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ABSTRACT: Colorectal cancer (CRC) has witnessed a concern-
ing increase in incidence and poses a significant therapeutic
challenge due to its poor prognosis. There is a pressing demand to
identify novel drug therapies to combat CRC. In this study, we
addressed this need by utilizing the pharmacological profiles of
anticancer drugs from the Genomics of Drug Sensitivity in Cancer
(GDSC) database and developed QSAR models using the Support
Vector Machine (SVM) algorithm for prediction of alternative and
promiscuous anticancer compounds for CRC treatment. Our
QSAR models demonstrated their robustness by achieving a high
correlation of determination (R2) after 10-fold cross-validation. For
12 CRC cell lines, R2 ranged from 0.609 to 0.827. The highest
performance was achieved for SW1417 and GP5d cell lines with R2 values of 0.827 and 0.786, respectively. Further, we listed the
most common chemical descriptors in the drug profiles of the CRC cell lines and we also further reported the correlation of these
descriptors with drug activity. The KRFP314 fingerprint was the predominantly occurring descriptor, with the KRFPC314
fingerprint following closely in prevalence within the drug profiles of the CRC cell lines. Beyond predictive modeling, we also
confirmed the applicability of our developed QSAR models via in silico methods by conducting descriptor-drug analyses and
recapitulating drug-to-oncogene relationships. We also identified two potential anti-CRC FDA-approved drugs, viomycin and
diamorphine, using QSAR models. To ensure the easy accessibility and utility of our research findings, we have incorporated these
models into a user-friendly prediction Web server named “ColoRecPred”, available at https://project.iith.ac.in/cgntlab/colorecpred.
We anticipate that this Web server can be used for screening of chemical libraries to identify potential anti-CRC drugs.

■ INTRODUCTION
Colorectal cancer (CRC) holds the third-highest position in
terms of worldwide incidence and the second-highest rank in
mortality rate with 10% and 9.4%, respectively, across the
globe, as per GLOBOCAN 2020,1 notably affecting both males
and females.1 Some widely used drugs approved for treating
CRC are cetuximab, oxaliplatin, 5-FU, and tucatinib.2 To
combat the increasing specter of drug resistance, clinicians and
researchers have banked on combinational drug therapies, such
as CAPOX, FOLFIRI, FU-LV, and XELOX, among others.2

Even though this strategic shift toward combination therapy
has been useful in many CRC treatments, other strategies need
to be introduced continuously to combat CRC.3 The
mechanism of drug resistance is being studied widely and
many mechanisms have been recently identified.4 The primary
mechanisms include reduced drug activation, an aberration in
downstream signaling processes, drug transport aberration, and
changes in drug targets.4 This emphasizes the clinical
importance of augmenting the currently available drug arsenal
to enhance the therapeutic methodologies for CRC.
Implementing machine learning-based in silico methods, e.g.,
Quantitative Structure Activity Relationship (QSAR) models,
is an attractive approach to bypass the time- and cost-

exhaustive traditional drug discovery process.5 The in silico
methods can be used to screen large chemical libraries to
predict novel drugs for CRC and boost drug discovery and
development.5 There is a continuous effort to improve the
drug arsenal for CRC worldwide. Recently, many new targets
have been used for drug development using 3D-QSAR models.
The recently published drug targets are interleukin-6 and DNA
topoisomerase II, where 3D-QSAR models have been
developed for CRC to find drugs that show anticancer
activity.6,7 To address QSAR model specificity limitations,
recent years have seen the evolution of PTML models,
combining perturbation theory with machine learning, as
detailed by Planche and Cordeiro et al. These models
effectively handle complex data sets in drug discovery,
proteomics, and nanotechnology, for anticancer studies across
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various parameters, cell lines, and organisms, aiding multitarget
anticancer drug development in diverse cancer types through
multiple assays.8−20

In this study, we leverage the traditional QSAR approach for
developing QSAR models for 12 CRC cell lines to identify
putative drugs for CRC. The QSAR models’ development is
done based on the high-throughput pharmacological data
available from Genomics of Drug Sensitivity in Cancer
(GDSC). Further, we showed the applicability of these models
in recapitulating the drug-to-oncogenes relation and repurpos-
ing the FDA-approved drugs. Moreover, they can also hasten
screening of large chemical libraries to identify novel CRC
drugs.21 Our model will be useful for the research fraternity to
complement the ongoing research to identify novel drug

candidates for CRC, which can be taken further for
experimental validations. For the community-wide utilization
of the QSAR models developed in this study, we have
integrated these models in a Web server called “ColoRecPred”,
which is freely available at https://project.iith.ac.in/cgntlab/
colorecpred. Figure 1 describes the overall study design
adopted in this study.

■ METHODS
Pharmacological Data. For this study, we have down-

loaded the pharmacological screens against CRC cell lines
from the Genomics of Drug Sensitivity in Cancer (GDSC)
database (https://www.cancerrxgene.org). A dataset of 297
anticancer drugs and their respective natural logarithmic IC50

Figure 1. Overall study design for the development of QSAR models and prediction Web server.
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values were obtained across 46 CRC cell lines. We had a total
of 10,850 drug-cell line combinations, each with an IC50 value,
and then applied a cutoff of 100 μM to remove the inactive
drugs, reducing the total number of drug-cell line combinations
to 7401. The total number of drugs for all 46 cell lines is shown
in Supporting Information Figure 1. We extracted the
individual cell line screened data with their respective
logIC50 values. PubChem compound IDs (CIDs) of the
drugs were also retained to obtain the chemical structures of
the drugs.

Chemical Structure of the Drugs. The chemical
structures of all of the above drugs were downloaded in
Spatial Data File (SDF) format from PubChem using their
CIDs (https://pubchem.ncbi.nlm.nih.gov). These structures
were in 2D format; therefore, they were subjected to 3D
conversion using the RDKit toolkit in Python22 followed by
energy minimization using the Merck Molecular Force Field
1994 (MMFF94)23−27 in OpenBabel software (version
3.1.1).28

Descriptors’ Calculation and Selection. We used
PaDEL software29 to calculate the 1875 chemical descriptors
(1D, 2D, and 3D) across 75 descriptor types like number of
atoms count, topological, bond count, atom count, 3D
autocorrelation, moment of inertia, RDF, WHIM, etc. and
12 different types of binary fingerprints like FP, ExtFP,
GraphFP, SubFP, SubFPC, etc. Figure 2 shows the distribution

of the descriptor types. The total descriptor count was equal to
18066 across 75 descriptor types. For descriptor selection, we
implemented the “RemoveUseless” function (removes descrip-
tors with no variation or very high variation)30 to preprocess
the dataset, and then implemented “CfssubsetEval” Attribute
Evaluator (evaluates the predictive ability of a descriptor and
intercorrelation among other descriptors)30,31 and “BestFirst”
Ranker (evaluates features based on Greedy Hillclimbing and
Backtracking mechanism)31 in WEKA to select the descriptors.
Further, we calculated the Shapley Additive Explanations
(SHAP) values32,33 for each of the 12 cell line models to
understand the individual average impact of the descriptors to
the model, which gives the structural and physicochemical
interpretation for the developed models globally.

QSAR Model Development. To develop QSAR models,
we used the Support Vector Machine (SVM) algorithm34 using
“scikit-learn” (version 1.2)35 library in Python. We imple-
mented a 10-fold cross-validation to avoid overfitting and
assessed the model performances using various statistical
indices, i.e., Pearson’s correlation coefficient (R), coefficient of
determination (R2), mean squared error (MSE), mean average
error (MAE), and root-mean-square error (RMSE). To
identify the robust QSAR models, we used a cutoff of R2 >
0.6. Selected models were further subjected to “F-stepping” to
reduce the number of descriptors using the “SequentialFeatur-
eSelection” function in “Mlxtend” library in Python environ-
ment.36 During model development, we maintained the drugs
to descriptor ratio for each of the selected cell lines close to 2:1
or greater to reduce the chances of overfitting.37

Drug-to-Oncogene Relation. We used QSAR models to
recapitulate the drug-to-oncogene relationships in CRC. We
downloaded the mutation data of CRC cell lines from the
COSMIC Cell Line Project database (v97, https://cancer.
sanger.ac.uk/cell_lines).38 From the COSMIC mutation data,
we removed mutations defined as “Unknown” and “Sub-
stitution - coding silent”. We selected five genes, i.e., ABCA13,
DNAH6, DNAH9, FSIP2, and FLG, which were mutated in at
least five CRC cell lines (Supporting Information Table 1). For
these five genes, we identified drugs with significant differences
in their respective logIC50 between wild-type and mutant cell
lines (p < 0.05) and predicted their logIC50 using QSAR
models of respective wild-type and mutant cell lines. Then, we
compared the predicted logIC50 of the respective drugs in wild-
type and mutated cell lines to recapitulate the drug-to-
oncogene relation obtained from the experimentally known
logIC50.

Drug Repurposing/Drug Repositioning. We obtained
the 1627 FDA-approved drugs from DrugBank (https://go.
drugbank.com/) in the 2D SDF format. Their chemical
descriptors and fingerprints were calculated using PaDEL (as
described above), and we predicted their logIC50 values using
the QSAR models developed in this study. To select FDA-
approved drugs with putative anticancer activity, we applied a
cutoff of logIC50 value ≤ −2.

Target and Pathway Analyses. The targets of the FDA-
approved drugs viomycin and diamorphine were identified
using “Super-PRED” (Web site: https://prediction.charite.de/
) tool.39 In “Super-PRED”, the criterion “Model accuracy”
cutoff of >95% was applied to select the target proteins. The
UniProt IDs of the proteins were supplied to the REACTOME
Pathway Browser (Web site: https://reactome.org/
PathwayBrowser)40 to find the pathways associated with the
target proteins. Further, the pathways were filtered based on
FDR value <0.05. Later, we proceeded with the literature
survey to find the occurrence of these pathways in CRC. Also,
we performed STRING41 analysis to find the protein−protein
Interaction (PPI) networks.

■ RESULTS
QSAR Models’ Performance. To evaluate the perform-

ance of the QSAR models, we adopted four statistical indices:
(a) Pearson’s correlation coefficient (R), (b) coefficient of
determination (R2), (c) root-mean-square error (RMSE), and
(d) mean absolute error (MAE). We developed individual
QSAR models for 46 CRC cell lines by splitting the data sets
into train (80%) and test (20%). To reduce overfitting, we
applied 10-fold cross-validation within the training dataset

Figure 2. Graphical representation of the overview of the distribution
of the descriptor types across the 12 selected cell lines. Pie chart
representing the types of descriptors (1D, 2D, 3D, and binary
fingerprints) across the 12 cell lines.
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across all of the cell lines. After the cross-validation step, we
applied a cutoff of R2 > 0.6 to select the best QSAR models.
With these selection criteria, we obtained 12 cell lines (Table
1) and proceeded with them for downstream analysis. For each
QSAR model, we ensured the drugs to descriptors ratio of 2:1
or greater. To achieve this, we further reduced the number of
descriptors using “F-stepping” as mentioned in the Methods
section. The descriptor and drug numbers for the 12 selected
cell lines are shown in Table 1. The performances were
measured at two different descriptor counts, one after the
“CfsSubsetEval” module in WEKA and the other after F-
stepping. It was observed that in most of the cell lines, the
performance of the models after F-stepping improved (Table
1). The highest performance was achieved for SW1417 cell
lines (R2 = 0.827) and the lowest performance was achieved
for CCK-81 cell lines (R2 = 0.609) on the training dataset
(Table 1). Further, we tested QSAR models on the test dataset
and obtained a performance ranging from 0.603 to 0.882
(Table 2). Supporting Information Figure 2 shows the scatter
plots (with linear fit) between actual and predicted logIC50
values for the 12 CRC cell lines.

Descriptor Analysis. We listed the most occurring
descriptors and fingerprints and found that fingerprints
KRFP314, KRFPC314 and FP3 were the three most occurring
descriptors across 12 selected cell lines (occurring in nine,
seven, and six cell lines, respectively), as shown in Supporting
Information Table 2. We also analyzed the changes in the drug
activity in the presence or absence of the descriptors. The

descriptors KRFP314, KRFPC314, FP3, APC2D9_O_I,
GraphFP252, KRFP3683, KRFP803, and nC are categorical
values, whereas JGI10 is in numerical values. Figure 3 shows
significantly associated descriptors in specific cell lines, which
shows the increasing drug activity in the presence of the
descriptors GraphFP252 and FP3. Supporting Information
Figure 3 (A−L) shows extended explorations of drug-
descriptor relationships. Supporting Information Figure 4
shows the correlation plot of the JGI10 descriptor among
the five cell lines. Supporting Information Table 3 shows the
calculated mean absolute SHAP values of the descriptors
across the 12 developed QSAR models in the decreasing order
of the values. The descriptors with the highest contribution to
the model have higher mean absolute SHAP values.

Drug-to-Oncogene Relation Validation. We used
QSAR models to rehash the drug-to-oncogene relationships
obtained from the experimental data. We identified the
association between ABCA13 and Trametinib, where
ABCA13 mutated cell lines were less sensitive for Trametinib
as compared to wild-type cell lines (P = 0.019). Using QSAR
models developed in this study, we predicted the logIC50 of
Trametinib for these cell lines and observed a similar trend
with predicted logIC50 (P = 0.0034) (Figure 4A). We found
another association between FSIP2 and SGC0946, where
FSIP2 mutated cell lines were more sensitive to SGC0946 (P =
0.0059). We predicted the logIC50 using QSAR models and
recapitulated this association (P = 0.0057) (Figure 4B). We
found more such drug-to-oncogene relations and recapitulated

Table 1. Performance Measures Calculated for the 12 Cell Lines on the Training Dataset

performance before F-stepping performance after F-stepping

S. no. cell line no. of drugs no. of descriptors R2 R RMSE MAE no. of descriptors R2 R RMSE MAE

1. COLO-678 56 50 0.654 0.827 0.961 0.735 29 0.687 0.845 0.915 0.695
2. HT-115 138 95 0.601 0.777 1.154 0.887 68 0.64 0.804 1.097 0.834
3. SW620 122 86 0.572 0.793 1.719 1.263 44 0.639 0.827 1.578 1.096
4. SW1463 122 79 0.621 0.792 1.224 0.873 47 0.662 0.835 1.155 0.779
5. COLO-205 142 67 0.707 0.85 1.454 1.161 46 0.732 0.868 1.392 1.052
6. GP5d 151 102 0.713 0.845 1.306 0.958 55 0.786 0.887 1.126 0.848
7. HT-29 146 134 0.601 0.782 1.491 1.097 43 0.707 0.844 1.277 0.908
8. KM12 131 87 0.689 0.846 1.484 1.147 46 0.749 0.871 1.334 0.992
9. SW1417 76 208 0.693 0.852 1.087 0.837 48 0.827 0.927 0.814 0.52
10. MDST8 134 92 0.668 0.829 1.634 1.421 64 0.71 0.869 1.527 1.103
11. SK-CO-1 142 75 0.693 0.841 1.455 1.159 50 0.747 0.88 1.322 1.051
12. CCK-81 154 138 0.56 0.764 1.311 0.961 89 0.609 0.789 1.236 0.899

Table 2. Performance Measures Calculated for the 12 Cell Lines on the Test Dataseta

performance before F-stepping performance after F-stepping

S. no. cell line no. of drugs descriptors R2 R RMSE MAE descriptors R2 R RMSE MAE

1. COLO-678 14 50 0.903 0.952 0.555 0.414 29 0.882 0.939 0.611 0.48
2. HT-115 34 95 0.704 0.84 1.225 0.994 68 0.74 0.862 1.149 0.858
3. SW620 31 86 0.748 0.898 1.266 1.099 44 0.693 0.861 1.396 1.184
4. SW1463 31 79 0.767 0.886 1.008 0.757 47 0.681 0.846 1.18 0.859
5. COLO-205 35 67 0.688 0.835 1.301 1.076 46 0.677 0.827 1.207 0.987
6. GP5d 38 102 0.745 0.864 1.306 0.882 55 0.676 0.833 1.383 1.02
7. HT-29 37 134 0.744 0.884 1.465 1.152 43 0.675 0.834 1.651 1.264
8. KM12 33 87 0.781 0.904 1.051 0.857 46 0.66 0.813 1.31 1.036
9. SW1417 19 208 0.806 0.933 0.852 0.637 48 0.633 0.803 1.171 0.937
10. MDST8 34 92 0.678 0.834 1.421 1.01 64 0.63 0.809 1.524 1.108
11. SK-CO-1 36 75 0.665 0.833 1.417 1.013 50 0.617 0.803 1.514 1.071
12. CCK-81 39 138 0.73 0.872 1.236 0.924 89 0.603 0.785 1.5 1.179

aKey: R2: coefficient of determination, R: Pearson’s correlation coefficient, RMSE: root-mean-square error, MAE: mean absolute error
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them using the QSAR models developed in this study
(Supporting Information Figure 5), which highlight the
predictive power of these models.

FDA-Approved Drug Analysis. We further extended our
QSAR models to repurpose the FDA-approved drugs for CRC.
We predicted the logIC50 of 1627 FDA-approved drugs across
the 12 CRC cell lines using our QSAR models. Of these, we
filtered the drugs with predicted logIC50 = < −2 μM for each
of the 12 cell lines to select the drugs with prominent activity.
We found 11 drugs with logIC50 = < −2 μM in at least five cell
lines out of 12 (Table 3). Of these 11 drugs, six were known
anticancer drugs, three were antimicrobial, which have been
shown to have an antineoplastic effect,42−60 and two drugs, i.e.,
viomycin (antimicrobial agent) and diamorphine (analgesic),
have yet not been experimentally validated as anticancer
drugs.61,62

Target and Pathway Analyses. In a drug target analysis
of FDA-approved drugs, i.e., viomycin and diamorphine, we
identified 70 and 43 targets, respectively, using Super-PRED
with >95% “model accuracy” (Supporting Information Table
4). We performed REACTOME pathway analysis on these
targets and identified 137 and 13 pathways for viomycin and
diamorphine, respectively (FDR < 0.05). Our analysis of
viomycin targets revealed enrichment of pathways associated
with CRC, including WNT5A-dependent internalization of
FZD4, receptor tyrosine kinase (RTK) signaling, PI3K/Akt
signaling, and G protein-coupled receptor (GPCR) signal-
ing.63−70 Diamorphine target analysis similarly identified the

pathways associated with CRC, i.e., condensation of
prometaphase chromosomes, and regulation of NFE2L2 gene
expression and RHO GTPase effectors.67−71 Notably, pathways
common across the drug targets of both viomycin and
diamorphine highlighted the prominence of regulation of
NFE2L2, RHO GTPase-mediated events, and intermediate
filaments-mediated events as potential convergence points,
aligning with existing literature63−65,69,70,72−74 (Supporting
Information Table 5). Also, we found 27 targets common
between the drugs viomycin and diamorphine (Supporting
Information Table 4 and Figure 6).

Web Server. We have incorporated these QSAR models
into a web server called ’ColoRecPred.’ This online platform is
designed for the prediction of the anticancer activity,
specifically logIC50 values, of unfamiliar compounds against
CRC cell lines. We implemented a two-tier Web server
architecture, featuring a user-friendly interface built using
HTML, CSS, and JavaScript, supported by the Java OpenJDK
v11.0.21 framework. The back-end leveraged a combination of
programming languages and tools to handle various function-
alities. PHP facilitated user interaction and data flow, ensuring
a smooth user experience. Bash scripts were employed to
orchestrate the Web server’s internal processes, ensuring
efficient operation. R programming language (v4.1.2) was
utilized to manipulate and analyze user-provided data. Python
(v3.12.1) played a crucial role in developing and visualizing
machine learning models, offering valuable insights directly on
the results page. To extract 3D structures from user-uploaded

Figure 3. Drug-descriptor analysis: (A) Descriptor FP3 increases the drug activity in cell line COLO-205; (B) Descriptor FP3 increases the drug
activity in cell line KM12; (C) Descriptor GraphFP252 increases the drug activity in cell line MDST8; (D) Descriptor GraphFP252 increases the
drug activity in cell line CCK-81 (0: descriptor absent and 1: descriptor present; Desc: descriptor and CL: cell line).
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2D files, the “RDKit”22 library provided efficient function-
alities. In the web server, the “Predict” page in the Web server
allows users to draw a compound or paste a 2D structure (in
SDF format) of an unknown compound and select the CRC
cell lines for which the user wants to predict logIC50 values. On

submitting the queries, the Web server shall return the logIC50

values of the compound for each of the selected cell lines in a
tabular format. “ColoRecPred” is freely available at https://
project.iith.ac.in/cgntlab/colorecpred.

Figure 4. Validation of drug-to-oncogene relationship using QSAR models. (A) Mutations in ABCA13 reduced the sensitivity of CRC cell lines for
Trametinib in both actual (experimental) and predicted logIC50. (B) Mutations in FSIP2 increased the sensitivity of CRC cell lines for SGC0946 in
both actual (experimental) and predicted logIC50.

Table 3. Most Potent Drugs after Analyzing FDA-Approved Drugs by our QSAR Models

S.
no.

pubchem
ID

drugbank
accession # name

frequency in
12 cell lines cell lines present in mode of action

reference(s) (where drug
is reported as anticancer)

1. 31101 DB01200 Bromocriptine 6 HT-29, SW1463, SK-CO-1, KM12,
COLO-205, GP5d

ergot alkaloid 57−59

2. 42890 DB01177 Idarubicin 6 MDST8, KM12, SW1463, GP5d,
COLO-205, SK-CO-1

antitumor 55,56

3. 3037981 DB06827 Viomycin 6 SK-CO-1, COLO-205, COLO-678,
SW1463, KM12, MDST8

antimicrobial not yet reported as
antitumor

4. 5746 DB00305 Mitomycin 5 CCK-81, COLO-205, SK-CO-1,
KM12, GP5d

antimicrobial 60

5. 8223 DB00696 Ergotamine 5 HT-29, SW1463, SK-CO-1, COLO-
205, KM12

ergot alkaloid 53,54

6. 10531 DB00320 Dihydroergotamine 5 SK-CO-1, SW1463, HT-29, COLO-
205, KM12

ergot alkaloid 51,52

7. 31703 DB00997 Doxorubicin 5 KM12, GP5d, COLO-205, MDST8,
SK-CO-1

antibiotic 49,50

8. 41867 DB00445 Epirubicin 5 KM12, GP5d, COLO-205, MDST8,
SK-CO-1

antitumor 47,48

9. 285033 DB04865 Omacetaxine
mepesuccinate

5 SW620, GP5d, SK-CO-1, HT-29,
KM12

antitumor 45,46

10. 5462328 DB01452 Diamorphine 5 HT-115, COLO-205, KM12, SK-
CO-1, GP5d

analgesic not yet reported as
antitumor

11. 11707110 DB08911 Trametinib 5 SK-CO-1, HT-29, MDST8, COLO-
205, SW1463

antitumor 42−44
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■ DISCUSSION
In the context of CRC, there is an urgency to swiftly develop
alternative therapies and medications to address the challenge
of high incidence and mortality.75 Further, there is the problem
of a prolonged timeline of discovery of new drugs (∼10 to 15
years), which ends up being very expensive and time-
consuming.76 Computational strategies have been developed
and adapted in both pharmaceutical industries and academia to
boost the process of drug discovery and development.77

Keeping this in mind, we have developed robust QSAR models
based on SVM. These models will facilitate the screening of
potential drugs for CRC treatment, whether as standalone
therapies or in combination with conventional drugs. In our
study, we developed QSAR models for 12 CRC cell lines to
design novel drug compounds against CRC. Drugs have
symbolic codes or structures that are quantifiable, known as
chemical descriptors that can confer the potent drug activity of
the molecule. We utilized the correlation of these chemical
descriptors with the drug activity to develop QSAR models. In
descriptor analyses, we found the presence of various 1D, 2D,
and 3D descriptors and molecular fingerprints across the drugs.
With the help of descriptors selection, we could effectively
design models with performance (R2) ranging from 0.609 to
0.827. To show the robustness of our QSAR models, we
implemented them to recapitulate drug-to-oncogene relations
identified using experimental data. We successfully recapitu-
lated the associations of the genes ABCA13, FLG, FSIP2,
DNAH6, and DNAH9 with drugs Trametinib, SGC0946,
Dinaciclib, Sabutoclax, Vincristine, and SCH772984, respec-
tively. These genetic associations, if studied deeper, shall open
dimensions to discover novel biomarkers or drug targets for
CRC. To be further affirmative of the results, experimental
validation of these drug-to-oncogene relationships is necessary.
Also, drug-descriptor analyses showed that the presence of the
chemical descriptors KRFP314, KRFPC314, FP3, APC2-
D9_O_I, GraphFP252, JGI10, KRFP3683, KRFP803, and
nC increased the drug activity. Therefore, it can be assumed
that the presence of these chemical descriptors in drugs confers
anti-CRC activity. The structural and physicochemical model
interpretations using mean absolute SHAP quantifies the
contribution of each descriptor to the model’s predictions,
providing insights into how individual descriptors influence the
model’s output.

Furthermore, our in silico drug repurposing analysis
identified two potential FDA-approved drugs, i.e., viomycin
and diamorphine, for the CRC treatment. This analysis
emphasizes the applicability of QSAR models developed in
this study. We further predicted the pathways that viomycin
and diamorphine might target in CRC. From the predicted
drug targets and pathway analyses of these two drugs, we
identified targets that are involved in the pathways associated
with CRC, e.g., WNT-signaling pathways, GPCR-related
pathways, and intermediate filaments-related pathways. This
warrants that viomycin and diamorphine be explored as
effective anti-CRC drugs after further experimental validations.
We anticipate that the QSAR models developed in this study
will be critical for drug repurposing and designing of novel
drugs against CRC.
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