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Abstract

Scientific transparency, data exploration, and education are advanced through data sharing. 

However, risk for disclosure of personal information and institutional data sharing regulations can 

impede human subject/patient data sharing and thus limit open science initiatives. Sharing fully 

synthetic data is an alternative when it is not possible to share real or observed data. Here we 

describe a data sharing approach that borrows principles and methods from multiple imputation to 

replace observed values with synthetic values, thereby creating a fully synthetic neuroimaging 

dataset that accurately represents the covariance structure of the observed dataset. Predictor tables 

composed of demographic, site, behavioral and total intracranial volume (ICV) variables from 264 

pediatric cases were used to create synthetic predictor tables, which were then used to synthesize 

gray matter images derived from T1-weighted data. The synthetic predictor tables demonstrated 

pooled variance and statistical estimates that closely approximated the observed data, as reflected 

in measures of efficiency and statistical bias. Similarly, the synthetic gray matter data accurately 

represented the variance and voxel-level associations with predictor variables (age, sex, verbal IQ, 

and ICV). The magnitude and spatial distribution of gray matter effects in the observed imaging 

data were replicated in the pooled results from the synthetic datasets. This approach for generating 

fully synthetic neuroimaging data has widespread potential for data sharing, including replication, 

new discovery, and education. Fully synthetic neuroimaging datasets can enable data-sharing 

because it accurately represents patterns of variance in the original data, while diminishing the risk 

of privacy disclosures that can accompany neuroimaging data sharing.
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1. Introduction

Data sharing is a key component of open science initiatives to enhance the integrity, impact, 

and pace of scientific discovery (Gorgolewski and Poldrack, 2016; Nichols et al., 2017), 

including through the secondary analysis of existing neuroimaging datasets (Brakewood and 

Poldrack, 2013; Poline et al., 2012). Sharing neuroimaging data is relatively easy when 

informed consent to share data is obtained (White et al., 2020), and software can be used to 

reduce privacy risks by de-identifying image datasets (Song et al., 2015). However, the risks 

of re-identification should be considered given the type and breadth of shared data (Dankar 

et al., 2012). For example, the inclusion of complementary data or unique populations 

increases the risk for re-identification, particularly when integrated with other datasets (e.g., 

in genetic studies: Gymrek et al., 2013; Homer et al., 2008). Privacy risks also differ across 

datasets with respect to the consequences of re-identification (e.g., stigmatized conditions or 

populations) and duration of risk (e.g., pediatric data). These risks may be higher for 

neuroimaging data collected through electronic health record databases where there can also 

be significant basic and clinical science value. Data managers, data providers, and data 

recipients must consider the costs and benefits of sharing de-identified datasets in the 

context of a shifting regulatory landscape for sharing information and biospecimens 

(Bledsoe et al., 2018), particularly with technological developments that may make it easier 

to re-identify data (Abramian and Eklund, 2019; Bellovin et al., 2019). Here we describe a 

new approach to synthesize neuroimaging, demographic, and behavioral data to: (1) 

facilitate replication for demonstrating the integrity of neuroimaging findings; (2) further 

limit the risk for re-identification; and (3) advance scientific discovery and education. The 

current approach complements neuroimaging data-sharing methods that typically balance 

data transparency and privacy risk (White et al., 2020).

Simulated brain images have been generated to evaluate image processing methods 

(Cocosco et al., 1997; He et al., 2015; Yang et al., 2015) and enhance computer-aided 

medical diagnoses (Castro et al., 2015), where realistic individual-level brain images were 

generated to train machine learning algorithms to make predictions or diagnoses based on 

images from individual subjects or patients. Influenced in part by concerns about false 

positive and false negative neuroimaging findings (Hong et al., 2019; Wager et al., 2009), an 

alternative examined here is to design the synthesis of data such that synthetic data 

accurately recapitulate group-level findings from real data.

Multiple imputation is one approach that can be used to generate synthetic data that 

accurately represents group-level results (Rubin, 1996, 1993). Here we describe a method 

for creating multiple “fully synthetic ” datasets that closely approximate the observed data 

distribution (e.g., mean and variance structure) but include only artificial values and none of 

the observed cases (Loong and Rubin, 2017; Rubin, 1993). These fully synthetic datasets 

include multiple simulated versions of an observed dataset that together produce group-level 

statistical results closely approximating the “true” observed results.

Multiple imputation is a principled statistical approach that considers the distributions and 

co-variances of observed variables to produce multiple versions of a dataset that each 

substitute missing data with plausible simulated values (Rubin, 1987; Schafer, 1999). Any 
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statistic of interest (e.g., mean, variance, t-score) is calculated separately for each simulated 

dataset, then averaged to form a point estimate that represents the value if the dataset 

contained no missing values. Averaging multiple “versions” of a group statistic effectively 

limits the influence of potential extreme simulated values in the imputed datasets. Previous 

findings have shown that multiple imputation can be effective in dealing with missingness in 

small and large datasets (Barnes et al., 2006), as well as mass-univariate neuroimaging 

datasets (Vaden et al., 2012).

We demonstrate that an imputation-based fully synthetic data approach can preserve the 

statistical properties of an observed neuroimaging dataset, which supports the replication of 

results and potential exploration of novel relationships with reduced risk of data-leakage and 

privacy breaches compared to de-identified data (Bellovin et al., 2019). This data synthesis 

approach, which was inspired by methods developed to protect the privacy of census/survey 

respondents (Nowok et al., 2016; Rubin, 1993), involves creating missing data by iteratively 

removing a proportion of data and then estimating the “missing” values using predictors 

(e.g., total brain volume for predicting missing gray matter data). That is, an imputation 

model was used to generate plausible synthetic values that reflected the distributions and 

variance structure in the observed data. After all the observed data were substituted with 

imputed values to produce multiple fully synthetic datasets, statistical tests were performed 

on each synthetic dataset then averaged together (i.e., pooled). Pooling statistical results 

across multiple versions of a simulated dataset can limit statistical bias from extreme 

simulated data points and allow valid inferences in the context of multiple imputation 

(Raghunathan et al., 2003).

The fully synthesized datasets were evaluated based on how well these approximated the 

variance and associations from the observed neuroimaging dataset. Specifically, participant 

characteristics and gray matter image data from a pediatric sample were used to validate the 

multiple imputation approach for generating fully synthetic data. Synthetic data replicated 

results from the observed data when variables of interest were included in both the 

imputation model and the analysis model. Research data were made available that include 

example code and data (Mendeley Data: Vaden et al., 2020), so readers can adapt these 

methods for their own research and data sharing purposes.

2. Materials and methods

2.1. Participants

The current study included retrospective, multi-site demographic and neuroimaging data 

selected from the Dyslexia Data Consortium (www.dyslexiadata.org). These data were 

received with Institutional Review Board (IRB) approval for sharing de-identified data from 

the contributing institution and with approval from the Medical University of South Carolina 

(MUSC) IRB to receive de-identified data.

Participants for this project were selected based on available T1-weighted images and 

included 264 children (107 females and 157 males; M ± SD for age = 9.55 ± 1.59 years; age 

range = 6.39 to 12.85 years) that were studied in Eckert et al. (2016). One motivation for this 

study was that some of the contributors of this data had IRB and institutional approvals to 
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share data for a multi-site project at MUSC, but not to share the data more widely. Table 1 

shows summary information for each site, including scanner and T1-weighted image 

parameters. These data provided an appropriate sample of convenience to assess with the 

synthetic data approach described here. Verbal Comprehension (VIQ), as measured by the 

Wechsler Intelligence Scales for Children (Wechsler, 2004) and the Wechsler Abbreviated 

Scales of Intelligence (Wechsler, 1999), was included as a predictor variable to inform the 

creation of synthetic data. A focus on VIQ was motivated by previous evidence that VIQ, 

and its shared variance with total gray matter volume, statistically explained a reading 

disability association with gray matter in a previous study (Eckert et al., 2016).

2.2. Image acquisition and preprocessing

Gray matter image data were used to assess the data synthesis approach because of their 

widespread use in voxel-based morphometry studies. T1-weighted structural images were 

preprocessed using MATLAB and SPM12 software for standard voxel-based morphometry, 

as in our previous brain morphology studies (Eckert et al., 2017, 2016). Details are provided 

for each preprocessing step to enhance the likelihood of replicability (Poline et al., 2012). 

First, images were bias-corrected and denoised using the adaptive non-local means 

algorithm, which estimates then removes spatially varying noise from T1-weighted images 

(Manjón et al., 2010). Each brain image was then rigidly aligned to the MNI template using 

the SPM12 co-register function based on the default, normalized mutual information 

objective function. The SPM12 segmentation function was then used to create gray matter, 

white matter, and cerebrospinal fluid probability maps, with default selections for bias 

FWHM (60 mm), bias regularization (0.001), MRF parameter (1) and clean up (light clean). 

Total intracranial volume (ICV) for each participant was calculated by summing voxel 

values across the three probability maps. The native space gray matter images were spatially 

transformed into a study-specific neuroanatomical space using the SPM12 diffeomorphic 

normalization procedure with default parameter selections, including linear elastic 

regularization with 6 outer warping iterations (each with 3 inner iterations with decreasing 

regularization parameters), where the average group image from the preceding step served as 

the normalization target for the next step (DARTEL; Ashburner, 2007). Spatially normalized 

gray matter maps were modulated using the normalization deformation parameters, which 

created gray matter volume images or images where each gray matter voxel was weighted 

by the extent of volumetric displacement to that voxel during normalization. Each modulated 

gray matter probability map was smoothed with a Gaussian kernel (FWHM = 8 mm), 

commonly used to limit false positive results and better approximate normally distributed 

data.

2.3. General framework for creating fully synthetic data in two steps

The current data synthesis approach focuses on replicating group-level statistical results 

rather than creating realistic individual subject data. Synthetic data were produced using a 

two-step process. The first step was to generate multiple synthetic predictor tables. The 

second step was to generate multiple sets of synthetic gray matter images, one for each 

synthetic predictor table. For both the predictor tables and images, data was iteratively 

substituted by removing and then imputing values until a completely new synthetic dataset 

was created. This approach allowed simulated data to inform subsequent imputations for 
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each iteration, such that the average associations between variables in the synthetic data 

would accurately reflect associations in the observed data.

Each synthetic dataset was created by attaching two copies of the observed data together 

within one large data matrix (Fig. 1A). The first copy of the data was never perturbed, which 

contributed to preserving the variances and associations between the observed and synthetic 

data. The second copy underwent iterative data substitution (Fig. 1B to 1D). During each 

iteration, the second copy of the data was increasingly composed of imputed values. By the 

end of the last iteration, the second copy of the data was fully composed of synthetic values. 

Again, the first copy of the original data preserved the real covariance structure to inform the 

imputation model, while the second copy became increasingly synthetic. Two copies of the 

dataset also meant that 10% data removal in the second copy only resulted in 5% artificial 

missingness for the imputation model, where imputation provides valid inference (Vaden et 

al., 2012). We performed simulation tests to confirm that synthetic results more accurately 

represented the observed results when less data was substituted during each iteration of the 

imputation-based data generation process (Supplementary Fig. S1).

The iterative data replacement procedure was repeated to create multiple (m) versions of the 

synthetic dataset, borrowing from the methods and principles of multiple imputation. 

Parameter estimates (e.g., average, standard deviation, t-scores) were calculated separately 

for each m version of the synthetic dataset, and then averaged to accurately represent the 

observed parameters and results (Rubin, 1996, 1993, 1987). Averaging parameter estimates 

from multiply imputed data is known to create reliable point estimates for group-level 

results, and the number of fully synthetic datasets (m) needed for valid synthetic results is 

considered later. In summary, the current approach generated m synthetic versions of the 

predictor table and image data to ensure that group-level associations were preserved while 

eliminating data from real cases, and theoretically re-identifiable unique combinations of 

data (El Emam et al., 2011).

2.4. Fully synthetic predictor tables (step one)

Predictor tables were created that included the following variables: age, ICV, sex, VIQ, and 

the research site label for each participant in the multi-site dataset. The R-package ‘mice’ 

(version 3.6.0) (Van Buuren and Groothuis-Oudshoorn, 2011) was used to create an 

imputation model based on observed and simulated values in the dataset to inform the 

generation of plausible replacement values. Multiple versions of the fully synthetic predictor 

tables were created (m = 10), which each contained unique simulated cases (i.e. “simulants”) 

that could not be linked to any observed case. Because MICE uses distributional information 

to replace values, individual values from the original dataset that are unusual and/or 

identifiable are unlikely to be exactly replicated in the simulants. This replacement approach 

differs from shuffling or exchanging observed values to simulate cases, which can propagate 

unusual values that are potentially unique identifiers for some datasets (e.g., age > 89 years). 

The example R code (Mendeley Data: Vaden et al., 2020) includes a function to verify that 

no synthetic cases match an observed case, which was also confirmed for the current study.

Vaden et al. Page 5

Neuroimage. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.5. Evaluation of synthetic predictor tables

Numerous measures have been used to evaluate the quality of simulated data for multiply 

imputed datasets. For example, Stuart et al. (2009) suggest that imputed variables should 

have less than twice and more than half the variance of the observed data, as well as an 

absolute difference in the simulated and observed means less than two standard deviations. 

Kolmogorov-Smirnov tests can also be used to detect significant distribution differences 

between observed values and imputed values (Abayomi et al., 2008). The current study used 

variance ratio measures, t-score differences, covariance tests, and correlation-based 

comparisons of each observed and synthetic variable to assess the fully synthetic predictor 

tables and neuroimaging data.

First, synthetic variance was characterized to determine how accurately it represented 

observed variance on average, for each variable or voxel in the synthetic datasets. Efficiency 

was defined as the average ratio of synthetic variance to observed variance, for each variable 

in the synthetic data which included participant age, ICV, sex, and VIQ. Efficiency is ideally 

equal to one, such that the variance for a synthetic variable matches the variance for the 

observed variable. Efficiency pooled across many simulations that differs substantially from 

one (e.g., efficiency < 0.05 or efficiency > 2) can indicate bias in the variance estimate used 

to simulate values. Efficiency < 1 indicates that a synthetic variable had lower variance than 

the observed variable, and efficiency > 1 indicates that a synthetic variable had higher 

variance than the observed variable.

Accuracy of the synthetic statistical test results (e.g. t-scores) was determined using a 

measure of bias, or the absolute difference between an observed t-score and the average 

synthetic t-score. Bias was defined as the absolute difference between an observed t-score 

and the average synthetic t-score based on each of the synthetic predictor tables. 

Specifically, bias was examined for the synthetic predictor tables by performing separate 

GLM-based regression analyses that each specified ICV as the outcome variable and 

participant age, sex, or VIQ as the explanatory variable, and then contrasting the pooled 

synthetic t-score to the observed t-score from each regression test. The absolute difference 

between the pooled synthetic t-score minus the observed t-score represented the magnitude 

of estimation error for each statistical test performed with the synthetic and observed 

datasets.

The quality of the synthetic data was judged based on preservation of covariance structure 

relative to the observed predictor table. Because the predictor tables included a mixture of 

continuous and non-ordinal categorical data (e.g., sex, research site), mutual information 

was calculated for each pair of variables using Mixed-Pair Mutual Information Estimators 

(R-package: “mpmi”, version 0.43). Pairwise mutual information estimates were organized 

into mutual information matrices (MIM), similar to a covariance matrix, then a correlation 

test was used to quantify the association between synthetic and observed MI estimates. The 

resultant correlation coefficient quantified the degree to which observed pairwise 

associations were accurately represented in the synthetic datasets.
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2.6. Number of synthetic datasets

Simulation tests were performed to evaluate the number of synthetic predictor tables (m) 

needed to accurately represent variance and associations from an observed dataset, and to 

guide the number of fully synthetic datasets generated for the current study. Researchers 

often use ten or more imputations for statistical analyses with missing data, although the 

number of imputations necessary to limit inference error depends on effect size, sample size, 

and the extent of missingness (Lu, 2017; Rubin, 1996; Schafer, 1999).

During each simulation test (2000 repetitions), data from the observed predictor table was 

replaced with imputed values to create 10 synthetic predictor tables. Consistent with 

multiple imputation principles, parameter estimates (e.g., variance, mutual information, and 

t-scores) were calculated separately for each synthetic predictor table, and then pooled 

estimates were calculated from m = 1 to 25 estimates, for each simulation. Efficiency, 

mutual information, and bias results were examined across simulations to determine how the 

number of synthetic datasets generated (m = 1 to 25) can affect the approximation of 

observed data. The Supplementary Materials include results from additional simulation tests 

to characterize how synthetic data efficiency and bias were related to sample size, percent 

data replacement, and number of synthetic datasets generated. The simulation test results 

and supplementary results provide a rationale for the m = 10 and iterative replacement of 

10% data in the current study. These results may also provide guidance for researchers 

interested in generating novel synthetic datasets (Supplementary Figs. S1 and S2).

2.7. Fully synthetic neuroimaging data (step two)

Based on multiple imputation guidelines and results from the simulation described above, 

synthetic gray matter datasets were produced for each of the m = 10 synthetic predictor 

tables. Similar to the approach for generating synthetic predictor tables, the observed 

predictor table and gray matter values for a voxel (observed data) were temporarily attached 

to a copy of the synthetic predictor table. Next, synthetic gray matter values were produced 

for the “missing” gray matter image values using multiple imputation. Thus, the imputation 

model was again guided by associations between the observed predictors (e.g., age) and gray 

matter data when simulating data for each voxel.

Efficiency was calculated for each voxel as the ratio of synthetic variance to observed 

variance in the gray matter images, to characterize potential bias in the variance estimates 

from the imputation model. Mutual Information was again used to measure the associations 

between the mixed-type predictors (categorical and continuous) and gray matter volume for 

each voxel. A correlation test was then performed between the observed mutual information 

and synthetic mutual information, with the expectation that well-preserved associations 

would be reflected in strong, positive correlations across voxels. The associations between 

gray matter volume and predictor variables were used to quantify the validity, and thus 

usefulness, of the synthetic data.

Statistical parametric maps were produced to examine the spatial pattern of the observed and 

simulated results. Whole-brain GLM regression analyses were performed using SPM12 with 

gray matter image data as the outcome variable, and participant age, ICV, sex, and VIQ as 
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explanatory variables. The resultant t-score maps were pooled across simulations (m = 1 to 

10) for comparisons with the observed t-score maps. Each pooled synthetic t-map was tested 

to determine the optimal Gaussian smoothing kernel that would maximize its correlation 

with the observed t-score map across a test range of FWHM = [0, 0.5, …, 12 mm]. 

Smoothing the synthetic results was necessary because gray matter values in each voxel 

were synthesized independently of the adjacent voxels, which created spatially independent 

variance in the t-score maps. For the same reason, simulated gray matter images could not 

be smoothed prior to statistical analyses because reducing the spatial variance in synthetic 

subject images can potentially inflate group-level results. Bias was used to assess differences 

in the statistical result maps, by calculating the absolute difference between observed and 

synthetic t-score in each voxel.

In addition to characterizing efficiency for the simulated brain images and bias for the t-

scores, analyses were performed to characterize agreement between observed and synthetic 

SPM results across small to large effect sizes. Each statistical map was thresholded with 

uncorrected cluster defining p-value thresholds (CDF p = 0.05, 0.01, 0.001, 0.0001] and 

non-stationarity correction in SPM12 (Hayasaka et al., 2004) was used to identify significant 

clusters based on extent with familywise error corrected p = 0.05. Hits were defined as 

significant voxels or clusters with at least 50% overlap, which were present in both the 

synthetic and observed statistical maps. False alarms were defined as significant voxels or 

clusters that were present in the synthetic but not the observed statistical map. Misses were 

defined by significant voxels or clusters that were present in the observed but not the 

synthetic statistical map. True positive rates were calculated as the number of hits divided by 

the total number of significant voxels or clusters in each observed statistical map. Hit rates 

were calculated as the total number of hits divided by number of hits and false alarms, to 

determine the proportion of significant results in the simulated t-score maps that correspond 

to the observed significant results.

2.8. Imputation model specification

The inclusion of a variable in the analyst model that is not included in the imputation model 

can have negative consequences on the inference of results from multiply imputed data 

(Meng, 1994; Rubin, 1996). We examined the extent to which the current approach for data 

synthesis using multiple imputation was also sensitive to this limitation. Specifically, we 

examined if Sex-VIQ interactions in the observed results would be misrepresented in the 

synthetic results. A false negative bias was expected for an interaction term that was 

excluded from the imputation model used to generate synthetic values. Results presented in 

the Supplementary Materials show that this well-known modeling consideration of multiple 

imputation for missing data also applies to fully synthetic data (Supplementary Figs. S3 and 

S4).

2.9. Data and code availability statement

As noted above, there were institutional limitations on data-sharing for a subset of the data 

used for this study. A research dataset that includes the synthetic predictor tables and fully 

synthetic neuroimaging datasets are available online (Mendeley Data: Vaden et al., 2020). 

The research dataset also includes commented MATLAB and R code to implement the 
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current neuroimaging data synthesis methods with a small example dataset. The example 

data were selected from an earlier fMRI study (Kuchinsky et al., 2012) to demonstrate that 

the current method can be applied to other types of neuroimaging data. The example code 

can also be adapted to produce fully synthetic group-level datasets based on observed 

neuroimaging data from other sources.

3. Results

3.1. Synthetic predictor tables evaluation

The simulation results with pooled estimates from multiple synthetic predictor tables (m = 

10) showed that the observed co-variance structure, variances, and associations were 

accurately represented by the fully synthetic predictor tables. Large correlation coefficients 

for the MIMs (mean r = 0.93 ± 0.01; range = 0.89 to 0.96) suggested that the covariance 

structure of the synthetic data closely approximated the variance structure of the observed 

data. Fig. 2A shows that efficiency was typically just above one for each variable in the 

synthetic predictor tables (mean efficiency: age = 1.04 ± 0.04; ICV = 1.04 ± 0.04; VIQ = 

1.06 ± 0.04). Bias was also limited across simulations (Fig. 2B; absolute bias for ICV 

predicted by: age = 0.32 ± 0.24; sex = 0.35 ± 0.26; VIQ = 0.36 ± 0.27). Together, the 

simulation results indicated that the fully synthetic predictor tables accurately represented 

the variances and associations within the observed data from which they were derived.

3.2. Number of synthetic predictor tables

The simulation results were also used to characterize the cumulative statistical benefit from 

pooling results from an increasing number of synthetic predictor tables. Fig. 3A shows that 

variance of the synthetic data was higher than the observed data regardless of how many 

tables were synthesized. However, the error bars in Fig. 3A indicate that efficiency was more 

reliable (less variable) across simulations when more synthetic predictor tables were 

generated. The bias results also suggest that pooled t-score estimates were more accurate 

and less variable across simulations based on a larger number of synthetic predictor tables 

(Fig. 3B). While higher m values reduce variability for efficiency and lower statistical bias, 

these benefits come with the computational burden of generating and analyzing many 

synthetic datasets. This is especially the case for relatively large samples, such as the current 

N = 264. Because each result stabilized and produced diminishing returns after 10 

imputations, m = 10 fully synthetic datasets were generated for the current study. 

Supplementary Figs. S1 and S2 provide related information for a simulated range of smaller 

sample sizes.

3.3. Synthetic gray matter image evaluation

The synthetic and observed predictor tables were used to create synthetic images, as 

described in the Methods. Fig. 4 shows that (unsmoothed) synthetic image data were more 

variable than observed image data (mean efficiency = 1.07 ± 0.04). The observed covariance 

structure was well-approximated in the synthetic image data, based on mutual information 

between each predictor and gray matter values (mean MIM correlation r = 0.96 ± 0.06). 

These results suggest that the fully synthetic dataset accurately represented gray matter 

image values and associations with predictors in the observed dataset.
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Because synthetic image data were generated independently for each voxel with an 

imputation model naïve to spatial dependencies with neighboring voxels, synthetic image 

data and statistical maps were more variable than the observed images and results. As 

described in the methods, synthetic statistical maps were generated by performing multiple 

regression analyses and averaging m = 10 simulated versions of each result, then spatially 

smoothing the pooled result with an optimized Gaussian smoothing kernel. The best 

smoothing kernel size was determined for each pooled synthetic statistical map by the 

highest correlation between each observed statistical map and its synthetic counterpart. The 

pooled synthetic statistical maps for age, sex, and VIQ were optimally smoothed with a 

FWHM = 2 mm smoothing kernel, and ICV was smoothed with FWHM = 0 mm (i.e., not 

smoothed). Below, the pooled and smoothed synthetic results are referred to as: “synthetic 

statistical maps”.

The absolute differences between the observed and synthetic t-score maps were relatively 

small (M ± SD absolute bias for Age = 0.16 ± 0.19; ICV = 0.41 ± 0.31; VIQ = 0.16 ± 0.18; 

Sex = 0.17 ± 0.19). The limited voxel-based gray matter bias is consistent with efficiency 

close to one for the synthetic predictor tables and synthetic gray matter data (Fig. 4).

Consistent with the relatively low bias, the synthetic results accurately represented the 

observed results, based on correlations performed across voxels on the t-scores from the 

observed and synthetic statistical maps (Fig. 5). Strong correlations were obtained between 

the observed and synthetic statistical maps for age, ICV, sex, and VIQ, such that these were 

nearly identical (R2 ≥ 0.97). The relatively infrequent underestimation of an observed result 

(e.g., propeller shapes in the Fig. 5 Age effects) was consistent with efficiency > 1 for the 

synthetic age and synthetic gray matter image data. Fig. 6 displays an axial slice from each 

of the observed and synthetic statistical maps to show the spatial consistency. Together, these 

results indicate that the synthetic image data accurately reflected associations between gray 

matter image data and predictor variables in the observed data.

The whole-brain non-stationarity corrected cluster results from SPM12 also suggest that 

synthetic t-score maps accurately represented the observed results (Fig. 7). Nearly all 

cluster-level hit rates and true positive rates were equal to 100%, except for the true positive 

rate when the cluster defining threshold p = 0.0001. To better understand these cluster 

results, the voxel-level hit rates were examined and these hit-rate data demonstrated a similar 

pattern. The voxel level hit rates dipped from 82.7% to 39.4% as the cluster-defining p value 

was lowered from 0.05 to 0.0001, which when considered with the bias results shown in Fig. 

5, demonstrate that the synthetic results had lower t-scores and this affected the cluster 

results when using a high p value threshold. True positive rates for the voxels ranged from 

97.3% to 98.8%, suggesting that the significant clusters in synthetic statistical maps rarely 

extended beyond the spatial extent of the observed clusters. Together, these results show that 

fully synthetic neuroimaging results replicated the observed statistical maps, which is 

consistent with efficiencies near one and low bias estimates in non-thresholded t-score maps. 

Nonetheless, efficiencies > 1 can limit the correspondence of significant results when using 

conservative p value thresholds to define clusters in statistical maps.
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4. Discussion

The results from this study provide validation for a data synthesis approach that is 

conceptually based on the principles of multiple imputation (Rubin, 1993). We demonstrated 

that synthetic predictor variables (age, sex, VIQ, ICV) and gray matter image data closely 

approximated the covariance structure, variance, and statistical estimates in the observed 

dataset. We envision that the type of synthetic data generated in the current study could be 

used for data sharing initiatives, including for manuscript and grant application review, 

limited datasets of patient information in medical institution clinical databases, algorithm 

development, and for educational purposes. Users of this data synthesis approach should 

carefully consider the well-established guidelines and limitations for multiple imputation.

4.1. Fully synthetic and unidentifiable data

Our fully synthetic data approach is focused on characterizing group-level results in the 

observed data rather than creating individual subject data. One benefit of this approach is 

that it significantly limits the possibility that any single case in the observed data can be 

identified. While the current study included a large multi-site sample with low risk for 

privacy disclosures, de-identifying data can be problematic for studies where cases may be 

identified based on unique combinations of variables or unusual variable values (Dankar et 

al., 2012; El Emam et al., 2011). Across 2000 simulations with 10 synthetic predictor tables 

(264 cases each), no synthetic case in the current study had a combination of demographic, 

behavior, site, and ICV values that exactly matched one of the 264 observed cases. However, 

it is possible that identical combinations of variable values can appear in observed and 

synthetic predictor tables. For that reason, the code for generating synthetic data included a 

function to detect simulants that were identical to cases in the observed dataset. If an 

identical pattern of variable values is identified, the code generates another synthetic dataset 

to replace all simulants. This function is included in the example code available with the 

research dataset (Mendeley Data: Vaden et al., 2020), and provides a safety check to identify 

and remove potentially duplicated patterns of observed data from the synthetic datasets.

4.2. Synthetic data creation and use recommendations

The extent to which synthetic data accurately replicate observed results appears to be 

sensitive to the proportion of “missing” data that are iteratively substituted with imputation 

during the data generation process. Here 10% of the values were removed and imputed 

during each iteration to synthesize predictor tables. Because the imputation model uses an 

intact copy of the original table, this represents 5% missingness for the imputation model. 

Fewer missing data can sometimes improve the quality of multiply imputed data, 

particularly for smaller sample sizes (Vaden et al., 2012). Our supplementary results show 

that replacing fewer values at each iteration during the generation of fully synthetic data 

produced better efficiency and lower bias, especially for smaller samples (Supplementary 

Fig. S1). Increasing the number of synthetic tables can further reduce bias for synthetic t-

scores (Supplementary Fig. S2). These observations suggest that modifications to the current 

approach, such as substituting a smaller proportion of data using imputation or increasing 

the number of synthetic datasets, may be important for smaller sample sizes.
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In addition to how well the synthetic data represent the observed data, the usefulness of the 

synthetic data will depend on the recipient’s understanding of the synthetic and observed 

datasets. At a minimum, recipients of synthetic data will need access to the imputation 

model to evaluate the synthetic data and know what variables can be appropriately analyzed 

(Reiter, 2005). This is because the recipient’s analysis model should include the same 

variables as the contributor’s imputation model (Loong and Rubin, 2017). For example, an 

interaction tested with synthetic data can produce false positive and/or false negative results 

when the imputation model does not include that interaction (Tilling et al., 2016). 

Supplementary Figs. S3 and S4 demonstrate that synthetic gray matter results were 

statistically biased when the data synthesis model did not include a sex-VIQ interaction 

effect that was specified for the multiple regression model (Meng, 1994; Rubin, 1996).

Maximizing the imputation model or including all variables and potential interactions of 

interest in the predictor model during the generation of synthetic datasets could potentially 

remedy the imputer/analyst model consistency problem, but this may be computationally 

unwieldy depending on the number of higher-order interactions and dataset size. We 

recommend clear communication between data contributors and recipients to better 

understand the imputation model used to generate the synthetic dataset (Loong and Rubin, 

2017), or the development of online data portals that allow users to specify an imputation 

model that can generate synthetic data tailored for their analysis plan. Allowing recipients to 

control data generation models could address challenges in the analysis of imputation-based 

synthetic data that can result from specification differences between the imputer model and 

the analyst model. We also recommend that recipients request that contributors replicate any 

novel findings with their observed data, when the recipients discover novel findings based on 

synthetic data. We return to this issue later in the context of false positive and false negative 

findings.

Contributors of synthetic data would also ideally provide statistics about the similarity of 

their synthetic and observed data. We used efficiency and bias in the current study, but other 

metrics could be important. For example, efficiency at each voxel could be provided so that 

recipients understand which brain regions exhibit variance that is most similar (or dissimilar) 

to the observed variance. Given that synthetic data generation is focused on providing 

accurate parameter estimates, images or maps of the correspondence between synthetic and 

observed results (e.g., Fig. 5) could also be provided to recipients. We note that the example 

code available from our research dataset (Mendeley Data: Vaden et al., 2020) can be used to 

provide this information about a fully synthetic dataset.

4.3. Limitations and cautionary guidance

The accuracy of the imputation approach for data synthesis depends on associations within 

the predictor table and image data. When the synthetic data have efficiency ≈ 1, then false 

negative and false positive effects in the synthetic data should be minimized. This is 

important in the context of caution about false positive findings in neuroimaging studies 

(Eklund et al., 2019; Greve and Fischl, 2018; Scarpazza et al., 2015). The examination of 

efficiency and bias in synthetic results could be useful to researchers who have concerns 

about the ability of other researchers to replicate their findings. In the current study, there 
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was evidence of a false negative bias when there was increased variance in the synthetic data 

relative to the observed data (i.e., efficiency > 1). While the current study serves as a useful 

proof of concept, the efficiency results suggest that data synthesis could be enhanced with 

the addition of more sensitive predictor variables.

We also caution against extrapolating values well beyond the observed data range to 

artificially create greater variance in synthetic data. This could produce invalid inferences 

because the associations between variables may be non-linear for values beyond the 

observed range. Moreover, it seems likely based on the efficiency observations that this 

could also create false negative results.

The degree to which effects replicate between synthetic and observed datasets may also 

depend on the sample size. The current study involved a relatively large sample size (N = 

264) for a structural neuroimaging dataset. This approach also appears effective for a 

relatively smaller fMRI dataset (N = 36) that was used for the example code. While this 

example dataset also demonstrated consistent synthetic and observed results, the 

Supplementary Materials show that efficiency can be inflated with increased likelihood for 

false negatives when this data synthesis approach is used with relatively small samples (N ≤ 

30). Contributors of synthetic datasets derived from relatively small sample sizes should 

examine measures of efficiency and bias before sharing their synthetic data. This 

information may also be informative in the context of power analyses and the likelihood that 

the observed results are replicable.

An additional caution is that subject-level simulant images should not be smoothed, at least 

for synthetic data that were generated with the imputation approach used in the current 

study. Each voxel was estimated independently of the adjacent voxels. Spatial smoothing of 

a synthetic case effectively cancels the variance across adjacent voxels and can produce 

inflated group-statistics. However, smoothing of the t-score maps can increase the 

correspondence between observed and synthetic statistical maps, at least for results that have 

relatively small to medium effect sizes. Smoothing the synthetic statistical maps does not 

appear to be necessary for large effect sizes and may increase error by extending cluster 

boundaries and reducing large effects near the peak of a cluster. The code for generating 

synthetic data includes a function to test smoothing kernel sizes to maximize the 

correspondence between observed and synthetic results, as implemented in this study. This 

smoothing kernel information should be conveyed to data recipients because t-score images 

will require smoothing, rather than the synthetic data.

4.4. Future directions and application

The fully synthetic data approach described here may be useful for researchers who need to 

analyze restricted-access datasets. For example, researchers could access a secure cloud-

based infrastructure to define an imputation model that is aligned with their planned 

analyses so that the synthetic dataset generated can be analyzed appropriately. This type of 

approach would likely encourage the contribution of data to a repository by providing a 

mechanism for safe participant or patient data sharing, and could provide a data resource 

with greater statistical power than would be achieved by any individual researcher.
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A cloud-based data repository composed of data from different research sites or within an 

imaging center would likely include missingness, which is also common in neuroimaging 

studies (e.g., susceptibility artifact; Vaden et al., 2012). Future studies could evaluate the 

current imputation-based approach when there is actual missing data. Multiple imputation 

can be used to fill-in missing values and accurately recover statistical estimates, including 

for group-level fMRI analyses (Vaden et al., 2012), when the imputation model contains the 

same predictors as the analysis model (Loong and Rubin, 2017).

Another area for study is the degree to which other forms of data can enhance the current 

imputation-based synthesis approach. For example, we considered using Independent 

Component Analysis (ICA) to generate component maps of the gray matter images and 

subject-level weights to inform estimation of the gray matter data. ICA could preserve the 

multivariate associations within an image dataset (Castro et al., 2015). A method to produce 

component weights rather than individual voxel data could reduce the variability across 

voxels in synthetic image data. To the extent that component-based data generation 

accurately represents spatial dependencies across synthetic voxels, smoothing synthetic 

statistical maps could be unnecessary. Principle Component Analysis (PCA) has also been 

proposed for generating synthetic datasets to prevent disclosure, in the context of continuous 

data (Calviño, 2017). Methods such as ICA or PCA may extend the current approach for 

generating fully synthetic neuroimaging data to multi-modal datasets, as well as enhance the 

representation of observed univariate and multivariate associations.

Finally, it is also possible that other replacement methods could enhance the quality and 

usability of synthetic data, while limiting privacy disclosure. For example, reality-based 

synthetic fMRI data have been used to facilitate power analyses and experiment design (Ellis 

et al., 2020). Deep learning models have also been developed to create synthetic brain 

images that appear realistic (Bermudez et al., 2018; Calimeri et al., 2017) to augment 

training datasets for machine learning methods to perform diagnostic tasks more accurately 

(Shorten and Khoshgoftaar, 2019). The imputation based approach described here might 

also be developed to produce single subject data that appear biologically plausible based on 

simulated informative predictors, although substantial changes would be required to 

introduce spatial dependence in the generation of image data. There are, however, different 

goals for deep learning methods like generative adversarial networks and the proposed 

imputation-based method. The former is focused on creating biologically plausible data 

while the latter is focused on appropriate statistical inference from the synthetic data.

5. Conclusions

Results from the current study demonstrated that multiple imputation can be used to 

generate fully synthetic data that accurately replicate results from observed data. This 

method can be applied to generate synthetic data for other types of experimental and 

neuroimaging datasets. It may be a useful approach for sharing data when the risk of re-

identification and/or potential harm requires a more cautious approach to data sharing 

compared to de-identifying observed data. This could include data from electronic health 

records where the code used in this study could be used to generate synthetic datasets based 

on queried sample parameters and analysis models. Researchers should consider the relative 
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risk of re-identification when sharing data and the approach described here is one way of 

sharing data when the potential harm from re-identification may be high. Use of the 

approach described here should be pursued with consideration of its limitations, in particular 

how sample size, the extent of data replaced per iteration, number of datasets generated, and 

model discrepancies can affect synthetic results. If the recipient and contributor of synthetic 

data understand these issues, multiply imputed synthetic data has the potential to enhance 

scientific integrity, discovery, and education when the observed data cannot be shared.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Predictor table synthesis overview. (A) Two copies of the original data were attached to set 

up the data matrix. (B) Observed values were removed in randomly ordered but fixed 

intervals from the second copy during each iteration (dark gray and empty cells). (C) Next, 

the cells with missing data were filled with imputed values. (D) Observed values were 

removed and replaced with simulated values at fixed intervals in the second copy of the data, 

such that second copy of data was completely substituted with simulated values over the 

course of a few iterations. The fully synthetic dataset was then separated from the unaltered 

original copy. The iterative procedure was repeated to create m = 10 independent and fully 

synthetic datasets for the current study. R code for performing this procedure is available 

online (Mendeley Data: Vaden et al., 2020).
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Fig. 2. 
Efficiency and bias were averaged across 10 synthetic predictor tables for each of the 2,000 

simulations (plotted as points). The synthetic predictor tables showed efficiencies ≈ 1 and 

bias ≈ 0. (A) Efficiency quantiles for predictors are shown as boxplots. (B) Parameter 

estimate bias for t-scores from a model of ICV predicted by age, sex, or VIQ are displayed 

with boxplots.
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Fig. 3. 
The simulation results suggest that generating more synthetic predictor tables can increase 

reliability, based on more stable efficiency and lower bias. (A) Synthetic data had higher 

variability than the observed data, such that efficiency was consistently just above 1. 

Efficiency did not appear to decrease in relation to a larger number of synthetic tables, 

although efficiency was more stable based on smaller SD error bars. (B) Pooled statistical 

parameter estimates showed lower bias when results were averaged across a larger number 

of synthetic tables, based on the mean absolute difference between observed and synthetic t-

scores. The SD error bars also suggest that bias was less variable with a larger number of 

synthetic predictor tables. Abs: Absolute.
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Fig. 4. 
Efficiency and bias were used to characterize how well the observed gray matter data and 

results were approximated by the fully synthetic dataset. The yellow boxplot on the left 

illustrates efficiency quartiles, which are overlaid on blue points that show the efficiency 

values from individual voxels. Efficiency was higher than one in most voxels, which means 

that simulated gray matter values were more variable than observed values. The green 

boxplots show bias quartiles overlaid on purple points for voxel-level bias estimates, 

calculated as the absolute difference in t-scores from the observed and synthetic statistical 

maps (Synth - Obs). Bias was relatively close zero. The larger magnitude for ICV bias 

appears to reflect the strong association between brain size and voxel-level grey matter 

volume.
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Fig. 5. 
A multiple regression model was used to test for gray matter associations with age, ICV, 

Sex, and VIQ. Density scatterplots show the concentration of voxel-level results for each 

observed and synthetic statistical map. The t-scores from the observed statistical maps (Obs) 

were well-approximated by t-scores in the synthetic statistical maps (Synth). The light gray 

points indicate the lowest density of overlapping points, dark red points indicate higher 

overlap density, and bright red points indicate the highest overlap density in each subplot.
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Fig. 6. 
An axial slice is shown for the (A) observed statistical maps and (B) synthetic statistical 

maps. The color scale for the t-scores is shown below each statistical map.
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Fig. 7. 
(A) Comparing the significant clusters for synthetic t-score maps and observed t-score maps 

indicated that results were consistent, as demonstrated by hit rates = 100% at typical cluster 

defining thresholds. The cluster true positive (Pos) rates indicate that no significant clusters 

appeared in the synthetic maps that were not also present in the observed results. Significant 

cluster hit rates decreased as the cluster defining p value was lowered, which is consistent 

with efficiency values greater than one for the imaging data and a false negative bias. That 

is, the synthetic result clusters were smaller in extent than the observed result clusters. This 

interpretation is consistent with results shown in B where the hit rate for voxel-level results 

also decreased with each more conservative p value. Because true positive rates were close 

to one, the results also suggest that false positives were rarely present in the synthetic t-score 

maps. Each bar in the subplots represents the average ± SEM bars for the positive and 

negative signed contrasts for age, ICV, sex and VIQ.
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