
1 / 6

2021, Korea Genome Organization
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution license (http://creativecommons.
org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction 
in any medium, provided the original work is 
properly cited.

Coronavirus disease 2019 (COVID-19) is an on-going pandemic disease infecting millions 
of people across the globe. Recent reports of reduction in antibody levels and the re-emer-
gence of the disease in recovered patients necessitated the understanding of the pandemic 
at the core level. The cases of multiple organ failures emphasized the consideration of dif-
ferent organ systems while managing the disease. The present study employed RNA se-
quencing data to determine the disease associated differentially regulated genes and their 
related protein interactions in several organ systems. It signified the importance of early 
diagnosis and treatment of the disease. A map of protein interactions of multiple organ 
systems was built and uncovered CAV1 and CTNNB1 as the top degree nodes. A core inter-
actions sub-network was analyzed to identify different modules of functional significance. 
AR, CTNNB1, CAV1, and PIK3R1 proteins were unfolded as bridging nodes interconnecting 
different modules for the information flow across several pathways. The present study also 
highlighted some of the druggable targets to analyze in drug re-purposing strategies 
against the COVID-19 pandemic. Therefore, the protein interactions map and the modular 
interactions of the differentially regulated genes in the multiple organ systems would in-
cline the scientists and researchers to investigate in novel therapeutics for the COVID-19 
pandemic expeditiously. 
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Introduction 

Coronavirus disease 2019 (COVID-19) is a pandemic disease caused by the novel coro-
navirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (World Health 
Organization). As on 11 August 2020, it reported to infect more than 78 million and de-
cease over 1.7 million people around the world (https://www.worldometers.info/corona-
virus/). The disease cases are further escalating causing human sufferings. Currently, sev-
eral vaccines are being evaluated at various clinical stages [1,2] and some available drugs 
are being investigated to re-purpose [3,4] in the treatment of manageable cases of the 
COVID-19 disease. The SARS-CoV-2 is a highly transmissible virus containing unusual-
ly larger RNA as genome and spike like glycoprotein envelope [5]. It is different from 
other corona viruses in having strong binding affinity with human cell surface receptors 
[6]. The virus begins the process of infection by binding to human cell receptors such as 
angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2, cyclophil-
ins, CD147, and CD26 [7]. The ACE2 are the functional receptors of SARS-CoV-2 and 
are distributed in the cells of lung, heart, kidney and intestinal tissues [8]. Therefore, the 
virus can transmit to several organ systems and evade the host immune response leading 
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to multi-organ failure and death. Hence, infection in the multiple 
organs should be quickly assessed [9] to manage the individual pa-
tients early and reduce the risk of decompensation. 

Recent report of re-emergence of the SARS-CoV-2 in a recov-
ered patient [10] necessitated better understanding of the infec-
tion, contagion and pathology of the disease. IgG levels and neu-
tralizing antibodies in the recovered patients were decreasing after 
few months [11]; however, the receptor-binding domain specific 
antibodies possessed the strong antiviral activity [12]. In addition 
to these recent findings, perspectives of gene regulations and pro-
tein interactions at multi-organ level could play significant role in 
gaining insights and therapeutic interventions of the disease. The 
rapid development of sequencing technologies in the past few de-
cades made significant impact on research in molecular biology of 
viral diagnosis [13] and drug discovery [14]. RNA-sequencing 
technology provided unprecedented information about the novel 
and known gene structures and annotations from coding and 
non-coding transcripts. Analyzing RNA-sequencing data of mul-
tiple organ systems associated with COVID-19 could unveil sev-
eral aspects of the pandemic disease. Therefore, the present study 
employed RNA-sequencing data of several organ systems from 
the SARS-CoV-2 infected and deceased individuals to analyze 
differentially expressed genes and interpret protein interactions 
that led to identification of several proteins for the therapeutic in-
terventions. 

Methods 

Identification of differentially expressed genes 
RNA sequencing data was obtained from autopsy specimens of 
lung, heart, jejunum, liver, kidney, bowel, marrow, fat, placenta and 
skin of 24 patients deceased due to COVID-19 infection. The total 
number of samples in the sequencing data was 88 including five 
negative control samples. The sequencing data was mapped to 
HG38 Human reference genome and processed using HTSeq-
Count [15] to produce raw read counts of mRNA transcripts. 
Such transcripts read counts for each organ sample were retrieved 
from the NCBI Gene Expression Omnibus public repository us-
ing the accession number GSE150316. Transcripts with total read 
counts of only one or lesser were filtered out. The resulting tran-
scripts of each of the organ system and the control samples were 
analyzed using DESeq2 [16] to identify differentially expressed 
genes (DEGs). The DEGs with the p ≤  0.01, and with a log2 fold 
change of ≥ 1.5 and ≤ – 1.5 was considered statistically significant 
up and down-regulated genes respectively. Further, the genes sig-
nificantly regulated only in one organ system or in multiple organ 
systems were predicted. 

Construction and analysis of protein interactions map 
Experimentally verified human protein-protein interactions (PPIs) 
were retrieved from the Database of Interacting Proteins (DIP) 
database [17]. From these PPIs, the interactions among the up or 
down-regulated gene products were extracted and the protein in-
teractions of a specific organ system, multiple organ systems as 
well as cross-organ protein interactions were recognized. An inter-
action map of the resulted PPIs was constructed using R igraph 
[18]. The nodes in the interactions map were colored differently 
to distinguish the organ-specific, cross-organ, and the multi-organ 
protein interactions. Topological properties of the interactions 
map were analyzed to interpret the biological significance of the 
interactions map. 

Functional annotations and pathways of modules 
The largest component in the protein interactions map was un-
wrapped as a core interactions sub-network. The core interactions 
sub-network was processed through edge betweenness clustering 
algorithm [19] to predict different modules in which the nodes 
were densely connected among themselves than the nodes of oth-
er modules. Each module and the nodes other than that of core in-
teractions sub-network as a whole were employed using the PAN-
THER’s [20] over-representation analysis with Fisher’s exact test 
and Bonferroni correction for multiple testing algorithm. Further 
they were filtered with p ≤  0.05 and minimum three proteins per 
function to obtain significant functional annotations and pathways 
[21]. 

Exploration of drug-target interactions 
Total drug protein interactions were retrieved from the MATA-
DOR database [22]. The drugs targeting the proteins of the inter-
actions map were extracted from this resource. Further, the type of 
drug-target protein interactions was interpreted from the results. 

Results and Discussion 

Differentially regulated genes 
The distribution of log2 fold change values relative to the mean of 
DESeq2 normalized counts can be visualized in the Supplementa-
ry Fig. 1. It reveals that there were several genes which were signifi-
cantly expressed in different organ systems. The total number of 
significant up or down-regulated genes in all the organ systems 
was found to be 8,326. Of these, 3,111 genes were differentially 
regulated in more than one organ system. A list of differentially 
regulated genes of all the organ systems with their log2 fold change 
values and the significant p-value is shown in the Supplementary 
Table 1. It was observed from the table that the number of differ-
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entially regulated genes was the highest in liver and the least in fat; 
therefore, the pandemic could be severe in patients associated with 
liver and fat related diseases. Further, the table revealed several 
genes that were commonly regulated in multiple organ systems 
such as IGF2, ITM2C, MAPT, and PPP1R1A genes which were 
up-regulated in bowel, heart, jejunum, kidney and lung and 
ABCA3, SFTPA1, SFTPA2, SFTPB, and SLC34A2 genes which 
were down-regulated in all the organ systems except lung. Some 
genes were observed to be differently regulated such as ANK2 and 
CLU both of which were up-regulated in bowel and jejunum but 
down-regulated in marrow and placenta. A heatmap of organ-wise 
averaged read counts of genes differentially regulated in more than 
seven organ systems can be visualized in the Supplementary Fig. 2. 
It shows that the gene expression counts of lung were the most 
contradictory to the control samples suggesting that the lungs were 
severely affected than the other organ systems in the COVID-19 
infection. ACE2, the angiotensin I converting enzyme 2, was ob-
served to be up-regulated only in heart. CD147 (BSG), a trans-
membrane protein of the Ig superfamily, was observed to be 
up-regulated both in the heart and the marrow while TMPRSS2, a 
transmembrane protein of serine protease family was significantly 
down-regulated in bowel, heart, jejunum, marrow, placenta and 
skin. CD26 (DPP4), a functional receptor on lymphocytes, was 
observed to be up-regulated in placenta but down-regulated in je-
junum. Therefore, differential regulation of the genes and recep-
tors might lead to morbidity and severity of the pandemic disease. 

Protein interactions map 
The DIP database constituted 6,729 experimentally verified hu-
man PPIs. The significant up or down-regulated gene products 
were detected to engage in 608 PPIs. Of these PPIs, two were spe-
cifically observed in bowel, four in heart, five in liver, 36 in marrow, 
and five in placenta. One hundred and ten PPIs were observed as 
cross-organ protein interactions where a protein of a specific organ 
system interacts with a protein of another organ system. Four hun-
dred and forty-six PPIs were observed as multi-organ protein in-
teractions where proteins of multiple organ systems interact with 
proteins of other organ systems. The involvement of large number 
of multi-organ protein interactions suggests that the COVID-19 
pandemic affects several organ systems to reach its severe patho-
logical state; therefore, early diagnosis and treatment of the pan-
demic could prevent patient decompensation and thus make easy 
recovery. A protein interaction map can be visualized in the Fig. 1. 
In the protein interactions map, the organ-specific, cross-organ 
and the multi-organ protein interactions were easily distinguish-
able using color representations of the nodes viz., purple, maroon, 
burly-wood, orange, yellow, sea-green, tomato, sky-blue, violet, 

royal-blue and light-green corresponding to bowel, fat, heart, jeju-
num, kidney, liver, lung, marrow, placenta, skin and multi-organ 
systems respectively. The map constitutes 608 edges or interac-
tions among 672 nodes or proteins. The number of isolated inter-
actions in the protein interactions map was 77 and the number of 
connected components was 54. Transitivity or clustering coeffi-
cient of the entire interactions map was found to be 0.094 reveal-
ing good local connections and sparse sub-graphs. Fitting pow-
er-law distribution suggested that the map is a discrete graph. De-
gree representing the number of interactions for a node was the 
highest for CAV1 with a value of 15 followed by CTNNB1 with a 
value of 13. The organ-wise highest degree nodes were HTR2A 
for bowel, CTNNB1 for fat, ERBB3 for heart, EIF4A1 for jeju-
num, CDC27 for kidney, ESR1 for liver, S and GINS3 for lung, 
CDK1 for marrow, DDB1 and TGFBR1 for placenta and KRT5 
for skin. Removal of these high degree nodes would disrupt the 
protein interactions map significantly [23]. The degree distribu-
tions of the interactions map indicated that the node degree was 
decreasing with increase in the number of nodes suggesting a scale 
free interactions network. It can be viewed in the protein interac-
tions map that ACE2 of heart interact with S protein of lung both 
of which were found to be up-regulating gene products. The S 
protein also interact with DPP4 suggesting different downstream 
regulations. The DPP4 in turn interact with PTPRC which was 
found to be down-regulating gene product in bowel, heart, jeju-
num, kidney and placenta. Thus, the map of experimentally vali-
dated protein interactions brought about several prospects for the 
researchers and scientists to investigate in the COVID-19 research. 

Functional annotations and pathways 
The largest connected component of the protein interactions map 
was interpreted as the core interactions sub-network and it consti-
tuted 306 edges among 265 nodes. The core interactions sub-net-
work can be visualized in the Supplementary Fig. 3. It was ob-
served that the top 5 highest degree nodes contained in the core 
interactions sub-network implying of high functional significance. 
The edge betweenness clustering of the core interactions sub-net-
work produced 18 modules or clusters. Modularity of these clus-
ters was 0.84 suggesting good clustering and the significant modu-
lar structure [24]. Functional annotation and pathways of each of 
these modules and of non-core proteins is provided in the Supple-
mentary Table 2. It is perceivable from the table that each of the 
modules have proteins significantly enriched in similar gene ontol-
ogy terms such as biological process, molecular functions, cellular 
components and pathways. The largest modules (cluster 2, 6, and 
14) were observed to contain mostly the membrane proteins with 
various cell binding and signaling activities. Further, the top func-
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Fig. 1. A multi-organ protein interactions map of the coronavirus disease 2019. Circles are nodes representing the proteins and the lines 
between them are edges representing the interactions. Organ-specific nodes are colored uniquely while the multi-organ proteins are colored 
light-green. Cross-organ protein interactions are interpreted by the interaction between differently colored nodes.

Multi-organ
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tional annotations and pathways of each of the cluster can be 
viewed in Supplementary Fig. 4. The modular structure of the 
core interactions sub-network is represented in the Supplemen-
tary Fig. 5. The figure clearly depicts that 36 proteins bridges dif-
ferent modules with 29 interconnections. AR protein bridges six 
different modules, CTNNB1 5, CAV1 and PIK3R1 4, CCND1 
and CTNNA1 3 and CDH1, CDK1 and DDB1 bridges two dif-
ferent modules while 27 other proteins bridge with at least one 
different module demonstrating their vitality for the flow of in-
formation across several pathways. 

Drug-target interactions 
The number of interacting proteins mapped to MATADOR data-
bases was 222. This indicates that the protein interactions map of 
COVID-19 is enriched with several significant targets with known 
drug candidates. Therefore, proteins of the interactions map can 
be further investigated for drug re-purposing strategies. The Sup-
plementary Table 3 lists all these proteins with the sight of signifi-
cant regulation, core or non-core interaction, degree, drug, MAT-
ADOR score and the type of drug-target interaction. To highlight 
some of the proteins, a list of drug candidates is shown in the fol-
lowing Table 1. CTNNB1, AR, EGFR, HTR2A, ESR1, INSR, 
JUN, and PDGFRB are the core and high degree nodes which 
could be investigating for interventions of the COVID-19 disease. 
Further, the experimental studies [25] showed that the interacting 
proteins of this study were targeted by the SARS-CoV-2 spike and 
other proteins. Therefore, the present study would facilitate and 
support the scientists and researchers to empathize the complex 
molecular mechanisms involving multiple organ systems associat-
ed with the COVID-19 pandemic. 
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