB Score > 0.5 p-Value

HC
Male (n = 19) 14 (73.68%) 5 (26.32%)

0.511Female (n = 21) 13 (61.90%) 8 (38.10%)

MS
Male (n = 14) 2 (14.29%) 12 (85.71%)

0.165Female (n = 31) 12 (38.71%) 19 (61.29%)

Age TLB Score < 0.5 TLB Score > 0.5 p-Value

HC
<35 (n = 22) 17 (77.27%) 5 (22.73%)

0.31535–45 (n = 10) 6 (60.00%) 4 (40.00%)
>45 (n = 8) 4 (50.00%) 4 (50.00%)

MS
<35 (n = 15) 3 (20.00%) 12 (80.00%)

0.44435–45 (n = 9) 4 (44.44%) 5 (55.56%)
>45 (n = 21) 7 (33.33%) 14 (66.67%)

Note: p-values were calculated according to Fisher’s independence test.

It is evident that the TLB score for individuals with MS is considerably higher than for
HC subjects (Figure 5). As it occurred in the HC group, there are no significant differences
in the TLB score according to gender or age (p-value > 0.05; Table 3, Table S8 and Figure 7).
However, when looking at the behavior of the classification established by the TLB score,
some subjects (14 patients) had an unaltered thermogram (31.11% false negatives) (Table 3).
Again, in this case, there is no significant departure from independence between the
variables involved.

A statistically significant relationship was observed between the TLB score and the
level of disability and diagnosis stage (p-value < 0.05) (Figure 8, Table S9). Moderate/severe
disability (EDSS = 3.5–7.0) and advanced stage (SPMS) are characterized by small TLB
scores, which would conspire to misclassify these subjects as healthy, compared to mild dis-
ability and early stage (RRMS) with higher TLB scores, which would help in identification
as diseased subjects (Figure 8, Table S9). In this case, not only a significant departure from
independence was observed between the variables involved, but this effect was peculiar
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of this analysis model and did not appear when models 1 and 2 were applied (Tables S10
and S11).
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Figure 8. Distribution of the probability score (TLB score) for healthy individuals (HC group, black) and multiple sclerosis
patients (MS group, red) according to (A) level of disability (EDSS = 0.5–3.0: mild disability; EDSS = 3.5–7.0: moderate/severe
disability), (B) diagnosis stage (RRMS: early stage; SPMS: advanced stage), (C) pharmacological treatment (no/yes), and
(D) disease duration (more or less than 10 years). The p-value (Wilcoxon test) indicates there is a statistically significant
difference regarding the level of disability, the diagnosis stage and the therapy in the MS group (p-value < 0.05) but not in
the disease duration (p-value > 0.05).

By contrast, there are no significant differences in the TLB score (model 3), in regards
to the time from the onset of the disease (p-value = 0.746; Figure 8, Table S9).

Most of nontreated patients (n = 7), 6 out of 7 (85.71%) belonged to both EDSS (0.5–3.0)
and RRMS groups. Some subjects (14 individuals) were classified as having an unaltered
TLB thermogram (false negatives) and were mixed from EDSS groups (Table 4).
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Table 4. Contingency table for clinical history information (EDSS, diagnosis stage, disease duration
and treatment) in MS group.

EDSS TLB Score < 0.5 TLB Score > 0.5 p-Value

0.5–3.0 (n = 32) 7 (21.87%) 25 (78.13%)
0.0723.5–7.0 (n = 13) 7 (53.85%) 6 (46.15%)

Diagnosis TLB Score < 0.5 TLB Score > 0.5 p-Value

RRMS (n = 38) 9 (23.68%) 29 (76.32%)
0.023SPMS (n = 7) 5 (71.43%) 2 (28.57%)

Disease duration TLB Score < 0.5 TLB Score > 0.5 p-Value

<10 years (n = 27) 9 (33.33%) 18 (66.67%)
0.753>10 years (n = 18) 5 (27.78%) 13 (72.22%)

Therapy TLB Score < 0.5 TLB Score > 0.5 p-Value

No (n = 7) 0 (0.00%) 7 (100.00%)
0.081Yes (n = 38) 14 (36.84%) 24 (63.16%)

Note: p-values were calculated according to Fisher’s independence test.

4. Discussion

A timely diagnosis of MS offers many advantages to patients, who can thus take
advantage of early treatments. Attention is increasingly being focused in searching for
specific biomarkers of MS in body fluids, and it would be particularly desirable to identify
such markers in the bloodstream. Many efforts are ultimately directed toward the devel-
opment of liquid biopsy, a powerful tool for routine clinical care in monitoring disease
progression and response to therapy. In this view, recent studies aiming to explore the
plasma proteome with new methodologies for sensitive detection of proteins in a wide
range of concentrations have been reported [31,32]. As an example, by using a proteomic
approach, a higher level of two plasma proteins (oncostatin M and hepatocyte growth
factor) was found in MS patients compared to healthy subjects (correlation was proven by
AUC values of 0.69 and 0.77, respectively) [32]; both proteins have a neuroprotective effect,
and it was suggested that such an increase might be a natural compensation mechanism
following the neuronal damage induced by the disease-associated inflammation states.

The approach proposed in our study is indirectly based on the assumption of the
existence of some specific metabolites associated with blood plasma proteins and acting as
biomarkers of MS, but at variance with other studies, it does not rely on the necessity of
knowing their exact chemical nature, binding location, or amount. The procedure consists
in taking a small amount of blood (about 3 mL) in a routine sampling and, without any
preliminary special treatment or the use of any reagent, performing a simple calorimetric
scan. The analysis of the plasma thermogram obtained is used to derive a single parameter
called TLB score, which provides a prediction of the occurrence of MS in the subject
through a comparison with the results obtained in our pilot analysis. In this work, we have
compared a group of 45 MS patients with an HC group of 40 individuals. The profiles
of the MS group do not show apparent differences compared to the control population,
making it difficult to discriminate between the two groups by visual inspection (Figure 2).
This behavior indicates that the changes within the plasma proteome of the MS patients
are subtle, although we demonstrated that they are within the sensitivity of the thermal
measurements. More evident differences in the thermal profiles of plasma/serum were
obtained for other pathologies [25,26,28] where larger alterations of protein or metabolites
may occur.

To evidence the possibility of revealing the occurrence of MS, a mathematical analysis
of the calorimetric data is necessary. To this aim, we have analyzed the TLB parameters
derived from the deconvolution of the experimental thermograms. Among the fourteen
TLB-associated parameters extracted (Table S4), we found that three of them (Tav, AUCn4
and APn4) show statistically significant differences between healthy and diseased subjects.
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Based on previous studies where different algorithms were compared [27], here we selected
the generalized linear model as a predictive tool that provides a TLB score which correlates
with the plasma profile features. Three models were investigated (Table 2) based on the
examination of data for either subgroups separately (models 1 and 2) or the complete set of
the TLB-parameters (model 3). The best performance was obtained with model 3, which
provided a sensitivity of 68.89% (i.e., correct classification of a diseased individual) and a
specificity of 67.50% (i.e., correct classification of a healthy individual). This model, which
we finally adopted for our TLB methodology, gives an area under the ROC curve value of
0.79, demonstrating a good accuracy to identify MS subjects. This finding is remarkable
considering not only the similarity of the thermograms obtained for our cohort of subjects
(Figure 2) but also the peculiarity of MS, which is characterized by a heterogeneous clinical
presentation and disease course. The sensitivity and specificity from the model were
not optimal; nevertheless, results are particularly encouraging, because (1) the visual
differences between HC and MS thermograms are subtle (Figure 2); and (2) MS is a disease
affecting mainly the CNS, and little is known about its reflection in blood plasma. In fact,
the changes in the biochemical composition of blood plasma are relatively minor compared
to changes in CSF, and they do not necessary reflect all possible alteration occurring in the
CNS during the progression of the MS disease. A number of molecular biomarkers for MS
disease identified in both plasma and CSF were proposed [32,33].

The distribution of the TLB score (Figures 5 and 6) shows that values ≥ 0.75 are found
only for MS patients, whereas TLB score ≤ 0.25 was found only for HC individuals. Within
these two values, there is a partial overlap determining a 32.50% rate of false positives (HC
with TLB score > 0.5) and a 31.11% rate of false negatives (MS with TLB score < 0.5). Thus,
it is clear that extreme values of the TLB score are highly indicative of the presence/absence
of the pathology, although we do not claim a perfect sensitivity and specificity of our
methodology in such cases.

According to the results, the TLB score is not affected by gender or age in both HC and
MS groups (Table 3, p > 0.05). When the distinctive classification features of the MS group
(such as the disease stage, EDSS, and duration) are taken into account, the predictive power
of the model provides better outcome for MS patients having a mild disability (EDSS ≤ 3.0,
p = 0.020) and an early stage of the disease (RRMS, p = 0.009). For these patients the success
rate of the TLB score is near 80% (Table 4).

These rather surprising observations seem to concur in indicating that the TLB score
works best for patients with a mild form of MS and with a more recent onset. This
finding mirrors the one observed when applying TLB to cancer patients [27]. A plausible
explanation (and an intriguing hypothesis) is that at earlier stages of MS the metabolic
disorders caused by inflammation in the CNS are considerable and they reflect in large
protein-related blood plasma alterations (high TLB score), whereas when MS is at a late
stage the organism has already reached a status of adaptation and compensation of the
metabolic changes induced by the disease, with much less reflection in blood plasma
alterations (low TLB score) [34–36]. Whether this hypothesis is true or not, it is interesting
to note that this finding suggests a higher likelihood of success when using the TLB score
for patients at an early stage of the disease, when the diagnosis is both more important
and difficult.

Overall, although applied to a limited number of cases, the methodology described in
this study demonstrates a good level of classification. The next steps will include deter-
mining the utility of TLB for differentiating between MS and other disorders, particularly
inflammatory diseases. Further studies including more (or only) patients with both low
EDSS and short onset time of the disease could give more insight on the TLB application
for the decision making on MS diagnosis and follow-up in the clinical practice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/jpm11040295/s1, Table S1: monovariant analysis of TLB parameters of age groups; Table S2:
monovariant analysis of TLB parameters of MS group according to EDSS; Table S3: main descriptive
indexes for the fourteen TLB-associated parameters; Table S4: monovariant analysis of TLB parame-
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ters of HC and MS groups; Table S5: ROC analysis for individual TLB-associated parameters; Table
S6: Summary of the application of binomial generalized linear model with logistic regression (GLM)
to the three models; Table S7: model comparison based on the likelihood ratio test; Table S8: TLB
score (model 3) vs. gender and age; Table S9: TLB score (model 3) vs. clinical history information
(EDSS, diagnosis stage, disease duration and therapy) for MS group. Table S10: Contingency table
for clinical history information (EDSS, diagnosis stage, disease duration, and therapy) for MS group
(using TLB score from model 1); Table S11: contingency table for clinical history information (EDSS,
diagnosis stage, disease duration, and therapy) for MS group (using TLB score from model 2).

Author Contributions: Conceptualization, R.G., F.A., R.B. and S.H.-D.; clinical evaluation, D.P., F.D.G.
and A.P.; samples acquisition and processing, D.P., F.D.G., F.A. and R.B.; calorimetric experiments,
F.A. and R.G.; fitting curve process: S.V., O.S.-G. and S.H.-D.; multiparametric analysis, O.S.-G. and
S.V.; statistical analysis, J.O. and S.H.-D.; validation, S.H.-D., J.O., O.A. and A.V.-C.; data curation,
R.G., B.R., O.A. and A.V.-C.; writing—original draft preparation, R.G. and B.R.; writing—review and
editing, R.G., B.R., S.H.-D., D.P. and O.A.; A.V.-C.; supervision, R.G. and O.A.; project administration,
R.G. and F.A.; funding acquisition, O.A. and A.V.-C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Spanish Ministry of Economy and Competitiveness and
European ERDF Funds (MCIU/AEI/FEDER, EU) (BFU2016-78232-P to A.V.C.); Projects funded by
Instituto de Salud Carlos III and co-funded by European Union (ESF, “Investing in your future”):
“PI15/00663 (FIS project to O.A)”, “PI18/00349 (FIS project to O.A.)”, “FI19/00146 (PFIS contract for
SHD)”; Diputación General de Aragón (Protein Targets and Bioactive Compounds Group E45_20R to
A.V.C. and Digestive Pathology Group B25_20R to O.A.); and the Centro de Investigación Biomédica
en Red en Enfermedades Hepáticas y Digestivas (CIBERehd).

Institutional Review Board Statement: The study was approved by the Ethics Committee of the
Northern Area of the Calabria Region (protocol n. 50 of 14 February 2017).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available from the corresponding
authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [CrossRef] [PubMed]
2. Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.;

van der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition.
Mult. Scler. 2020, 26, 1816–1821. [CrossRef] [PubMed]

3. Collaborators, G.M.S. Global, regional, and national burden of multiple sclerosis 1990–2016: A systematic analysis for the Global
Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 269–285.

4. Milo, R. Effectiveness of multiple sclerosis treatment with current immunomodulatory drugs. Expert Opin. Pharmacother. 2015,
16, 659–673. [CrossRef] [PubMed]

5. Brownlee, W.J.; Hardy, T.A.; Fazekas, F.; Miller, D.H. Diagnosis of multiple sclerosis: Progress and challenges. Lancet 2017,
389, 1336–1346. [CrossRef]

6. Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman,
M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [CrossRef]

7. Burman, J.; Zetterberg, H.; Fransson, M.; Loskog, A.S.; Raininko, R.; Fagius, J. Assessing tissue damage in multiple sclerosis:
A biomarker approach. Acta Neurol. Scand. 2014, 130, 81–89. [CrossRef] [PubMed]

8. Harris, V.K.; Tuddenham, J.F.; Sadiq, S.A. Biomarkers of multiple sclerosis: Current findings. Degener. Neurol. Neuromuscul. Dis.
2017, 7, 19–29. [CrossRef]

9. Kivisakk, P.; Healy, B.C.; Francois, K.; Gandhi, R.; Gholipour, T.; Egorova, S.; Sevdalinova, V.; Quintana, F.; Chitnis, T.;
Weiner, H.L.; et al. Evaluation of circulating osteopontin levels in an unselected cohort of patients with multiple sclerosis:
Relevance for biomarker development. Mult. Scler. 2014, 20, 438–444. [CrossRef]

10. Liguori, M.; Qualtieri, A.; Tortorella, C.; Direnzo, V.; Bagala, A.; Mastrapasqua, M.; Spadafora, P.; Trojano, M. Proteomic profiling
in multiple sclerosis clinical courses reveals potential biomarkers of neurodegeneration. PLoS ONE 2014, 9, e103984. [CrossRef]

11. Hye, A.; Lynham, S.; Thambisetty, M.; Causevic, M.; Campbell, J.; Byers, H.L.; Hooper, C.; Rijsdijk, F.; Tabrizi, S.J.; Banner, S.; et al.
Proteome-based plasma biomarkers for Alzheimer’s disease. Brain 2006, 129, 3042–3050. [CrossRef]

http://doi.org/10.1056/NEJMra1401483
http://www.ncbi.nlm.nih.gov/pubmed/29320652
http://doi.org/10.1177/1352458520970841
http://www.ncbi.nlm.nih.gov/pubmed/33174475
http://doi.org/10.1517/14656566.2015.1002769
http://www.ncbi.nlm.nih.gov/pubmed/25582634
http://doi.org/10.1016/S0140-6736(16)30959-X
http://doi.org/10.1016/S1474-4422(17)30470-2
http://doi.org/10.1111/ane.12239
http://www.ncbi.nlm.nih.gov/pubmed/24571714
http://doi.org/10.2147/DNND.S98936
http://doi.org/10.1177/1352458513503052
http://doi.org/10.1371/journal.pone.0103984
http://doi.org/10.1093/brain/awl279


J. Pers. Med. 2021, 11, 295 16 of 16

12. Mordechai, S.; Shufan, E.; Porat Katz, B.S.; Salman, A. Early diagnosis of Alzheimer’s disease using infrared spectroscopy of
isolated blood samples followed by multivariate analyses. Analyst 2017, 142, 1276–1284. [CrossRef]

13. Elshemey, W.M.; Ismail, A.M.; Elbialy, N.S. Molecular-Level Characterization of Normal, Benign, and Malignant Breast Tissues
Using FTIR Spectroscopy. J. Med. Biol. Eng. 2016, 36, 369–378. [CrossRef]

14. Garbett, N.C.; Miller, J.J.; Jenson, A.B.; Chaires, J.B. Calorimetry Outside the Box: A New Window into the Plasma Proteome.
Biophys. J. 2008, 94, 1377–1383. [CrossRef] [PubMed]

15. Crutchfield, C.A.; Thomas, S.N.; Sokoll, L.J.; Chan, D.W. Advances in mass spectrometry-based clinical biomarker discovery. Clin.
Proteomics 2016, 13, 1–12. [CrossRef] [PubMed]

16. Cooper, A. Differential scanning microcalorimetry. In Protein-Ligand Interactions: Hydrodynamics and Calorimetry; Oxford University
Press: Oxford, UK, 2000.

17. Privalov, G.; Kavina, V.; Freire, E.; Privalov, P.L. Precise scanning calorimeter for studying thermal properties of biological
macromolecules in dilute solution. Anal. Biochem. 1995, 232, 79–85. [CrossRef] [PubMed]

18. Guglielmelli, A.; Rizzuti, B.; Guzzi, R. Stereoselective and domain-specific effects of ibuprofen on the thermal stability of human
serum albumin. Eur. J. Pharm. Sci. 2018, 112, 122–131. [CrossRef] [PubMed]

19. Rizzuti, B.; Bartucci, R.; Pey, A.L.; Guzzi, R. Warfarin increases thermal resistance of albumin through stabilization of the protein
lobe that includes its binding site. Arch. Biochem. Biophys. 2019, 676, 108123. [CrossRef]

20. Guzzi, R.; Sportelli, L.; Yanagisawa, S.; Li, C.; Kostrz, D.; Dennison, C. The influence of active site loop mutations on the thermal
stability of azurin from Pseudomonas aeruginosa. Arch. Biochem. Biophys. 2012, 521, 18–23. [CrossRef]

21. Chagovetz, A.A.; Jensen, R.L.; Recht, L.; Glantz, M.; Chagovetz, A.M. Preliminary use of differential scanning calorimetry of
cerebrospinal fluid for the diagnosis of glioblastoma multiforme. J. Neurooncol. 2011, 105, 499–506. [CrossRef]

22. Garbett, N.C.; Mekmaysy, C.S.; DeLeeuw, L.; Chaires, J.B. Clinical application of plasma thermograms. Utility, practical
approaches and considerations. Methods 2015, 76, 41–50. [CrossRef]

23. Krumova, S.; Rukova, B.; Todinova, S.; Gartcheva, L.; Milanova, V.; Toncheva, D.; Taneva, S.G. Calorimetric monitoring of the
serum proteome in schizophrenia patients. Thermochim. Acta 2013, 572, 59–64. [CrossRef]

24. Vega, S.; Garcia-Gonzalez, M.A.; Lanas, A.; Velazquez-Campoy, A.; Abian, O. Deconvolution analysis for classifying gastric
adenocarcinoma patients based on differential scanning calorimetry serum thermograms. Sci. Rep. 2015, 5, 7988. [CrossRef]
[PubMed]

25. Tsvetkov, P.O.; Tabouret, E.; Roman, A.Y.; Romain, S.; Bequet, C.; Ishimbaeva, O.; Honore, S.; Figarella-Branger, D.; Chinot, O.;
Devred, F. Differential scanning calorimetry of plasma in glioblastoma: Toward a new prognostic/monitoring tool. Oncotarget
2018, 9, 9391–9399. [CrossRef] [PubMed]

26. Garbett, N.C.; Brock, G.N.; Chaires, J.B.; Mekmaysy, C.S.; DeLeeuw, L.; Sivils, K.L.; Harley, J.B.; Rovin, B.H.; Kulasekera, K.B.;
Jarjour, W.N. Characterization and classification of lupus patients based on plasma thermograms. PLoS ONE 2017, 12, e0186398.
[CrossRef] [PubMed]

27. Rodrigo, A.; Ojeda, J.L.; Vega, S.; Sanchez-Gracia, O.; Lanas, A.; Isla, D.; Velazquez-Campoy, A.; Abian, O. Thermal Liquid Biopsy
(TLB): A Predictive Score Derived from Serum Thermograms as a Clinical Tool for Screening Lung Cancer Patients. Cancers 2019,
11, 1012. [CrossRef]

28. Velazquez-Campoy, A.; Vega, S.; Sanchez-Gracia, O.; Lanas, A.; Rodrigo, A.; Kaliappan, A.; Hall, M.B.; Nguyen, T.Q.; Brock, G.N.;
Chesney, J.A.; et al. Thermal liquid biopsy for monitoring melanoma patients under surveillance during treatment: A pilot study.
Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1701–1710. [CrossRef] [PubMed]

29. Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.;
Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302.
[CrossRef]

30. Gornall, A.G.; Bardawill, C.J.; David, M.M. Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 1949,
177, 751–766. [CrossRef]

31. Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the Youden Index and its associated cutoff point. Biom. J. 2005, 47, 458–472.
[CrossRef]

32. Huang, J.; Khademi, M.; Fugger, L.; Lindhe, Ö.; Novakova, L.; Axelsson, M.; Malmeström, C.; Constantinescu, C.; Lycke, J.;
Piehl, F.; et al. Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proc. Natl. Acad. Sci. USA 2020, 117,
12952–12960. [CrossRef] [PubMed]

33. Malekzadeh, A.; Leurs, C.; van Wieringen, W.; Steenwijk, M.D.; Schoonheim, M.M.; Amann, M.; Naegelin, Y.; Kuhle, J.;
Killestein, J.; Teunissen, C.E. Plasma proteome in multiple sclerosis disease progression. Ann. Clin. Transl. Neurol. 2019, 6,
1582–1594. [CrossRef] [PubMed]

34. Bhargava, P.; Anthony, D.C. Metabolomics in multiple sclerosis disease course and progression. Mult. Scler. J. 2020, 26, 591–598.
[CrossRef]

35. Porter, L.; Shoushtarizadeh, A.; Jelinek, G.A.; Brown, C.R.; Lim, C.K.; de Livera, A.M.; Jacobs, K.R.; Weiland, T.J. Metabolomic
Biomarkers of Multiple Sclerosis: A Systematic Review. Front. Mol. Biosci. 2020, 7, 591–598. [CrossRef]

36. Andersen, S.L.; Briggsb, F.B.S.; Winnikec, J.H.; Natanzonb, Y.; Maichled, S.; Knaggec, K.J.; Newbye, L.K.; Gregorya, S.G.
Metabolome-based signature of disease pathology in MS. Mult. Scler. Relat. Disord. 2019, 31, 12–21. [CrossRef] [PubMed]

http://doi.org/10.1039/C6AN01580H
http://doi.org/10.1007/s40846-016-0133-0
http://doi.org/10.1529/biophysj.107.119453
http://www.ncbi.nlm.nih.gov/pubmed/17951300
http://doi.org/10.1186/s12014-015-9102-9
http://www.ncbi.nlm.nih.gov/pubmed/26751220
http://doi.org/10.1006/abio.1995.9957
http://www.ncbi.nlm.nih.gov/pubmed/8600837
http://doi.org/10.1016/j.ejps.2017.11.013
http://www.ncbi.nlm.nih.gov/pubmed/29158196
http://doi.org/10.1016/j.abb.2019.108123
http://doi.org/10.1016/j.abb.2012.03.007
http://doi.org/10.1007/s11060-011-0630-5
http://doi.org/10.1016/j.ymeth.2014.10.030
http://doi.org/10.1016/j.tca.2013.09.015
http://doi.org/10.1038/srep07988
http://www.ncbi.nlm.nih.gov/pubmed/25614381
http://doi.org/10.18632/oncotarget.24317
http://www.ncbi.nlm.nih.gov/pubmed/29507697
http://doi.org/10.1371/journal.pone.0186398
http://www.ncbi.nlm.nih.gov/pubmed/29149219
http://doi.org/10.3390/cancers11071012
http://doi.org/10.1016/j.bbagen.2018.04.020
http://www.ncbi.nlm.nih.gov/pubmed/29705200
http://doi.org/10.1002/ana.22366
http://doi.org/10.1016/S0021-9258(18)57021-6
http://doi.org/10.1002/bimj.200410135
http://doi.org/10.1073/pnas.1912839117
http://www.ncbi.nlm.nih.gov/pubmed/32457139
http://doi.org/10.1002/acn3.771
http://www.ncbi.nlm.nih.gov/pubmed/31364818
http://doi.org/10.1177/1352458519876020
http://doi.org/10.3389/fmolb.2020.574133
http://doi.org/10.1016/j.msard.2019.03.006
http://www.ncbi.nlm.nih.gov/pubmed/30877925

	Introduction 
	Materials and Methods 
	Subjects 
	Blood Sample Processing 
	Sample Preparation and DSC Measurements 
	Thermogram Analysis and Deconvolution 
	Multiparametric Data Analysis 
	Statistical Model 

	Results 
	Thermograms of Plasma Samples for Subjects from HC and MS Groups 
	Analysis of Individual TLB-Derived Parameters 
	TLB Score: A Classifying Predictor for MS 
	Distinctive Features of MS Patients versus HC Individuals according to TLB Values 

	Discussion 
	References

