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Abstract

Background: Disturbances of glycemic control and large glycemic variability have been associated with in-
creased risk of type 2 diabetes in the general population as well as complications in people with diabetes. Long-
term health benefits of physical activity are well documented but less is known about the timing of potential
short-term effects on glycemic control and variability in free-living conditions.
Materials and Methods: We analyzed data from 85 participants without diabetes from the Food & You digital
cohort. During a 2-week follow-up, device-based daily step count was studied in relationship to glycemic control and
variability indices using generalized estimating equations. Glycemic indices, evaluated using flash glucose moni-
toring devices (FreeStyle Libre), included minimum, maximum, mean, standard deviation, and coefficient of variation
of daily glucose values, the glucose management indicator, and the approximate area under the sensor glucose curve.
Results: We observed that every 1000 steps/day increase in daily step count was associated with a 0.3588 mg/dL
(95% confidence interval [CI]: -0.6931 to -0.0245), a 0.0917 mg/dL (95% CI: -0.1793 to -0.0042), and a
0.0022% (95% CI: -0.0043 to -0.0001) decrease in the maximum glucose values, mean glucose, and in the
glucose management indicator of the following day, respectively. We did not find any association between daily
step count and glycemic indices from the same day.
Conclusions: Increasing physical activity level was linked to blunted glycemic excursions during the next day.
Because health-related benefits of physical activity can be long to observe, such short-term physiological ben-
efits could serve as personalized feedback to motivate individuals to engage in healthy behaviors.

Keywords: Continuous glucose monitoring, Physical activity, Step count, Wearable activity trackers, Free-
living, Digital health.
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Introduction

Glycemic control can be defined as the ability to main-
tain glycemia or blood glucose within the recommended

target range (70–180 mg/dL or 3.9–10 mmol/L).1 In healthy
people, blood glucose levels are strictly regulated.2,3 Dis-
turbances of glycemic control are generally detected in the
general population using different tools such as fasting plasma
glucose, 2 h postload plasma glucose, and HbA1c. Elevated
levels of these metrics have been associated with increased
risk for type 2 diabetes,4–6 cancer,7–10 and cardiovascular
events11–14 among individuals without diabetes.

Glycemic variability represents the fluctuations between
high and low blood glucose levels.15 However, it is a broad
term that can include many concepts and that can be assessed
in very different ways.11,15–17 The first concept refers to the
day-to-day or visit-to-visit variability over months to years of
fasting plasma glucose or HbA1c evaluated using standard
deviation (SD) or coefficient of variation (CV) of repeated
measures. The second meaning relates to postprandial glu-
cose excursions. Finally, the last applies to the intraday or
short-term glycemic variability using continuous glucose
monitoring (CGM) systems, and for which a wide range of
indices have been proposed to characterize it. Some studies
revealed associations between large visit-to-visit glycemic
variability and increased risks of all cancers17 and cardio-
vascular events11,15,18 among populations without diabetes as
well as complications in people with diabetes.15,17 Moreover,
Jang et al. showed that individuals without diabetes with
large glycemic variability tended to have increased HbA1c,
fasting plasma glucose, postprandial glycemia, and insulin
resistance, which are all important risk factors for type 2
diabetes.11

Therefore, it is key to identify lifestyle-related drivers to
reduce glycemic variability and improve glycemic control.
This may contribute to an improvement of cardiometabolic
health in the general population and, in individuals with di-
abetes, an improved quality of life and a decreased risk of
diabetes-related complications. It has been established that
physical activity was associated with a lower risk of type 2
diabetes and with improved glycemic control markers.19–21 A
recently published systematic review, including 10 random-
ized controlled trials, revealed limited evidence showing that
physical activity could reduce CGM-based measures of gly-
cemic variability in people with type 2 diabetes.22 Long-term
health benefits of physical activity are well documented but
less is known about the timing of physical activity’s poten-
tial short-term effects on glycemic control and variability in
free-living conditions.

In the past few years, mHealth technologies, such as
smartphone health apps or consumer wearable activity track-
ers that allow the monitoring of health parameters and be-
haviors, have become widely available. Their improvements
by manufacturers and use are on a constant rise.23,24 Simul-
taneously, there have been important developments of CGM
devices, which have made them more affordable and easily
accessible.25 Besides, mHealth technologies and CGM sys-
tems can also give researchers access to more accurate, ob-
jective, and continuous measurements, which opens new
research perspectives, in particular, to better understand the
short-term interrelations between physical activity and gly-
cemic control and variability.

The aim of this study was to explore the associations of
device-measured physical activity expressed as daily step
count with various glycemic control and variability indices
derived from 13 days of CGM in adults without diabetes from
the Food & You (FAY) digital cohort.

Materials and Methods

Study population

Data used for this study were collected as part of the FAY
study, which is a digital cohort that aims to use dietary in-
take, physical activity, sleep, microbiome, and glucose data
to build a model that predicts individuals’ postprandial glu-
cose responses. The FAY study is a citizen science research
project that also aims to increase scientific knowledge, raise
general awareness of scientific questions, and promote ex-
change between scientists and citizens. The study is conduc-
ted by the Digital Epidemiology Lab located in Geneva and
is sponsored by the Swiss Federal Institute of Technology
Lausanne (École Polytechnique Fédérale de Lausanne,
EPFL). The recruitment started in February 2018 and is still
ongoing. All participants gave their informed consent, and
the study was authorized by the Geneva Ethics Commission
(Commission Cantonale d’éthique de la recherche Genève;
trial identification number 2017-02124).

FAY study inclusion criteria required participants to be at
least 18 years of age, to have a postal address in Switzerland,
to own a smartphone (minimum version iOS 9/Android 5),
to have a good understanding of French, German, or English,
and to provide an informed consent. Study exclusion crite-
ria included the following: pregnancy, breastfeeding, being
on dialysis, having been diagnosed or prediagnosed type 1
or type 2 diabetes mellitus, having used antibiotics in the
3 months before enrollment, using chronic immunosuppres-
sive medication, being critically ill, suffering from a chronic
gastrointestinal disorder (inflammatory bowel disease, celiac
disease) or from any active neuropsychiatric disorder, having
suffered from chronically active inflammatory or neoplastic
disease in the 3 years before enrollment, and having suffered
from myocardial infarction or a cerebrovascular accident in
the 6 months before enrollment.

Study design and measurements

The FAY study is characterized by two tracking weeks
during which each participant wore a CGM device. During
these two tracking weeks, participants were instructed to take
photos of all their meals and food intakes using the My-
FoodRepo smartphone app, which is available on App Store,
Google Play Store, and other Android app stores.26 This app
can be downloaded in smartphones with at least the iOS 9
version or the Android 5 version and can only be used by
participants of the FAY study or other partner cohorts.

FAY study participants were also asked to log their daily
physical activities and sleep duration into the smartphone-
adjusted website that was developed for this digital cohort.
Participants were asked to report the start time, end time and
the intensities (light, moderate, or intense) of their daily
physical activities. Participants who use mHealth technolo-
gies such as smartphone health apps or consumer-based
wearable activity trackers to monitor their physical behaviors
(physical activity and sleep) in their daily lives were given the
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option to securely share, with the study investigators, their
device-based 2-week data extracted from their personal ac-
count of their device’s brand, instead of having to fill the
daily online questionnaires.

Before receiving the CGM system, participants had to an-
swer different online questionnaires. Detailed information
about health conditions, medical background, treatments, life-
style, diet, anthropometric measures (e.g., height, weight, hip,
and waist circumferences), educational level, and income were
thus recorded. Participants were also requested to provide a
single stool sample during the tracking weeks. More details on
the study and study methodology can be found elsewhere.27 A
description of the study can also be found on the Clinical-
Trial.gov platform (number NCT03848299).

Physical activity assessment

The present study focuses on FAY study participants that
used mHealth technologies to follow their physical behaviors
during the 2-week tracking period and who agreed to share
their personal data.

Different types of mHealth technologies and brands were
used across the FAY study participants such as Fitbit and
Garmin watches, Apple devices (iPhone and/or Apple Watch),
and the Google Fit app. At the start of the two tracking weeks,
participants were given specific instructions to wear their
own activity tracker for 14 consecutive days and during 24 h a
day or to carry their smartphone as frequently as possible to
those using only the Google Fit app. Participants had access
to different tutorials explaining the steps to follow to extract
their device-based personal data (Fitbit, Apple, and Garmin
brands) recorded over the 2 weeks and to upload them into
their account on the study website. The Google Fit app gives
the possibility to the user to blend data from multiple health
apps and devices. Connection to an application programming
interface was used to allow access and extraction of the data
of the participants who agreed to share their personal data
collected through the Google Fit app.

The most frequently used and relevant metric related to
physical behaviors that could be obtained from the raw data
of the different sources mentioned above was the number of
steps accumulated per day, hereon referred to as daily step
count. It is considered as a physical activity parameter that
reflects the user’s physical activity behavior and, especially,
bipedal locomotion. This metric is considered to be a reliable
proxy of the overall volume of the physical activity per-
formed by individuals.28 A valid day with daily step count
data was defined as a day characterized by an accumulation of
at least 500 steps/day.29,30 Days with steps/day value <500
steps/day were thus removed from the analysis.

Personal data extracted and shared by FAY participants
who used a Garmin watch during the 2-week tracking period
did not include information on the number of steps accu-
mulated during the day; therefore, Garmin watch users
among the FAY participants were not included in the analysis
of this study. We considered three categories for the daily
step count measurement method (Fitbit watch users, Apple
devices users, or Google Fit app users).

Glucose monitoring and glycemic indices

The FreeStyle Libre flash glucose monitor (Freestyle
Libre; Abbott Laboratories, Abbott Park, IL) was used to

continuously measure glucose concentrations in the intersti-
tial fluid during the 2-week tracking period of the FAY study.
This glucose monitor includes two separate components.
First, it requires the attachment of a small sensor to the upper
arm via an adhesive patch, and secondly, a handheld device
is also needed to read and download data from the sensor via
near field communication. The sensor measures automati-
cally, over 14 days and without need of calibration, intersti-
tial glucose concentrations every 15 min (96 measures per
day), and the handheld device displays and saves the data
when the user scans the sensor. The sensor must be scanned at
least once every 8 h to avoid data loss. Therefore, in this
study, participants were asked to scan the sensor at least
once every 8 h, and were encouraged to scan before going to
sleep and in the morning upon waking.

Values of glucose concentrations were used to derive in-
traday glycemic control and variability indices for each day
of the 2-week tracking period. Four measures of glycemic
control were used within this study: minimum and maximum
of daily glucose values, mean daily glucose, and the glucose
management indicator that was computed using the equation
3.31 + (0.02392 · mean daily glucose in mg/dL).31,32 Three
measures of glycemic variability were explored within this
study: within day SD and within day CV of daily glucose
values, and the approximate area under the sensor glucose
curve over 24 h. These eight indices were obtained using the
‘‘cgmvariables’’ function of the ‘‘cgmanalysis’’ R package.31

The ‘‘cleandata’’ function of the ‘‘cgmanalysis’’ R package
was also used to fill in gaps in glucose raw data <20 min using
linear interpolation. Glycemic indices were derived using all
glucose measures available with gaps <20 min imputed.

Glycemic control and variability indices of the first and last
days of the 2-week tracking period were removed and not
included in the analysis as they were partial days in terms
of wearing the glucose monitor. For each participant, up to
13 complete days with glycemic indices were thus available.

Covariates

All covariates were obtained from the baseline online
questionnaires to which the FAY study participants had to
answer before the 2-week tracking period. Self-reported
height and weight at baseline were used to calculate body
mass index (BMI). Smoking status was categorized as never,
former, or current smoker. This last category included occa-
sional and daily smokers. We also considered three categor-
ies for the self-declared stress level (low, medium, or high).

Statistical analyses

Both glucose raw data (FreeStyle Libre output) and
device-based physical activity raw data included the date
of each measure. This allowed to synchronize retrospectively
the data of the different devices and to match for each day of
the two tracking weeks, daily glycemic indices to their cor-
responding physical activity measure. Only participants with
at least 7 days, with both daily step count and glycemic con-
trol and variability indices available, were considered for
the analysis.

Baseline characteristics of the study population were re-
ported as means (SD) for continuous variables, median
(interquartile range [IQR]) for skewed distributions, and
as numbers (percentages) for categorical variables. A four-
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category physical activity classification based on Tudor-
Locke’s classification28 was used only for the description of
the participants’ characteristics. This four-category physical
activity classification was based on daily step count averaged
over the 13 tracking days and consisted of the following
categories: sedentary (<5000 steps/day), low active (5000–
7499), somewhat active (7500–9999), and active (‡10,000).

Generalized estimating equation (GEE) models were used
to estimate associations of daily step count with glycemic
control and variability indices. To assess the timing of po-
tential associations between physical activity and glycemic
control and variability, continuous daily step count (per 1000
steps/day) was studied in relationship to (1) glycemic control
and variability indices of the same day, (2) glycemic con-
trol and variability indices of the next day, and (3) glycemic
control and variability indices of the day after the next day.

The advantages of the GEE models are that they consider
the within-individual correlation in exposure and outcome
due to repeated measures. They can also better handle un-
balanced data as the number of repeated measures per subject
can be different from one participant to another. For each
glycemic control and variability indices (outcomes), the three
following correlation structures were tested and compared
with one another using the quasi-likelihood under indepen-
dence model criterion (QIC) value: unstructured (all corre-
lations between observations are estimated separately),
autoregressive (assumes a stronger correlation between two
observations taken closer together in time and a decreasing
correlation for farther time periods), and exchangeable (as-
sumes one same correlation across all observations indepen-
dently of the time periods between observations).33 For each
glycemic index, the correlation structure associated with the
lowest QIC value was selected and used for all analyses.

Models were calculated univariably and adjusted for age,
sex, BMI, smoking status (never, former, or current smoker),
self-declared stress level (low, medium, or high), and for the
daily step count measurement method (Fitbit watch users, Ap-
ple devices users, or Google Fit app users). Sensitivity analy-
ses were performed taking into account only days with at least
90% (86/96) of daily glucose values available in the raw data.

Statistical analyses were performed using the Statistical
Analysis System software, version 9.4 (SAS Institute, Cary,
NC), and two-sided P-values <0.05 were considered statis-
tically significant. GEE models were performed using the
PROC GENMOD procedure in the SAS software. Graphs
were generated using the Matplotlib library in Python (ver-
sion 3.8) software.

Results

Participant characteristics

In March 2020, 132 FAY study participants had comple-
ted the 2-week tracking period and had, in principle, used
mHealth technologies to track their physical activities during
these 2 weeks. From these 132 participants, 47 were excluded
either because of the total absence of any raw personal data
(useable or shared) collected from mHealth technologies
(n = 27), because of the absence of shared raw personal data
related to daily step count (n = 16), or because of a number of
days with both daily step count and glycemic indices avail-
able less than 7 (n = 4), leaving 85 participants in the study
analysis (flow chart in Fig. 1).

Characteristics of the study population are displayed in
Table 1. Daily step count averaged over the tracking days for
each participant had a mean value in our study population
of 8089.2 (SD 3479.5) steps/day and ranged from 2086 to
20,473 steps/day. The number of valid days, with both daily
step count values and glycemic control and variability indi-
ces, ranged from 7 to 13 days, and its median was 13.0 (IQR:
1.0). Study participants used almost equally Apple devices
(33/85, 39%) and the Google Fit app (30/85, 35%) to track
their physical behaviors, whereas fewer participants used
Fitbit watches (22/85, 26%). Participants were aged 40.1
years (SD 12.7) on average. Individuals in the higher step-
defined physical activity categories seemed to be older than
those in the lower categories. The study sample was com-
posed of slightly more women (48/85, 57%). Participants
had a mean BMI of 23.8 kg/m2 (SD 3.3) with 33% (28/85)
overweight or obese individuals, and predominantly self-
reported themselves as never or former smokers (71/85, 84%).

Figure 2 shows real-world examples of physical activity
and glucose monitoring within 3 days of the 2-week tracking
period for one FAY study participant.

Associations between daily step count
and glycemic indices

Associations between daily step count and glycemic con-
trol and variability indices using GEE analysis are presented
in Table 2. In the multivariable analyses, no association
was found between daily step count and glycemic control and
variability indices of the same day.

However, when considering the glycemic control and
variability indices of the next day, every 1000 steps/day in-
crease in daily step count was associated with a 0.3588 mg/dL
decrease (95% confidence interval [CI]: -0.6931 to -0.0245)
in the maximum of glucose values, a 0.0917 mg/dL decrease
(95% CI: -0.1793 to -0.0042) in the mean glucose, and a
0.0022% decrease (95% CI: -0.0043 to -0.0001) in the glu-
cose management indicator.

Regarding glycemic control and variability indices of the
day after the next day, we did not observe any association
with daily step count except for the SD of glucose. Every
1000 steps/day increase in daily step count was associated
with a 0.0623 mg/dL decrease (95% CI: -0.1222 to -0.0023)
in SD of glucose 2 days later.

Results of the sensitivity analyses were substantially the
same as those presented in Table 2 (data not tabulated).

Discussion

Principal findings and comparison with literature

Using data collected from mHealth technologies such as
CGM devices, smartphone health apps, and consumer-based
wearable activity trackers, our results suggest that daily step
count was significantly and inversely associated with the
maximum of glucose values, mean glucose, and the glucose
management indicator of the next day. We also found that
daily step count was significantly and inversely associated
with SD of glucose of the day after the next day. This study
did not reveal any association between daily step count and
glycemic indices of the same day.

In the present study, no association was found between
daily step count and glycemic indices of the same day. A
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similar study, conducted among healthy adults, investigated
the relationships between physical behaviors assessed by
accelerometers and CGM-based glycemic indices of the same
day.34 They did not find any association between minutes
spent in light physical activities, in moderate to vigorous
physical activities, and mean and SD of glucose. However,
when focusing only on lower fitness individuals, they found
that mean glucose was inversely associated with light phys-
ical activity and moderate to vigorous physical activity and
that SD of glucose was inversely associated with light
physical activity. We were not able to replicate these find-
ings as the FAY study protocol did not include any physical
fitness test.

We observed a relationship between daily step count
and glycemic control of the next day, in particular with the
maximum of glucose values, mean glucose, and with the
glucose management indicator. For instance, every 1000 steps/
day increase in daily step count was associated with a
0.3588 mg/dL decrease in the maximum of glucose values of
the next day. Thus, increasing the total volume of physical
activity may be linked to slightly blunted glycemic excursions
during the next day, resulting in reduced maximum glucose
values and mean glucose. These results have already been
observed in populations with diabetes. Indeed, Munan et al.
found in a recent meta-analysis that exercise reduces mean
glucose within the 24 h after the exercise sessions in adults
with type 2 diabetes.35 To our knowledge, our work is the first
observational study to report these associations in adults from
the general population and under free-living conditions.

Most previous studies that explored the associations be-
tween physical activity and glycemic indices among adults
without diabetes focused mainly on the relationship between
exercise timing and postprandial glucose excursions.36–40

Objectives and design of these studies are very different from
our study which makes the intercomparison of results very
difficult. One of the major differences is that these studies
were undertaken under laboratory settings and focused on
effects of structured exercise, whereas our study concentrated
on the total volume of habitual physical activity in real-life
settings. Moreover, results were not consistent across these
studies. On the contrary, some have found that postprandial
exercise could lower postprandial glucose excursions and
that preprandial exercise would not be associated with post-
prandial glucose excursions.36–38 On the contrary, others
have reported that preprandial exercise could effectively re-
duce postprandial glucose concentrations.39,40 Furthermore,
most of the published studies did not analyze the effects of
acute exercise interventions on glycemic measures of the
following days even though it may be interesting to look
deeper into it given that physical activity may enhance insulin
sensitivity for up to 72 h.41 Further randomized controlled
trials that would explore the prolonged effect of physical
activity on CGM-based glycemic measures are warranted to
replicate and/or to pursue our findings further.

We also found that daily step count was inversely associ-
ated with SD of glucose of the day after the next day. It is
difficult to compare this result with those from other studies
as no study with similar design was conducted so far.

FIG. 1. Flowchart of the study.
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Table 1. Characteristics of the Study Sample (n = 85)

Mean (SD) or n (%)
All

(n = 85)

Four-category step-defined physical activity classification

P

Sedentary
<5000 steps/
day (n = 13)

Low active
(5000–7500)

(n = 30)

Somewhat active
(7500–10,000)

(n = 24)

Active
‡10,000
(n = 18)

Daily step count (steps/day)a 8089.2
(3479.5)

3663.9
(858.4)

6255.8
(797.2)

8804.8
(718.8)

13,386.8
(2484.9)

<0.0001

Number of valid recording daysb 13.0 (1.0) 13.0 (1.0) 13.0 (1.0) 13.0 (1.0) 13.0 (1.0)
Daily step count measurement

method
0.006

Fitbit watches 22 (25.9) 0 (0.0) 4 (13.3) 11 (45.9) 7 (38.9)
Apple devices 33 (38.8) 5 (38.5) 12 (40.0) 8 (33.4) 8 (44.4)
Google fit app 30 (35.3) 8 (61.5) 14 (46.7) 5 (20.9) 3 (16.7)

Age, years 40.1 (12.7) 38.6 (15.6) 36.8 (8.8) 41.9 (13.0) 44.0 (15.0) 0.45
Sex 0.30

Male 37 (43.5) 4 (30.8) 17 (56.7) 10 (41.7) 6 (33.3)
Female 48 (56.5) 9 (69.2) 13 (43.3) 14 (58.3) 12 (66.7)

BMI, kg/m2 23.8 (3.3) 23.4 (3.2) 24.2 (3.3) 24.2 (3.9) 22.6 (1.9) 0.31
Categories of BMI 0.06

Normal weight, <25 kg/m2 57 (67.1) 10 (76.9) 16 (53.3) 15 (62.5) 16 (88.9)
Overweight or obese,

‡25 kg/m2
28 (32.9) 3 (23.1) 14 (46.7) 9 (37.5) 2 (11.1)

Waist circumference, cm 83.2 (12.1) 80.1 (8.9) 84.8 (12.6) 85.3 (14.3) 80.2 (9.8) 0.53
Hip circumference, cm 98.2 (8.2) 99.4 (10.4) 98.0 (7.8) 99.5 (9.0) 96.1 (5.9) 0.61
Work type related to physical

activity
0.04

Sitting 63 (74.1) 11 (84.6) 26 (86.7) 17 (70.8) 9 (50.0)
Doing light or hard physical

work
22 (25.9) 2 (15.4) 4 (13.3) 7 (29.2) 9 (50.0)

Self-declared stress level 0.26
High 13 (15.3) 1 (7.6) 4 (13.4) 4 (16.7) 4 (22.2)
Medium 40 (47.1) 6 (46.2) 10 (33.4) 14 (58.3) 10 (55.6)
Low 32 (37.6) 6 (46.2) 16 (53.4) 6 (25.0) 4 (22.2)

Smoking status 0.63
Never 40 (47.1) 5 (38.5) 15 (50.0) 11 (45.8) 9 (50.0)
Former 31 (36.4) 4 (30.7) 9 (30.0) 10 (41.7) 8 (44.4)
Current 14 (16.4) 4 (30.7) 6 (20.0) 3 (12.5) 1 (5.6)

Glycemic control indicesc

Minimum of glucose values,
mg/dL

52.6 (11.3) 51.2 (8.2) 52.4 (10.5) 54.0 (14.5) 51.9 (10.3) 0.99

Maximum of glucose values,
mg/dL

180.5 (28.9) 177.8 (26.1) 183.8 (31.8) 183.6 (32.8) 173.0 (19.1) 0.68

Mean glucose, mg/dL 93.6 (8.7) 90.4 (8.1) 95.9 (7.3) 94.2 (11.8) 91.4 (5.5) 0.10
Glucose management

indicator, %
5.5 (0.2) 5.5 (0.2) 5.6 (0.2) 5.6 (0.3) 5.5 (0.1) 0.10

Minutes spent below
70 mg/dL, %b

3.0 (5.2) 4.9 (7.2) 1.7 (2.9) 3.8 (8.8) 2.0 (4.9)

Minutes spent above
180 mg/dL, %b

0.08 (0.27) 0.17 (0.32) 0.16 (0.32) 0.04 (0.16) 0.00 (0.08)

Minutes spent in the range 70–
180 mg/dL, %b

97.0 (4.7) 94.8 (7.6) 97.9 (3.2) 96.0 (8.1) 97.9 (5.0)

Glycemic variability indicesc

SD of glucose, mg/dL 16.8 (3.2) 17.0 (3.4) 17.0 (3.6) 16.8 (3.3) 16.2 (2.5) 0.84
CV of glucose, % 18.0 (3.3) 18.8 (3.3) 17.7 (3.5) 18.0 (3.6) 17.7 (2.5) 0.64
Approximate area under the

sensor glucose curve,
mg.h/Dl

14,989.6
(13,659.8)

12,068.8
(13,116.7)

15,886.8
(13,912.5)

18,364.6
(13,356.8)

11,103.7
(13,746.1)

0.20

n (%) and P-value of Fisher’s exact test for categorical variables.
Mean (SD) and Kruskal–Wallis test for continuous variables.
aMean of daily step count computed taking into account valid days only.
bMedian (IQR) are presented instead of mean (SD) due to skewed distributions.
cEvaluated from 2 weeks of Freestyle Libre-based CGM, excluding the first and last day of the tracking period.
BMI, body mass index; CGM, continuous glucose monitoring; CV, coefficient of variation; IQR, interquartile range; SD, standard

deviation.
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However, in a recent trial conducted in nontrained healthy
individuals, Figueira et al. found that acute exercise sessions
were associated with reduced SD of glucose during the 12–
18 h after the exercise sessions in comparison with pre-
exercise values.42 They did not observe any reductions of SD
of glucose within the 12 h after the exercise sessions. Our
result could suggest that positive benefits of physical activity
could be visible beyond 18 h after an exercise session. We
highly encourage trials to explore this hypothesis further by
looking at the effects of physical activity beyond the 18 h
after an exercise session or after a certain cumulative volume
of physical activity.

Strengths and limitations

This study has numerous strengths. It is the first of its kind
to study daily step count in relationship to measures of gly-
cemic control and variability in adults from the general
population in real-life settings. There is a paucity of studies
on this subject in the literature, largely due to the lack of data
simultaneously collected by CGM systems and mHealth
devices in individuals without diabetes. This study is further

strengthened by the fact that we used device-based and
continuous measurements for both the exposure and the out-
comes. Indeed, physical activity was assessed via consumer-
based wearable activity trackers used by study participants
in free-living conditions and not through self-reported mea-
sures, which are known to be prone to social desirability and
recall bias.43 Glycemic indices were evaluated using data
collected from 14 days of wearing the FreeStyle Libre glu-
cose monitor. These measurement methods gave us the pos-
sibility to investigate the dynamic and temporal associations
of daily step count with glycemic control and variability in-
dices of the same day, the next day, and those of the day
after the next day. Moreover, the sample size of this study
can also be considered as one of its strengths. A very lim-
ited number of similar studies were conducted on up to 29
individuals.34,36,37,42,44

This study also has limitations. First, information on food
intake was not available, so we could not control for it in
our analysis. Furthermore, glucose concentrations displayed
by the CGM device were not blind. Therefore, participants
could have modified their behaviors (e.g., reducing caloric
intakes, increasing physical activity) as a consequence of

FIG. 2. Evolution of the number of steps taken and interstitial glucose levels during day i, day i + 1, and day i + 2 for one
study participant that had a mean daily step count of 6428 steps/day. Day i represents a random day during the 2-week
tracking period. The numbers of steps cumulated were summed over 15 min epochs.
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their glycemic measures. Our findings should be interpreted
cautiously given that dietary intake, a significant factor that
affects blood glucose levels, was likely to have influenced
the magnitude of the associations observed. We adjusted our
analysis for many potential confounding factors such as age,
gender, BMI, smoking status, and self-reported stress level,
another factor known to impact glycemia.45,46

Information on device wear time was not available, so we
were not able to control for it in the analysis as it is usually
done when analyzing accelerometer-based physical activity
data. However, we observed an overall high level of protocol
compliance regarding the wearing of the CGM device and the
use of mHealth technologies among our study population
given that the median number of valid days, with both daily
step count and glycemic indices data, was 13.0 (IQR: 1.0). In
addition, we also had access to sleep data assessed by
mHealth technologies for 87% of the present study sample,
which suggests a high compliance particularly for the wear-
ing of the consumer wearable devices. We concluded that our
study participants wore their device most of the days of the 2-
week tracking period.

Our study can be seen as heterogeneous in terms of the
measurement methods used to evaluate physical activity, as
study participants used different mHealth technologies to
monitor their daily step count, and it is not known exactly how
comparable the measurements obtained from the three meth-
ods are. But we controlled our analysis for the daily step count
measurement method, and mHealth technologies used by
study participants (Fitbit watches, Apple devices, Google Fit
app) have all been shown to be accurate for measuring step
count in laboratory and/or free-living conditions.47–52 Fur-
thermore, the study population had a rather high mean daily

step count value of 8089.2 (SD 3479.5) steps/day, which may
limit the generalizability of the findings to the general popu-
lation. But the mean daily step count ranged from 2086 to
20,473 steps/day, showing that we still had a large variability
in average physical activity levels within our population.

Finally, intensities of the physical activities performed
daily were not accessible. Nonetheless, daily step count is an
increasingly widespread and intuitive metric that can be
easily used as a target for health benefits and ensure repro-
ducibility of research results. With the expansion of wearable
activity monitors and smartphones onto the commercial
market, the daily step counts metric has become largely ac-
cessible among the general population, which justifies its use
and emphasizes the need to study it in relationship to health
outcomes.53 Working with physical activity data based on the
number of steps accumulated during the day implies also that
we only have information on ambulatory physical activi-
ties.54 Thus, participating in nonambulatory physical activi-
ties such as swimming or cycling may not have been taken
into account properly. However, it is known that ambulatory
physical activities such as walking remain a central compo-
nent of physical activity in the general population.53

Implications and perspectives

We found that increasing the overall level of physical ac-
tivity was associated with reduced glucose maximum peaks
the following day. Our work may have important public
health implications as elevated glucose excursion is a risk
factor for cardiovascular diseases in populations with and
without diabetes.55–57 Despite the well-recognized benefits of
physical activity for health and the prevention of chronic

Table 2. Associations Between Daily Step Count and Glycemic Control and Variability Indices (n = 85)

Daily step count
(1000 steps/day)

same daya

Daily step count
(1000 steps/day)

next daya

Daily step count
(1000 steps/day)

2 days aftera

b (95% CI) P b (95% CI) P b (95% CI) P

Glycemic control indicesb

Minimum of glucose
values, mg/dL

0.0158
(-0.1045 to 0.1361)

0.80 -0.0470
(-0.1623 to 0.0683)

0.42 0.0542
(-0.0645 to 0.1729)

0.37

Maximum of glucose
values, mg/dL

-0.0759
(-0.3758 to 0.2239)

0.62 -0.3588
(-0.6931 to -0.0245)

0.035 -0.1955
(-0.5170 to 0.1260)

0.23

Mean glucose, mg/dL 0.0069
(-0.0877 to 0.1014)

0.89 -0.0917
(-0.1793 to -0.0042)

0.04 0.0097
(-0.0828 to 0.1021)

0.84

Glucose management
indicator, %

0.0002
(-0.0021 to 0.0024)

0.89 -0.0022
(-0.0043 to -0.0001)

0.04 0.0002
(-0.0020 to 0.0024)

0.84

Glycemic variability indicesb

SD of glucose, mg/dL -0.0380
(-0.0944 to 0.0184)

0.19 -0.0365
(-0.1000 to 0.0270)

0.26 -0.0623
(-0.1222 to -0.0023)

0.04

CV of glucose, % -0.0365
(-0.0932 to 0.0202)

0.21 -0.0221
(-0.0878 to 0.0436)

0.51 -0.0569
(-0.1152 to 0.0015)

0.056

Approximate area under
the sensor glucose
curve, mg.h/dL

10.9422
(-3.2709 to 25.1553)

0.13 2.1925
(-10.5745 to 14.9594)

0.74 10.1377
(-5.0377 to 25.3131)

0.19

Models adjusted for age, sex, BMI, smoking status, self-declared stress level, and for the daily step count measurement method.
Bold text indicates P-value £0.05.
aDaily step count (steps/day) was studied in relation to glycemic control and variability indices of the same day, the next day and in

relation to those of the day after the next day.
bEvaluated from 2 weeks of Freestyle Libre-based CGM, excluding the first and last day of the tracking period.
CI, confidence interval.
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diseases, more recent estimates of physical inactivity suggest
that about 27.5% of adults are not meeting the 2010 World
Health Organization (WHO) physical activity Guidelines.58,59

One of the possible reasons that could explain why individ-
uals do not follow the guidelines would be that the reward
(e.g., decreased chronic disease risk) associated with physical
activity is not tangible and appears too far in the future.34

Thus, being able to display to individuals some short-term
health benefits or positive physiological consequences of
people’s physical behaviors as the ones observed in this work
can be of high interest for motivation and could serve as a
leverage to meet the physical activity guidelines. Indeed,
potential physiological consequences of certain movement
behaviors (e.g., increasing daily step count) can be integrated
into health-related apps and represented as personalized
feedback. This may motivate more individuals to follow the
public health guidelines and/or to engage in healthy move-
ment behaviors and maintain them over time.

Our study gives some insights into the links between phys-
ical activity and glycemic indices in the general population.
Similar works should be replicated among other populations,
in particular among people with diabetes treated with insulin,
to improve, for instance, machine learning algorithms of hy-
brid closed-loop insulin delivery systems. Indeed, to improve
closed-loop algorithms performance, not only relationships
between physical activity and CGM-based glycemic indices
should be better understood among populations with diabe-
tes, but also algorithms should integrate data collected by
consumer-based wearable activity trackers.60 Hybrid closed-
loop algorithms use the data from a CGM device to automat-
ically adjust insulin delivery through an insulin pump without
the user’s intervention.61 However, these systems still require
the users to record their carbohydrate intakes and intensity and
duration of their planned physical activities.62

Data continuously and passively collected from consumer-
based wearable activity monitors constitute a unique, a rich
and a real-time source of information that can allow the im-
provement of closed-loop algorithms for better glucose
management and to alleviate patient’s mental burden.60,61

Indeed, these trackers give access in real-time and real-life to
accurate and objective measurements related to physical ac-
tivity (e.g., steps per minute, heart rate) and sleep times, thus
enabling automated physical activity and sleep detections.
Physical behavior-related metrics from wearable activity
trackers could be incorporated into hybrid closed-loop as
complementary parameters to automate and adjust in real-
time insulin deliveries without patient intervention.

Therefore, we highly encourage the use of consumer-based
wearable activity monitors by people with diabetes as they
can provide valuable data to users, health care professionals,
and researchers to better understand how physical activity
affects blood glucose levels in real-life settings and to opti-
mize diabetes management. Data collected by these tools
could also be used in large epidemiological cohorts or sur-
veillance studies to better monitor participants’ physical ac-
tivity and contribute to the deep digital phenotyping of
populations in real-life settings.63

Conclusions

In summary, our study revealed that daily step count was
inversely associated with certain glycemic control indices in

adults from the general population in real life, in particular
with maximum glucose values, mean glucose, and with the
glucose management indicator of the next day. Increasing the
total volume of physical activity may be linked to slightly
reduce maximum glucose excursions during the next day
among individuals without diabetes. Further studies are
warranted to elucidate the associations between physical
behaviors and glycemic measures in both larger normogly-
cemic populations and populations with diabetes.
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exercise. The 6-year Malmö feasibility study. Diabetologia
1991;34:891–898.

22. Bennetsen SL, Feineis CS, Legaard GE, et al.: The impact
of physical activity on glycemic variability assessed by
continuous glucose monitoring in patients with type 2 di-
abetes mellitus: a systematic review. Front Endocrinol
2020;11:486.

23. Chandrasekaran R, Katthula V, Moustakas E: Patterns of
use and key predictors for the use of wearable health care
devices by US adults: insights from a national survey.
J Med Internet Res 2020;22:e22443.

24. Omura JD, Carlson SA, Paul P, et al.: National physical
activity surveillance: users of wearable activity monitors as
a potential data source. Prev Med Rep 2017;5:124–126.

25. Kompala T, Neinstein A: A new era: increasing continuous
glucose monitoring use in type 2 diabetes. Am J Manag
Care 2019;25:SP123–SP126.

26. MyFoodRepo. https://www.myfoodrepo.org/ (accessed July
12, 2021).

27. FoodAndYou. https://www.foodandyou.ch/en (accessed
January 11, 2021).

28. Tudor-Locke C, Craig CL, Brown WJ, et al.: How many
steps/day are enough? For adults. Int J Behav Nutr Phys
Act 2011;8:79.

29. Thomson JL, Landry AS, Zoellner JM, et al.: Several
steps/day indicators predict changes in anthropometric
outcomes: HUB City Steps. BMC Public Health 2012;12:
983.

30. Menai M, Brouard B, Vegreville M, et al.: Cross-Sectional
and longitudinal associations of objectively-measured
physical activity on blood pressure: evaluation in 37
countries. Health Promot Perspect 2017;7:190–196.

31. Vigers T, Chan CL, Snell-Bergeon J, et al.: cgmanalysis: an
R package for descriptive analysis of continuous glucose
monitor data. PLoS One 2019;14:e0216851.

32. Bergenstal RM, Beck RW, Close KL, et al.: Glucose
management indicator (GMI): a new term for estimating
A1C from continuous glucose monitoring. Diabetes Care
2018;41:2275–2280.

33. Burton P, Gurrin L, Sly P: Extending the simple linear
regression model to account for correlated responses: an
introduction to generalized estimating equations and multi-
level mixed modelling. Stat Med 1998;17:1261–1291.

34. Kingsnorth AP, Whelan ME, Sanders JP, et al.: Using
digital health technologies to understand the association
between movement behaviors and interstitial glucose: ex-
ploratory analysis. JMIR MHealth UHealth 2018;6:e114.

35. Munan M, Oliveira CLP, Marcotte-Chénard A, et al.: Acute
and chronic effects of exercise on continuous glucose
monitoring outcomes in type 2 diabetes: a meta-analysis.
Front Endocrinol 2020;11:495.

36. Solomon TPJ, Tarry E, Hudson CO, et al.: Immediate post-
breakfast physical activity improves interstitial postpran-
dial glycemia: a comparison of different activity-meal
timings. Pflugers Arch 2020;472:271–280.

37. Hatamoto Y, Goya R, Yamada Y, et al.: Effect of exercise
timing on elevated postprandial glucose levels. J Appl
Physiol Bethesda Md 1985 2017;123:278–284.

38. Haxhi J, Scotto di Palumbo A, Sacchetti M: Exercising for
metabolic control: is timing important? Ann Nutr Metab
2013;62:14–25.

176 EL FATOUHI ET AL.

https://www.myfoodrepo.org/
https://www.foodandyou.ch/en


39. Francois ME, Baldi JC, Manning PJ, et al.: ‘Exercise
snacks’ before meals: a novel strategy to improve gly-
caemic control in individuals with insulin resistance. Dia-
betologia 2014;57:1437–1445.

40. Rynders CA, Weltman JY, Jiang B, et al.: Effects of ex-
ercise intensity on postprandial improvement in glucose
disposal and insulin sensitivity in prediabetic adults. J Clin
Endocrinol Metab 2014;99:220–228.

41. Mikines KJ, Sonne B, Farrell PA, et al.: Effect of physical
exercise on sensitivity and responsiveness to insulin in
humans. Am J Physiol 1988;254:E248–E259.

42. Figueira FR, Umpierre D, Bock PM, et al.: Effect of ex-
ercise on glucose variability in healthy subjects: random-
ized crossover trial. Biol Sport 2019;36:141–148.

43. Unick JL, Lang W, Williams SE, et al.: Objectively-
assessed physical activity and weight change in young
adults: a randomized controlled trial. Int J Behav Nutr Phys
Act 2017;14:165.

44. Manohar C, Levine JA, Nandy DK, et al.: The effect of
walking on postprandial glycemic excursion in patients
with type 1 diabetes and healthy people. Diabetes Care
2012;35:2493–2499.

45. Surwit RS, Schneider MS, Feinglos MN: Stress and dia-
betes mellitus. Diabetes Care 1992;15:1413–1422.

46. Marcovecchio ML, Chiarelli F: The effects of acute and
chronic stress on diabetes control. Sci Signal 2012;5:pt10.

47. An H-S, Jones GC, Kang S-K, et al.: How valid are
wearable physical activity trackers for measuring steps?
Eur J Sport Sci 2017;17:360–368.

48. Bai Y, Tompkins C, Gell N, et al.: Comprehensive com-
parison of Apple Watch and Fitbit monitors in a free-living
setting. PLoS One 2021;16:e0251975.

49. Veerabhadrappa P, Moran MD, Renninger MD, et al.:
Tracking steps on apple watch at different walking speeds.
J Gen Intern Med 2018;33:795–796.

50. Amagasa S, Kamada M, Sasai H, et al.: How well iPhones
measure steps in free-living conditions: cross-sectional
validation study. JMIR MHealth UHealth 2019;7:e10418.

51. Polese JC, E Faria GS, Ribeiro-Samora GA, et al.: Google
fit smartphone application or Gt3X Actigraph: which is
better for detecting the stepping activity of individuals with
stroke? A validity study. J Bodyw Mov Ther 2019;23:461–
465.

52. Costa PHV, de Jesus TPD, Winstein C, et al.: An investi-
gation into the validity and reliability of mHealth devices
for counting steps in chronic stroke survivors. Clin Rehabil
2020;34:394–403.

53. Hall KS, Hyde ET, Bassett DR, et al.: Systematic review of
the prospective association of daily step counts with risk of
mortality, cardiovascular disease, and dysglycemia. Int J
Behav Nutr Phys Act 2020;17:78.

54. Pillay JD, van der Ploeg HP, Kolbe-Alexander TL, et al.:
The association between daily steps and health, and the
mediating role of body composition: a pedometer-based,
cross-sectional study in an employed South African popu-
lation. BMC Public Health 2015;15:174.

55. Blaak EE, Antoine J-M, Benton D, et al.: Impact of post-
prandial glycaemia on health and prevention of disease.
Obes Rev Off J Int Assoc Study Obes 2012;13:923–984.

56. Alssema M, Boers HM, Ceriello A, et al.: Diet and gly-
caemia: the markers and their meaning. A report of the
Unilever Nutrition Workshop. Br J Nutr 2015;113:239–
248.

57. Gallwitz B: Implications of postprandial glucose and weight
control in people with type 2 diabetes: understanding and
implementing the International Diabetes Federation guide-
lines. Diabetes Care 2009;32(Suppl. 2):S322–S325.

58. Guthold R, Stevens GA, Riley LM, et al.: Worldwide trends
in insufficient physical activity from 2001 to 2016: a pooled
analysis of 358 population-based surveys with 1 $ 9 million
participants. Lancet Glob Health 2018;6:e1077–e1086.

59. WHO Guidelines on Physical Activity and Sedentary
Behaviour. Geneva: World Health Organization, 2020.

60. Tagougui S, Taleb N, Molvau J, et al.: Artificial pancreas
systems and physical activity in patients with type 1 dia-
betes: challenges, adopted approaches, and future per-
spectives. J Diabetes Sci Technol 2019;13:1077–1090.

61. Boughton CK, Hovorka R: New closed-loop insulin sys-
tems. Diabetologia 2021;64:1007–1015.

62. Benhamou P-Y, Franc S, Reznik Y, et al.: Closed-loop
insulin delivery in adults with type 1 diabetes in real-life
conditions: a 12-week multicentre, open-label randomised
controlled crossover trial. Lancet Digit Health 2019;1:e17–
e25.

63. Fagherazzi G: Deep digital phenotyping and digital twins
for precision health: time to dig deeper. J Med Internet Res
2020;22:e16770.

Address correspondence to:
Douae El Fatouhi, MSc

‘‘Exposome, Heredity, Cancer, and Health’’ Team
Center of Research in Epidemiology

and Population Health (CESP), Inserm U1018
Paris-Saclay University, UVSQ, Gustave Roussy,

Espace Maurice Tubiana
114 rue Edouard Vaillant

Villejuif Cedex 94805
France

E-mail: douae.el-fatouhi@gustaveroussy.fr

PHYSICAL ACTIVITY AND GLYCEMIC CONTROL 177


