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Abstract: Zn(II) complexes bearing tris[3-(2-pyridyl)-pyrazolyl] borate (Tppy) ligand (1–3) was
synthesized and examined by spectroscopic and analytical tools. Mononuclear [TppyZnCl] (1) has
a Zn(II) centre with one arm (pyrazolyl-pyridyl) dangling outside the coordination sphere which
is a novel finding in TppyZn(II) chemistry. In complex [TppyZn(H2O)][BF4] (2) hydrogen bonding
interaction of aqua moiety stabilizes the dangling arm. In addition, solution state behaviour of
complex 1 confirms the tridentate binding mode and reactivity studies show the exogenous axial
substituents used to form the [TppyZnN3] (3). The complexes (1–3) were tested for their ability
to bind with Calf thymus (CT) DNA and Bovine serum albumin (BSA) wherein they revealed to
exhibit good binding constant values with both the biomolecules in the order of 104–105 M−1. The
intercalative binding mode with CT DNA was confirmed from the UV-Visible absorption, viscosity,
and ethidium bromide (EB) DNA displacement studies. Further, the complexes were tested for
in vitro cytotoxic ability on four triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, MDA-
MB-468, HCC1937, and Hs 578T). All three complexes (1–3) exhibited good IC50 values (6.81 to
16.87 µM for 24 h as seen from the MTS assay) results which indicated that these complexes were
found to be potential anticancer agents against the TNBC cells.

Keywords: tris(pyrazolyl)borates; zinc(II); biomolecular interactions; in vitro cytotoxicity;
triple negative breast cancer cells

1. Introduction

Zinc is the second most abundant metal found in the human body (human being con-
tains average 2–3 g of zinc), being vital in regulating cellular process [1,2] including enzyme
regulation [3], gene expression [4], apoptosis [5], and neurotransmission [6]. Compared to
other first row transition metals, zinc has certain distinguishing properties which makes it
quite challenging in the biological domain [3,7]. The fast exchange with ligands, strong
Lewis’s acidity, redox inactiveness, and the capability to endure a versatile coordination
geometry are some of the striking features which makes zinc ubiquitous in the biological
system [8]. It is a widely known fact that Zn(II) ions are redox inert in biology [9], where
zinc always remains in the Zn(II) valence state and can neither oxidize nor reduce another
substance [10]. The zinc and the cysteine–sulfur bond present in the proteins play key
roles in controlling cellular processes, maintaining homeostasis, cellular signaling, enzyme
catalysis, and also influencing cytotoxicity [11]. With the above mentioned redox-inert
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characteristic properties, we find that zinc is functionally closer to the redox-inert magne-
sium and calcium ions and among the redox-inert divalent metal ions, zinc is the metal
that has the strongest interaction with ligand frameworks and biomolecules [12].

N-donor ligands are considered to be an important class of ligand system due to
their intrinsic toxicity and DNA intercalation properties. For example, 2,2′-bipyridine,
terpyridines, 1,10-phenanthrolines, planar aromatic quinolines, and pyrazoles based lig-
ands showed promising antineoplastic activity when combined with first row transition
metals [13–16]. Changing the ligands environment towards the specific target is one of the
ways in tuning the selectivity of the drug molecule [17]. The nature of the ligand is expected
to play an important role in binding with metal complexes as well as biomolecules [18].
Apart from the biological activity, the pyrazole-based ligands framework are also utilized
in the field of drug delivery in the form of metal organic frameworks and coordination
cages [19,20]. One such ligand system that assembled in a cage manner is the anionic
tris[3-(2-pyridyl)-pyrazolyl]borate (Tppy) which possesses a hexadentate cavity suitable
for lanthanides and actinides to form mononuclear luminescent and fluorescent com-
plexes [21]. On the other hand, the hexadentate anionic [Tppy]− ligand with first row
transition metals may result in dinuclear and trinuclear complexes with copper(I) and
tetranuclear complexes with manganese(II) or zinc(II) metals [22,23]. The polydentate
ligands usually resulted into the self-assembled products which are controlled either by
ligand geometry or ligand field stabilization energy (LFSE) of metal complexes. Notably,
these first-row transition metals with their chloride salts and anionic [Tppy]− ligand may
bind in a distorted square pyramidal arrangement with two bidentate pzpy arms. Due to
the axial chloride and planarity of bidentate (pzpy) arms, one bidentate arm unit fails to
coordinate to the same metal center. Recently, we investigated the formation of iron(II)
complexes with Tppy and explored the coordination behaviors with different sources of
iron salt [24].

Combining the biological importance of the Tppy ligand and the zinc metal ion,
herein we have synthesized three Zn(II) complexes bearing different substitutions and their
structure has been confirmed from the single crystal X-ray diffraction study. In addition, we
have emphasized on the solid state and solution state behavior of the complexes through
FT-IR and NMR spectroscopic methods. The complexes have been evaluated for their
DNA and protein (BSA) binding efficacy and are also tested for their in vitro cytotoxic
ability on four triple-negative breast cancer cell lines namely, MDA-MB-231, MDA-MB-468,
HCC1937, and Hs 578T.

2. Materials and Methods

General procedures, chemical reagents, and X-ray crystal determination details are
provided in the supporting information.

2.1. Complex Synthesis
2.1.1. [TppyZnCl] (1)

A solution of KTppy (0.200 g, 0.410 mmol) in 10 mL of methanol was added to a
solution of anhydrous ZnCl2 (0.055 g, 0.410 mmol) in 5 mL of methanol upon which a white
precipitate formed immediately. The mixture was stirred for 2 h and solvent evaporated
to one third and filtered. The resulting product was washed with methanol (5 mL) and
dichloromethane (5 mL) which was then dried under vacuum. Yield: 0.172 g (77%). X-ray
quality crystals were grown from methanol solution at −20 ◦C. Anal. Calculated for
C24H19BN9ZnCl: C, 52.88; H, 3.51; N, 23.13. Found: C, 52.92; H, 3.50; N, 23.15. UV-Vis
[DMSO; λmax/nm (ε/dm3mol−1cm−1)]: 285(11,400), FT-IR (KBr, cm−1): νB-H 2440(w). 1H
NMR (400 MHz, CDCl3, δ): 8.76 (s, 1H), 7.81 (s, 3H), 7.34 (s, 1H), and 6.69 (s, 1H). ESI-MS
(+): 507.98 [TppyZn]+.
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2.1.2. [TppyZn(H2O)](BF4)] (2)

A solution of KTppy (0.200 g, 0.410 mmol) in 10 mL of methanol was added to a
solution of [Zn(H2O)6](BF4)2 (0.098 g, 0.410 mmol) in 5 mL of methanol upon which a clear
solution formed immediately. The mixture was stirred for 2 h and solvent evaporated. The
product was dissolved in dichloromethane (40 mL) and filtered through celite. The solvent
was evaporated to one-third yielding a white crystalline compound. Yield: 0.170 g (77%).
X-ray quality crystals were grown from methanol solution at −20 ◦C. Anal. Calculated for
C24H21B2N9OZnF4: C, 54.63; H, 4.01; N, 23.89. Found: C, 54.65; H, 4.03; N, 23.85. UV-Vis
[DMSO; λmax/nm (ε/dm3mol−1cm−1)]: 287(11,480), FT-IR (KBr, cm−1): νB-H 2480(w). 1H
NMR (400 MHz, CDCl3, δ): 9.05 (s, 1H), 8.12 (s, 1H), 7.95 (s, 2H), and 6.90 (s, 1H). ESI-MS(+):
507.98 [TppyZn]+.

2.1.3. [TppyZnN3] (3)

A solution of 1 (0.100 g, 0.184 mmol) in 10 mL of methanol was added to a solution
of NaN3 (0.012 g, 0.184 mmol) in 5 mL of methanol. After completion of the reaction, the
solvent was evaporated to give off a white solid after 2 h. Re-dissolving this solid in 30 mL
of dichloromethane which was then filtered through celite gave a colorless solution. The
slow evaporation of this solution resulted in an off-white product. Yield: 0.060 g (59%).
X-ray crystals were obtained by the slow diffusion of hexane in dichloromethane solution.
Anal. Calculated for C24H19BN12Zn: C, 52.25; H, 3.47; N, 30.47. Found: C, 52.28; H, 3.49; N,
30.50. UV-Vis [DMSO; λmax/nm (ε/dm3mol−1cm−1)]: 290(11,600), FT-IR (KBr, cm−1): νB-H
2425(w), νN3 2092 (s). 1H NMR (400 MHz, CDCl3, δ): 8.75 (s, 1H), 7.89 (s, 3H), 7.37 (s, 1H),
and 6.68 (s, 1H). ESI-MS (+): 507.98 [TppyZn]+.

2.2. CT DNA Interaction Study

The interaction of the complexes with CT DNA was carried out in Tris-HCl/NaCl
buffer maintained at a pH of 7.2. The bulk solution of CT DNA was prepared using Tris-
HCl buffer and stored at 4 ◦C for not more than a week. The CT DNA stock solution gave
a UV absorbance ratio of 1.89 at 260 and 280 nm (A260/A280) [25], which indicated that
the DNA solution was free of proteins. The concentration of the nucleic acid solutions
was determined by UV absorbance at 260 nm after 1:100 dilutions, and the corresponding
extinction coefficient at this absorption was 6600 M−1cm−1. The concentration of CT DNA
here was expressed in terms of DNA base pairs. Test solutions of the zinc complexes
were prepared using 5% DMF/Tris-HCl/NaCl. The absorption titrations were performed
by varying the CT DNA concentration (0–45 µM) against the fixed concentration of the
complexes (20 µM).

The complexes did not emit fluorescence. As a result of which, EB displacement study
has been employed using fluorescence spectroscopic technique to examine whether the
complexes could displace ethidium bromide (EB) from its CT DNA-EB complex. The EB
solution was prepared using Tris-HCl buffer (pH 7.2). The complexes (0–50 µM) were
titrated with DNA-EB (5 µM), and the corresponding change in fluorescence intensity at
610 nm (excitation wavelength = 450 nm) was noted down.

2.3. Hydrodynamic Study

Viscosity experiments were performed on a Micro-Ubbelohde viscometer from the
Xylem brand company of German make placed in a thermostatic water bath at 27 ◦C. The
DNA concentration was fixed at 100 µM, while the complex concentration varied from 0 to
60 µM. Flow time was measured three times for each addition, and the average flow time
was calculated. The values of relative specific viscosity (η/η0)1/3, where η is the relative
viscosity of DNA in the presence of complex, and η0 is the relative viscosity of DNA alone,
were plotted against 1/R (1/R = [compound]/[DNA]). Relative viscosity (η0) values were
calculated from the observed flow time of the DNA solution (t) corrected for the flow time
of the buffer alone (t0), using the expression η0 = (t − t0)/t0 [26].
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2.4. Interaction of the Complexes with BSA

The protein binding of the zinc complexes was studied by UV-visible and fluorescence
quenching experiments. The excitation wavelength was fixed at 280 nm, and the emission
signals at 345 nm were recorded upon the addition of complex to BSA. The stock solution
of BSA was prepared using 50 mM phosphate buffer (pH 7.2) and stored at 4 ◦C for the
subsequent use. The stock solutions of the complexes were prepared by dissolving them
in DMF-phosphate buffer (5:95) and diluted further with phosphate buffer to obtain the
required concentrations. The excitation and emission slit widths, and scan rate were
maintained constant throughout the course of the experiment.

2.5. Molecular Docking Study with DNA

The molecular docking studies were carried out using Autodock. The compounds
were prepared from their 2D chemical structure whose structures were minimized in
Gaussian and adding the polar hydrogens, and partial charges, and defining the rotatable
bonds that are explored during the docking. The three-dimensional structural coordinates
of CT DNA were downloaded from Protein Data Bank (PDB id:1BNA). The Autodock
parameters for boron and zinc were added to the parameter input file. The grid box
was set with x,y,z coordinates as (60 Å, 60 Å, 87 Å) with a grid spacing of 0.45 Å. The
ligands were treated flexibly and the receptor was kept rigid in all the three cases. The
genetic algorithm implemented in Autodock was utilized for all the three compounds for
systematic optimization of molecular poses. The results were analyzed from the docking
log files (dlg) files and the docked conformations with least binding free energy were
chosen for each ligand to generate the pictures.

2.6. In Vitro Cytotoxicity Study

Cell viability was measured after 24 h drug treatments by the MTS [3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] assay [27]. All the TNBC
cell lines were procured from American Type Culture Collection (ATCC; Manassas, VA, USA.
According to user manual, an MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-
2-(4-sulfophenyl)-2H-tetrazolium] assay (Promega; Madison, WI, USA) was performed to
evaluate the inhibitory concentration (IC50) of the complexes in the TNBC cell lines. Using an
ELISA multi-well plate reader purchased from BioTek Instruments, Inc., Winooski, VT, USA,
the optical density was measured at 490 nm. The results were used to calculate the percentage
(%) of viability using the formula [28], % of viability = (OD value of experimental sample/OD
value of experimental control) × 100.

3. Results and Discussion
3.1. Synthesis and Structure of Zinc Complexes

An equimolar amount of ZnCl2 and [Tppy]− in a methanolic solution provides a white
powder of mononuclear complex [TppyZnCl] (1) (Scheme 1). An X-ray quality crystal
for complex 1 was obtained in methanol at room temperature. Distorted square pyrami-
dal geometry with coordination of the two pzpy arms of Tppy ligand and axial ligation
of chloride anion, while the third pzpy arm of Tppy is dangling out of the coordination
sphere confirms the molecular structure of 1 (Figure 1a). The rigidity of the basal plane
does not allow the coordination of third arm, and it remains uncoordinated and dangling
out with an axial chloride ion. Formation TppyZn(OH2)](BF4) (2) involves an equivalent
amounts of [Zn(H2O)6](BF4)2 and [Tppy]− ligand in methanol and recrystallization in a
dichloromethane at −20 ◦C gives a single X-ray quality crystal (Scheme 1). The crystallo-
graphic data and molecular geometry for 2 is shown in Figure 1b and the corresponding
refinement parameters, bond length and bond angle are given in Tables S1 and S2. Com-
plex 2 has a similar geometry like complex 1 with an axial water molecule depicting the
hydrogen bonding interaction with the dangling bidentate pzpy arm. Similar crystal-
lographic results of copper analogous were reported [29]. It is interesting to note that,
effective space management around the coordinated metal in tris-pyrazolyl borates can
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be achieved through regiospecific placement of selected substituents in the pyrazolyl
3-poisition. Usually these substituents either result as M(Tp)2 octahedral with symmetrical
binding mode [22,30–33] or TpM–X tetrahedral with tridentate binding mode. In zinc,
[Tppy]− with zinc acetate results in the formation of a tetramer in which each of the biden-
tate arms binds to the three zinc metal ion forming a self-assembled tetrameric complex [23].
However, changing metals salt source and solvent may drive the formation of mononuclear
complex. The Zn–O bond distance (1.952(3) Å) of 2 is significantly longer than those
reported for Zn–OH complexes [34], but similar distance found in the penta-coordinated
zinc aqua complexes (1.901–1.982 Å) [35–37]. An inward rotation of pendant Pzpy arms of
Tppy ligands show the hydrogen bonding interaction with axial water molecule thereby
stabilizing the H2O ligation. The O(1) . . . N(6) distance in 2 (2.635(5) Å) are well within the
donor acceptor atoms participating in the hydrogen bonding interactions. The existence of
hydrogen bonding interaction is a clear indication of the acidic nature of the coordinated
water molecule in the [TppyZn(OH2)]+ cation. Parkin et al. studied these interaction in
TptBu,MeZn-OH2 . . . OHB(C6F5)3, as a species TptBu,MeZn(OH) stabilized by hydrogen
bond to a base whose corresponding acid is [TptBu,MeZn(OH2)]+ [38,39]. As the existence
of hydrogen bonding interaction is clear representation of acidic nature of coordinated
water molecule in the [TppyZn(OH2)]+ cation. In this regard, it is worthy to note that the
zinc aqua ligand as the active site of carbonic anhydrase also participate in the hydrogen
bond with Thr-199 [40–42]; the hydrogen-bonding interaction within the bidentate arm of
Tppy and zinc aqua has analogies to that of enzyme active sites.
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Figure 1. Molecular structure of (a) [TppyZnCl] (1), (b) [TppyZn(OH2)](BF4) (2) and (c) [TppyZn(N3)] (3), showing 50%
ellipsoid probability and partial atom numbering schemes. All hydrogen atoms were omitted for clarity except those of
water molecule in complex 2.

3.2. Substitution Reaction of Mononuclear Zinc Complexes

Reactivity studies for complex 1 was performed by the substitution reaction of
N3
− and replacement of axial chloride by addition of azide salt to the methanolic so-

lution of 1 to form the mononuclear [TppyZn(N3)] (3) (Scheme 1). Colorless crystals
suitable for X-ray crystallographic analysis were grown by slow diffusion of a hexane and
dichloromethane solvent in a 1:2 ratio (Figure 1c). Complex 3 is isomorphous to that of
complex 1 with slight distortion in square pyramidal coordination geometry about the
Zn(II) center (Figure 1c; Table S1). The azide ligand arranged almost linearly on the square
pyramidal plane. The Zn–N(1) bond distance of 2.061(7) Å is slightly longer than reported
zinc azide complexes (2.046 Å) [43,44]. Distance between the N(1) and N(2) 1.189(8) and
azide moiety is slightly bend forming angle between Zn(1)–N(1)–N(2) 119.23◦ manifesting
distorted square pyramidal geometry.

3.3. Solution Behavior of Zinc Complexes

To understand the solution behavior and gain insight into the dynamic processes
of [TppyZnCl] (1) complex, variable temperature 1H NMR experiment (VT-1H NMR)
performed. The main purpose of this study was done to observe the fluxionality taking
place in the complexes upon varying the temperature. The VT-1H NMR spectrum for
complex 1 was recorded from −60 ◦C to +25 ◦C in CDCl3. Particularly revealing portions
of the spectra with assignments for complex 1 are shown in the Figure S1. At 25 ◦C, a
singlet at 8.76 ppm for pyridine (6-CH) proton and other singlet peaks at 7.81, 7.35, and
6.69 ppm was observed which suggested the presence of a [TppyZn] species. Upon cooling,
progressive splitting of the two sets of signals was observed for each singlet, the splitting
ratio 2:1 observed upon cooling to −60 ◦C and dynamic structure of complex may indicate
fluxional behavior (as depicted in Scheme 2). Similar observations are also found in the
previously reported Tp4-Py,Me and Tp4-PyZn complexes [36,45].
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IR spectroscopic studies taken in the solid state reveal the broad absorption peak
around 3550 cm−1 that characterizes the aqua moiety. The solution state IR studies in
dichloromethane illustrates the hydrogen bonding interaction in complex 2 also persist in
the solution. The νOH absorption at 3687, 3601, and 3450 cm−1 in the IR spectrum, of which
the lowest energy signal at 3450 cm−1 is attributed to the hydrogen bonding interaction.
However, the hydrogen bond interaction in the solution state for complex 2 is seen only
in dichloromethane and not in acetonitrile (Figure S2). Thus, rather than persisting three
band patterns associated with the aqua ligand, the IR spectrum possesses two bands that
are identical to those of water in acetonitrile.

3.4. CT DNA Interaction Study

Absorption studies are a useful technique deployed to predict the binding efficacy
of compounds with CT DNA [46]. Figure 2a and S3 depicts the absorption spectra of
the Zn(II) complexes with and without CT DNA. Upon the incremental addition of CT
DNA (0–45 µM) to the Zn(II) complexes (20 µM), a uniform decrease in absorbance at
285 nm was seen accompanied by a mild red shift [47]. This hypochromic effect was due
to the intercalation of the complexes with DNA [48]. The intrinsic binding constant (Kb)
was calculated from the Stern–Volmer equation, [DNA]/(εa − εf) = [DNA]/(εb − εf) +
1/Kb (εb − εf) [49], where [DNA] is the concentration of DNA in base pairs, εa is the
apparent extinction coefficient value found by calculating A(observed)/[complex], εf is
the extinction coefficient for the free compound, and εb is the extinction coefficient for the
compound in the fully bound form and the corresponding graph is shown in Figure 2.
The results showed that all three complexes exhibited a remarkable Kb value. The binding
stoichiometry was such that one molecule of the complex could bind to 3–4 base pairs
of CT DNA. The reason could be attributed to the presence of the aromatic pyrazole and
pyridine groups inducing planarity in all the complexes causing π–π stacking interactions
making them to slide in and penetrate deep in between the DNA base pairs [50,51]. Among
them, complex 1 exhibited the highest Kb value followed by 2 and 3. Due to the labile
nature of the Cl group, on entering the cells gets replaced by OH forming a hydrolysis
intermediate which in turn binds strongly to the guanine base pair thus making complex
1 exhibit a higher Kb value than 2 and 3. The results were similar to literature reported
Zn(II) complexes bearing hexadentate scorpionate type ligands [18]. We also investigated
the binding capability of the Tppy ligand with CT DNA (Figure 2c) and found the same
decrease in absorbance pattern as that of the Zn(II) complexes. The ligand also adopted an
intercalative binding mode with CT DNA, but the intrinsic binding constant (Kb) value
was lesser than the Kb value of the Zn(II) complexes thus highlighting the importance of
the zinc metal center in binding with CT DNA.
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3.5. EB Displacement Study

To gain more insight on the binding nature of the zinc complexes with CT DNA,
the ethidium bromide (EB) displacement study was performed by spectrophotometric
studies (Figure 3). As the Zn(II) complexes were non-fluorescent at RT and in the so-
lution state, a competitive study was employed to analyze the DNA-complex binding
interaction. As shown in Figure 3a and S4 the emission spectra of the EB-DNA system
in the absence and presence of the zinc complexes. On the addition of the complexes
(0–50 µM) to EB–DNA, a quenching in the fluorescence intensity at 605 nm was seen.
The percentage of hypochromism was 79, 72, and 68 respectively for 1, 2, and 3 which
revealed the extent of displacement of EB molecules from the study upon addition of the
complexes. The extent of quenching (Kb) was calculated from the known Stern–Volmer
equation and the apparent DNA binding constant (Kapp) was calculated from the for-
mula [52], KEB [EB] = Kapp [complex], where [complex] is the complex concentration at
50% reduction in the fluorescence intensity of EB, KEB = 1.0 × 107 M−1 and [EB] = 5 µM.
the order of Kq and Kapp values for the complexes was 1 > 2 > 3. The values for Kb, Kq, and
Kapp have been enlisted in Table S3 which were in agreement with the CT DNA absorption
study results.
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3.6. Hydrodynamic Study

A precise way of viewing the structural changes taking place in CT DNA is by means
of the hydrodynamic study and likewise here the three zinc(II) complexes were subjected
to this study. A typical intercalator or an aromatic compound in general tends to slide
in between the base pairs of DNA causing breaking of hydrogen bonds in the DNA base
pairs thereby lengthening the DNA helix resulting in increased viscosity values [53]. A
compound binding to CT DNA via the groove mode causes negligent changes in viscosity
values. On the other hand, a non-classical intercalator is said to cause breaking of the DNA
helix leading to decreased viscosity values [54]. From Figure S5, we see that upon the
incremental addition of the complexes (0–60 µM) to DNA (100 µM), there was a consistent
increase in the viscosity value, which suggested intercalation. The order of viscosity values
for the complexes is 1 > 2 > 3, which was in agreement from the results of the titration and
fluorescence studies.

3.7. Protein Interaction Study of the Zn(II) Complexes with BSA
3.7.1. Absorption Study

Protein-drug interaction plays a key role in chemotherapeutics [55]. In this work,
we have chosen BSA as our protein source which is structurally similar to human serum
albumin (HSA). The active sites of BSA are Site-I, Site-II and two tryptophan residues
namely Trp-134 and Trp-212 [56]. From the absorption spectrum which is shown in
Figure S6, an absorption band at 280 nm is seen which is attributed to the π-π* transition
belonging to the tryptophan residues [57]. Upon the addition of the complexes (1–3) to BSA,
there was no change in the absorbance value but there was an increase in the absorption
intensity(Figures S6 and S7), inferring that a static quenching mechanism on the addition
of complexes to BSA took place [58].

3.7.2. Fluorescence Measurement

Fluorescence spectroscopy is a useful tool to understand the mechanism of interaction
between the compounds and BSA. Transfer and rearrangement reactions are two important
molecular interactions taking place between the target moiety and the quencher that decides
the type of quenching to be either static or dynamic. The changes in the fluorescence
spectra before and after the addition of the zinc complexes to BSA (Figure 4a and S8).
The addition of the complexes (0–20 µM) to BSA (1 µM) lead to a uniform decrease in
the fluorescence intensity at 345 nm with quenching percentages of 76, 67, and 64 for
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1–3 respectively. This quenching mainly resulted due to the active sites of tryptophan
resides being buried in a hydrophobic environment and the amount of quenching (Kq) was
calculated quantitatively from the Stern–Volmer equation. The plot of Fo/F is illustrated
in Figure 4b. The equilibrium binding constant (Kb) was calculated from the Scatchard
equation [59], log [(Fo − F)/F] = log Kb + n log [Q], where Kb is the binding constant of
complex with BSA and n is the number of binding sites (Figure 5). From the calculated
results, complex 1 exhibited highest Kq and Kb values followed by 2 and 3. The number of
binding sites (n) was 1.37, 1.23, and 1.07 respectively which indicated that all the complexes
suggested a single occupancy with BSA. The values of Kb, Kq and n are listed in Table
S4. In addition, the inner filter effect of the Zn(II) complexes on BSA emission quenching
has been corrected using the following equation, Fcorr = Fobs × e(Aex+Aem)/2 where Fcorr is
the corrected fluorescence intensity, Fobs is the observed intensity. Aex and Aem Are the
absorbance of the compounds at excitation and emission wavelength, respectively [60].
In the present study, the fluorescence quenching occurring between the Zn(II) complexes
and BSA is due to the photoinduced electron transfer (PET) mechanism [61]. When a
flow/transfer of electron(s) between BSA and the Zn(II) complexes takes place, the PET
process gets inhibited that leads to quenching. The quenching in fluorescence and the
enhancement in absorbance upon interaction of the Zn(II) complexes with the tryptophan
residues of BSA infers a static quenching mechanism [62].
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3.8. Molecular Docking Investigation with DNA

The docking results of the three Zn(II) complexes were explored for the least binding
energy profile of the resultant docking poses. Among the three complexes, 1 binds with
DNA with a binding free energy of −10.3 kcal/mol representing the strong binder of
DNA whereas the binding free energy values of 2 and 3 are −7.14 and −7.03 kcal/mol.
The two pyrazole rings coordinated with zinc of 1 intercalated into DNA in the region
stacked by DC21, DG22, DC3, and DG4. A hydrogen bond is also observed between
carbonyl part of DC21 and the Pyridine nitrogen which also stabilizes the binding with
DNA (Figure 6). 2 was also found to intercalated into DNA as confirmed by experiments
in which the coordination site assisted in binding of the compound to DNA (Figure S9). In
case of 3, the pyridine ring coordinated with zinc intercalated into DNA in the same region
formed by the base pairs DC21, DG22, and DC3 and DG4 (Figure S10). No hydrogen bonds
were found in 2 and 3 and hence the DNA-2 and DNA-3 complexes were stabilized by
hydrophobic and Van der Waals forces. Thus the docking study revealed the intercalative
mode of binding of all the Zn(II) complexes which was also confirmed by the spectral and
fluorescence measurements.
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3.9. In Vitro Cytotoxicity Evaluation of the Zn(II) Complexes: Cell Viability Assay Analysis

In triple-negative breast cancer cells (TNBC) usually common breast cancer markers
such as, estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), and pro-
gesterone receptor (PR) are absent and this is one of the main reason for ineffectiveness of
common target therapy against TNBC [63]. In the present study, four TNBC cell lines were
chosen to demonstrate the cytotoxicity of the complexes 1, 2, and 3 after 24 h incubation.
Interestingly, all three complexes for 24 h MTS assay showed excellent anticancer activity
against all the four cancer cell lines wherein the IC50 values ranged from 6.81–10.46 µM
on the MDA-MB-231 cells, 8.68–16.56 µM on the MDA-MB-468 cells, 10.67–13.54 µM on
HCC1937 cells, and 6.68–16.87 µM on the Hs 578T cancer cells lines, respectively. The
IC50 values for the complexes against all cell lines are listed in Table 1. For comparison,
IC50 value for the clinical drug cisplatin was 13.95 µM for MDA-MB-231 cells at 24 h MTS
assay [64]. For comparison, IC50 value for the clinical drug cisplatin was 32.38 µM for
MDA-MB-468 cells at 24 h MTT assay [65]. Therefore, the cytotoxic effects of compound
1, 2, and 3 to TNBC cells may have a better performance than cisplatin and the reported
N-donor containing zinc complexes [15,16]. However, these Zn-derivative drugs were not
tested in the cell viability of normal breast cells. Drug safety for them needs to be concerned
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before further application. It warrants detailed investigation for the in vitro cytotoxicity of
normal breast cells in the future.

Table 1. IC50 (µM) values of the Zn(II) complexes 1–3 against TNBC cell lines after 24 h incubation.
Data, mean ± SD (n = 3).

Cancer Cell Lines 1 2

MDA-MB-231 6.81 ± 0.98 8.85 ± 1.05

MDA-MB-468 16.56 ± 1.32 10.85 ± 1.72

HCC1937 13.54 ± 1.77 10.60 ± 1.04

Hs578T 12.51 ± 1.84 6.68 ± 1.16

4. Conclusions

We investigated the reaction of [Tppy]− with two different zinc (II) salts to ob-
tain mononuclear Zn(II) (1–2) complexes. Crystallographic results confirmed the penta-
coordinated Zn(II) center with distorted square pyramidal geometries for both complexes.
The key geometric differences in complexes 1 and 2 were dangling pyridyl-pyrazole arm.
In later case it was stabilized by hydrogen bonding interaction from axial aqua moiety
in complex 2. On the other hand, low temperature NMR data confirms the tetradentate
binding mode for the complex 1 in solution state. In addition, the solid and solution state
IR for complex 2 shows the disruption of hydrogen bonding interaction in the coordinated
solvents. These results indicate the different solid and solution state behavior of these
complexes. Further, reactivity of the complex 1 were also tested to obtain axially substituted
zinc azide complex 3. Besides, these complexes were tested for their biological potency by
performing the DNA/protein binding study through absorption and spectrophotometric
means and also evaluating their cytotoxicity nature by performing the MTS against a panel
of four cancer cell lines.

Interestingly, all complexes displayed good binding constant values with both the
biomolecules and the mode of binding between the title complexes and DNA was found to
be intercalation which was supported by the viscosity study results. The in vitro cytotoxic-
ity results inferred that all the complexes were potent anticancer agents exhibiting excellent
activity on all the four cancer cell lines with an IC50 value ranging from 6.72 to 16.87 µM
owing to the presence of the pyrazole and pyridine units in the synthesized complexes.
Therefore, in future we would test the cytotoxicity of the currently synthesized Zn(II)
complexes by in vivo method on the MDA-MB-231 and MDA-MB-468 cell lines which
would hope to show promising activity.

Supplementary Materials: The following are available online, Figure S1: Variable temperature
1H-NMR spectra of the complex 2 in d-chloroform (5.2–9.6 ppm), Figure S2: IR spectra of complex
2 in (a) KBr, (b) dichloromethane solution, and (c) acetonitrile solution. The solid state and in
dichloromethane solution indicate that hydrogen bonding interaction is retained and in acetonitrile
solution is disrupted, Figure S3: Absorption spectra of the Zn(II) complexes in Tris-HCl buffer
upon addition of CT DNA. [complex] = 2.0 × 10−5 M, [DNA] = 0–45 µM. The arrow shows that
the absorption intensity decreases upon increasing the CT DNA concentration, Figure S4: Fluores-
cence quenching curves of EB bound to DNA in the presence of Zn(II) complexes. [DNA] = 5 µM,
[EB] = 5 µM and [complex] = 0–50 µM, Figure S5: Effect of complexes 1–3 on the viscosity of CT
DNA, Figure S6: Absorption spectra of BSA (10 µM) and BSA with 1–3 (4 µM), Figure S7: UV-Visible
absorption spectra of BSA (10 µM) with complex 1–3. Figure S8: Fluorescence quenching curves
of BSA in the absence and presence of the complexes. [BSA] = 1 µM and [complex] = 0–20 µM.
Figure S9: Molecular docked pose of complex 2 with DNA, Figure S10: Molecular docked pose of
complex 3 with DNA. Figures S11–S19: NMR, FT-IR, ESI-Mass spectra for complexes 1–3. Table S1:
Selected bond distances (Å) and angles (◦) in complexes 1–3, Table S2: Crystallographic data for
complexes 1–3, Table S3: DNA binding constant (Kb), quenching constant (Kq) and apparent binding
constant (Kapp) values, Table S4: Protein binding constant (Kb), quenching constant (Kq) and number
of binding sites (n) values. The CCDC numbers for the complexes 1–3 are 2119667–2119669.
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