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Abstract: Intrinsic characteristics possessed and exhibited by Ir(III) cyclometalated complexes need
to be further examined, understood, and explored for greater value enhancement and potentiation.
This work focuses primarily on the comparative studies of the ligand structures, types, and their
substituent influence on the photophysical and optoelectronic properties of typical cyclometalated
mono- and binuclear iridium(III) complexes in solution or solid states.

Keywords: ligand structures; mono-, binuclear cyclometalated Ir(III) complexes; luminescence; LED
phosphors; optoelectronics

1. Introduction

The increasing demand for light and other light applications cannot be overemphasized by today’s
usage worldwide [1]. Research and development of new electronic and optoelectronic materials to
maintain this pace in technological development involve constant appraisals to the techniques used
in the design, characterization, and optimal evaluations. The field of optoelectronics incorporates,
among others, the study of the interaction and relationship between photon and electronic devices
and the discovery and development of new compounds, as well as their light interactions, often
normally employed in the fabrication of new electronic devices [2]. Central microscopic processes in
all optoelectronic devices by which technological applications such as light-emitting devices, sensors,
and thin-film transistors are developed majorly involve the absorption and generation of photons [3].

Dye-sensitized solar cells (DSSCs), being one of the alternative sources of electricity generation,
for example, has gained prominent uptake in its usage worldwide over the last two decades due
to their easy panel fabrication and cost-effective production when compared to the silicon-based
photovoltaic devices [4–6]. Despite recent development and investigations in the molecule-based
Ir(III) cyclometallated complexes as photosensitizers for DSSCs, the poor energy conversion efficiency
originates from low molar extinction coefficient and a narrow absorption spectrum at relatively high
energy, unlike those found for Ru(II) complexes [7], the efficiency of photosensitizers made from Ir(III)
complexes can be improved by introducing better light-absorbing ligands [8–12].

Other types of technology applications, such as those involving organic light emitting diodes
(OLEDs) and organic field-effect transistors (OFETs) as one of the most populous electroluminescent
devices, are usually fabricated using either organic and inorganic compounds or bilayer structures
to obtain excellent semiconductors and emitters [13]. The development of these efficient and
long-wavelength conducting emitters in the construction of next-generation materials for biomedical

Materials 2019, 12, 2734; doi:10.3390/ma12172734 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0003-1736-5738
http://www.mdpi.com/1996-1944/12/17/2734?type=check_update&version=1
http://dx.doi.org/10.3390/ma12172734
http://www.mdpi.com/journal/materials


Materials 2019, 12, 2734 2 of 26

imaging and other optoelectronic technologies has been found to be a major challenge both in the
academic and industrial spheres [14–16].

Recently, the development of new and efficient materials for optoelectronic applications has
been anchored mostly on conjugated organic polymeric materials [17]. However, due to certain
limitations of these organic compounds, introduction of metal complexes through cyclometalation has
provided a straightforward route to the development of better and more efficient optoelectronic devices.
Cyclometalation features new metal-carbon σ-bond through the activation of an unreactive C–R bond.
This concept was first reported in 1963, as it restricts metalacycles to complexes which coordinate metal
to two carbon atoms of the same molecule, excluding heteroatom-assisted chelation. Cyclometalated
complexes of the iridium(III) and ruthenium(II), for example, have attracted great interests in the
fields of materials development. The concept of cyclometallation, therefore, expands understanding
of the changes observed at both the ground and excited-state energy processes in complexes when
carbanion donor effectively replace the hetero-atom donor ligand to form the C–R bond, which
subsequently cause alterations of the electron density around the central metal atom. In accordance,
using spectrochemical series arrangement, nitrogen donor ligands are found at a relatively lower
magnitude compared to carbanion donors in the crystal field splitting, which appropriately correlate
a direct relationship of the perturbations observed in the physical and photochemical properties of
cyclometalated complexes [18,19].

In the build-up of new cyclometalated complexes, transition metals from the platinum group metals
(PGMs) are well-known for their variable chemical properties which influence their usability in different
applications [20–24]. In addition, due to the strong triplet emission characteristics of the cyclometalated
complexes originating from this particular group of transition metals, new phosphorescent materials
are rapidly emerging for varied technological applications [25–29].

Photoluminescent generation is a function of the speed by which electronic transition occurs in
molecules. Re-emission of radiation is very slow in phosphorescence emission which is associated
with forbidden energy state transitions, unlike in fluorescence, as explained by quantum mechanics.
In both processes, coordination compounds do show varied spectral range wavelengths covering from
ultraviolet to infrared radiation regions (Figure 1) [30].
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In general, photoluminescent emission is controlled in metal cyclometalated complexes by various
factors of which substitution of electron donating or withdrawing groups either attach to the phenyl
group, acting as carbaion donor or the heteroatom donor ligands. Interestingly, the results generated
from studies involving cyclometalated complexes as related to their photophysical, thermal stability,
and optoelectronics applications are subtly related to the ligand molecular structures [31].

A great careful selection of anionic, cationic and neutral ligands to obtain mono-, bi-, and
polydentate cyclometalated Ir(III) complexes forms the fulcrum of this present review. The ligand
design, structures, and modifications are critically examined with a view to providing further insight
into the explorations of these coordination compounds in the fabrication of new and more efficient
electronic devices. Although the work primarily targets chemistry audience, the wide applicability of
the materials and their properties tailored on small molecules and macrocyclic compounds transcend
traditional disciplines may be suitable for other interest groups such as materials chemists, physicists,
biologists, engineers, and environmental scientists.

2. Comparative Analysis of Mono- and Bidentate Ligands Functionalized Cyclometalated
Ir(III) Complexes

Increase in the applications of cyclometalated coordination compounds has found major uses
in electroluminescent devices, such as biological emitters and electronics materials. Pyridine
(a monodentate ligand) and its associated derivatized analogues have found usefulness as
cyclometalating coordination ligands that are tailored toward the preparation of phosphorescent
materials, having excellent singlet and triplet excited state optical properties of specific absorption and
emission colors [32,33].

To tune the absorption and emission properties of cyclometalating complexes, various strategies
have been reported which include extension of π-conjugation bonds of organic molecules, as well as
functionalization of the ancillary ligands using electron withdrawing or electron donating groups.
To obtain cationic iridium(III) cyclometalated complexes, the iridium metal is centered around
cyclometalating ligand of the form CˆN and a neutral ancillary ligand of the form Lx, leading to a stable
octahedral complex structure of the general molecular formula [Ir(CˆN)2(Lx)]+. The cation may be
neutralized with the introduction of inorganic anions such as Cl−, [PF6]−, BF4

−, and [Bph4]− serving as
negative counter ions [34]. Changing the emission colors of materials has been investigated through the
use of molecular orbital (MO) calculations, which often predict the ground and excited state properties
and the changes that may be necessary to undertake in order to obtain good electroluminescence
materials. It has been found that a close relationship exists between the various luminescent processes,
which can be used in the development of new chromophoric materials [35].

Covalently tethered organic perylenediimide has been achieved through energy transfer in the
construction of red-light emitting devices [36–38]. These have led to having electroluminescent (EL)
materials with λmax 665 nm and peak EQEs of 7.40% [39]. Bünzli et al. [40] and Hasan et al. [41], in their
respective reports, studied the influence of introducing electron-withdrawing and/or electron-releasing
group on NˆN or phenyl ring of cyclometalating ligand to form series of cationic cyclometalated Ir(III)
complexes (1, 2) (Scheme 1). The major attractions of their work centered on stability and perturbation
of the electronic properties of complexes containing thienylpyridine (1). In addition, their work focused
on the fact that irrespective of the positional placements and the number of electron donating group
introduced on cyclometalating ligand was beyond one, there was virtually no appreciable influence on
the initial wavelength range of 595 and 730 nm in (2). However, the optoelectronic characteristics of
the ligands and complexes are greatly affected by the position of the OCH3 group on phenyl ring.

To avoid T-T annihilation, Park et al. developed series of functionalized heteroleptic and homoleptic
Ir(III) complexes 3–10 (Scheme 2) as a way to enhancing luminescence efficiency. The heteroleptic
complexes show better optical properties when compared to the homoleptic complexes, which can
be adduced to the saturation of the quenching of the energy transfer between ligands of similar
orientations. Emission wavelength maxima reported for the complexes range from 514–601 nm [42].
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Although great successes have been recorded for full-color devices containing iridium emitters
developed from anionic, cationic, and neutral ligands [43–51], there are still strong challenges in the
development of pure blue emission materials for OLEDs devices. This problem is not unconnected
to the existence of a wide energy gap and the relatively low efficiency example found in the work of
Takizawa group depicted in Figure 2 [52] for complexes formally reported for Ir(ppy)3 with strong
metal-to-ligand charge transfer (MLCT) excited state property [53,54]. It could be seen from this
study that the lowered emission wavelength is majorly caused by the increase in the highest occupied
molecular orbital and lowest unoccupied molecular orbital (HOMO-LUMO) energy gap [55].
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Figure 2. Structures of triazole derivatized cyclometalated Ir(III) complexes [52], [Adapted with
permission from (Takizawa et al.). Copyright (2006), Chemical Society of Japan].

As shown in Scheme 3, four new phosphorescent Ir(III) cyclometalated complexes (11–14) made
from 2-(2-thienyl)pyridine functionalized ligands were reported by Niu et al. [56]. Even though the
chemical structures of the complexes were similar, the device (12) displayed better electroluminescent
(EL) performance than 11 and 13, which was adduced to the differences in the excited state lifetimes.
A relatively poor EL performance often occurs due to longer lifetime based on involvement of exciton
quenching effects. In summary, the different electroluminescent (EL) characteristic performance and
quantum yields of the complexes were also adduced to the influence of tetraphenylimidodiphosphinate
ligand on electron mobility in the phosphine-oxygen bonds.

Accordingly, using similar ligand types as Niu group, Lo et al. [57] reported the optoelectronic
properties of similar complexes. However, Lo et al. used first-generation solution-processible
dendrimers to obtain new Ir(III) cyclometalated complexes with short triplet excited state lifetimes,
which is highly dependent on the substituents and structures of the ancillary ligands. This is related to
the main features of cyclometalated iridium triplet emitters (mostly the red or green light emitters) [58].

The recent work of Su and his group [59] was reported for four iridium(III) complexes 15–18
based on substituted pyrazoline ligand (Scheme 4). For the complexes, green light photoluminescence
at wavelength maxima 499 nm and high quantum efficiency approximately 0.82 were obtained and
used in the fabrication of OLEDs device.

The effect of increasedπ-conjugation length in ligand was reported by Lee et al. [60], when acetylated
functionalized phenylpyridine was used as ligand in the preparation of complex 19, and spirobifluoronyl
moiety was further introduced to obtain complex 20 (Scheme 5). The maximum emission wavelength
(λmax) of the complexes appeared at 600 and 612 nm, respectively. The optoelectronic device made from
these materials gave a maximum luminance and an orange-red emission.
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Similar to Scheme 6, the group further investigated multilayered organic light-emitting diodes
characteristics of complexes 21–25, where extension of π-conjugation was simply made of phenyl- and
methyl-substitution on cyclometalating ligand. The homoleptic and heteroleptic complexes obtained
were then compared to an acetylated analogue derivative (25) to obtain red phosphorescent materials
at wavelength maxima range of 510–690 nm [60–64].Materials 2019, 12, x FOR PEER REVIEW 8 of 28 
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Scheme 6. Structures of phenyl- and methyl- substitution and acetylated phenylpyridine derived
Iridium(III) complexes [62,63].

Sandee et al. described the synthesis of extended dialkylfluorenyl based cyclometalating ligand
as repeating units to obtain Ir(III) complexes 26 and 27 (Scheme 7). Efficient energy transfer, due
to the changes in phosphors covalently conjugated to the polymer backbone, was visibly observed.
In addition, the effect of extended long chain leads to enhanced wavelengths and good optical
properties [65].

Baldo et al. [66,67] reported the active area of research in OLEDs where complex 28 was doped
with dicarbazole biphenyl moiety to obtain complex 29 (Scheme 8). High efficient green phosphorescent
materials at room temperature were obtained, which were adduced to the changes in the luminescent
energy state properties of the complexes.

Yang et al. [54] and Grisorio et al. [68], in separate investigations, show the effects of positional
substitution of substituent groups on cyclometalating ligands, whereby complexes 30–33 were
synthesized and photoluminescent characteristics examined (Scheme 9). Complex 33, with extended
π-conjugation containing fluorenyl derivative gave emission at wavelength maxima 595 nm compared
to 30, 31, and 32, having phenyl, fluorine, and methoxy groups at 547, 525, and 539 nm, respectively.
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Scheme 9. Structures of functionalized phenylpyridyl acetylated iridium(III) complex and fluorenyl
derivative [54,68].

Unlike usual structural and photophysical characteristics from neutral complex-based
cyclometalated Ir(III) complexes where significant differences are ascribed to those originating from
cationic types, two different cationic heteroleptic cyclometalated complexes as found in 34, 35, and 36
(Scheme 10) were synthesized as new blue emitting coordination compounds through variation of
the electronic state in the phenylpyridyl ligand as fluorination of the ligand cause blue-shift in the
wavelengths [32].

Similar to the compounds above, true-blue phosphorescence OLEDs materials 37, 38, and 39
(Scheme 11) were respectively designed and reported. Interest was channeled toward ligands that
could function as coordination strength enhancers and able to act inhibitory role in the lowering of
electronic transitions. The effects as displayed in emission spectra showed wavelength decrease from
456, 512; 458, 532; and 432, 486 nm, respectively, for complexes 37, 38, and 39 [69,70].
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The studies by Zhang et al. [71] as depicted in Figure 3, report the synthesis of two series of
short-wavelength light-emitting cationic iridium(III) complexes bearing non-conjugated functionalized
phosphino-containing ligands to afford variable emission wavelengths ranging from 387–498 nm for
solution-process OLEDs materials.
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The work of Sarma et al. [72] show the interplay of alkoxy and amino functionalities and their
linear and non-linear influence on over photophysical properties of the complexes as depicted in 40–45
(Scheme 12). The new chromophores were developed in order to properly investigate the effects of
conjugation increase and substituent variables, which are expected to tune the optical properties of
the resulting iridium complexes as the absorption spectra wavelengths for 40 and 42 ranges from
350–700 nm, while other complexes remained non-emissive at near-IR region of 800 nm.Materials 2019, 12, x FOR PEER REVIEW 11 of 28 
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Scheme 12. Structures of Ir(III) complexes containing substituted 4,4′-π-conjugated 2,2′-bipyridine
ancillary ligands [72].

Suhr and his group [73] examined the effects of hydrophobicity, substituent positions, and
bulkiness of rings to study the photophysical properties of series of ionic transition metal complexes
46–52 (Scheme 13). Although similarities existed in ligand structures like those previously reported
by the Sarma group [72], these complexes were found to have over 70% quantum yields with varied
emission color range from yellow to red.
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The work reported by the Fiorini group [74] explored the usefulness of functionalized tetrazolato
ligands to obtain anionic cyclometalated complexes, as represented by Ir(ppy)2(1,2-BTB)]− (53) and
[Ir(F2ppy)2(1,2-BTB)]− (54) (Scheme 14). Notably, the group discovered that the combination of the
anionic complexes leads to deep red phosphorescent emission at λmax of 686 nm.
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Kessler et al. [38] incorporate the use of carbine-based ancillary ligands instead of a bidentate
ligand. The results show a radiative activation, but poor photophysical properties of the complexes,
as exemplified in structure 55 (Scheme 15) below. However, some of the complexes still find use in the
construction of LEEDs, as they show active electroluminescent emission from bluish-green to orange.
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3. Comparative Analysis of Terdentate Ligands Functionalized Cyclometalated Ir(III) Complexes

Imine ligands and its derivatives have found useful in the construction of efficient
electroluminescent OLEDs devices. One of the disadvantages of this class of materials is their
decrease in photo-sensing ability due to ligand dissociation during photoexcitation process, especially
in unfavorable coordinating solvents, thus making the complex photochemically inactive. In order
to overcome these shortcomings and to make these types of complexes more photoactive, the use
of rigid bis-terdentate ligand system is employed over the continuous use of tris-bidentate ligand
formulation [78].

Several authors have synthesized and characterized various types of functionalized Ir(III),
coordinated bis-terdentate complexes, and their documented optoelectronic properties. A clear
example is found in the work of Campagna and his coworker [79], where complexes ([Ir(L1)(L1−)]2+)
65 and ([Ir(L1−)2]+) 66 (Figure 4) with one arm of the ligands being a mono-anion were reported.
Appreciable emission properties at λmax = 592 and 598 nm, respectively, were reported for the
complexes, even though the nature of solvent used in solution extended wavelengths to 620–630 nm
with appreciable quantum yields.Materials 2019, 12, x FOR PEER REVIEW 15 of 28 
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with superior quantum yield efficiency, which was better than the parent tris-bidentate complex 
analogues [78]. 

Figure 4. Structures of Ir(III) complexes and emission spectra [79], [Adapted with permission from
(Mamo et al.). Copyright (2006) American Chemical Society].

Several cationic complexes of iridium metal have been reported. In their work, William et al. [80]
showed that the central phenyl ring could serve as a cyclometalating unit to form iridium complex,
of which structural modes are guided by coordinating environment (see Figure 5). Photophysical
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characteristics of the bis-terdentate complexes revealed a strong emission wavelength around 630 nm
with superior quantum yield efficiency, which was better than the parent tris-bidentate complex
analogues [78].Materials 2019, 12, x FOR PEER REVIEW 16 of 28 
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C^N^C represents tridentate tripod ligand. Modifications of the ancillary diimine ligand through 
electronic substitution enhance the photophysical and stability of the complexes, which thus act as 
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complexes 67, 68, and 69 in dichloromethane solution result in 68, with phosphorescent emission 
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Figure 5. Schematic structural arrangement, absorption and emission properties of bis-terdentate [80],
[Adapted with permission from (Whittle & Williams). Copyright (2006) American Chemical Society].

Further in their quest to synthesize iridium complexes with improved photostability, Obara and
his group synthesized and investigated the photoluminescence properties of new series of mixed-ligand
Ir(III) complexes with substituent modification of the cyclometalating ligands [81]. The absorption and
emission of the resulting complexes show normal characteristic metal-to-ligand charge transitions in
the range 407–523 nm and strong red emission wavelengths ranging from 559 nm to 610 nm (Figure 6).
An unprecedented high luminescent quantum yield value of Φ = 0.95 and radiative rate constants (kr)
in the range 3.4 × 105 to 5.5 × 105 s−1 were obtained.
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Figure 6. Structure of mix-ligand Ir(III) complex with emission spectra [81] [Adapted with permission
from (Obara et al.). Copyright (2006) American Chemical Society].

The recent investigation and design of new tridentate luminophores for OLEDs by Hierlinger
et al. [82] show the luminescent neutral tripod ligand made from 2-benzhydrylpyridine (bnpy) to form
Ir(III) complex with the general formula [Ir(CˆNˆC)(NˆN)X], where X represents a halogen and CˆNˆC
represents tridentate tripod ligand. Modifications of the ancillary diimine ligand through electronic
substitution enhance the photophysical and stability of the complexes, which thus act as an avenue to
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the designing of new tridentate phosphorescent compounds. As shown in Figure 7, complexes 67, 68,
and 69 in dichloromethane solution result in 68, with phosphorescent emission maxima at 630 nm;
619 nm for 67 and a blue-shift 581 nm for 69. The use of halogen is said to affect negatively the stability
and reduce emission wavelengths in these complexes [82]. However, the work of Chirdon et al., shows
the effect of changes in the ligand field strength of substituting groups where emission wavelengths
were tuned from orange to greenish-blue when chloride is replaced with cyanide [83].

Materials 2019, 12, x FOR PEER REVIEW 17 of 28 

 

emission wavelengths were tuned from orange to greenish-blue when chloride is replaced with 
cyanide [83]. 

 

(a) 

 
(b) 

Figure 7. (a) Structures of chelating tridentate tripod Ir(III) complexes (b) Normalized UV-Vis 
absorption and photoluminescence spectral of 67–69 in CH2Cl2 at 298 K [82] [Adapted with 
permission from (Hierlinger et al.). Copyright (2017) American Chemical Society]. 

4. Comparative Studies of the Photophysical Properties of Cyclometalated Diiridium(III) 
Complexes  

As far as dinuclear iridium(III) complexes are concerned, there is still limited information in 
terms of synthesis, photophysical, and optoelectronic properties when compared to the mononuclear 
types. The challenges against dinuclear transition metal-ligand complexes (e.g., diiridium), which 
often show them to be unsuitable as far as optoelectronic applications are concerned, include the 
occurrence of symmetries, which tends to enhance chiral complex formation. This produces the 
racemic mixture of ∆ and Λ enantiomers that are cumbersome to purify, thus producing very low 
yield of products on the overall, which is usually avoided or less pronounced in mononuclear 
complexes. However, as adduced to their record of low luminescence quantum efficiencies when 
compared to their monoiridium complex counterparts with outstanding photofunctional and 
spectroelectrochemical properties, work on dinuclear complexes has been recently taken up by 
researchers [84–100]. A few examples of important diiridium(III) complexes with their photophysical 
properties will be highlighted herein. First, the work of Auffrant et al. reported quite a number of 
racemic complex mixtures originating from cyclometalating ligands to afford mixture of 
stereoisomeric cyclometallated iridium dinuclear complexes, which only showed very small 
variations in its absorption and emission properties and was related to interactions of the isomers 
[101].  

M’hamedi et al. [102] presented a similar work on the development of optoelectronic materials 
using diiridium(III) complexes with bridging oxamidato ligands based on structure similarity to 

Figure 7. (a) Structures of chelating tridentate tripod Ir(III) complexes (b) Normalized UV-Vis absorption
and photoluminescence spectral of 67–69 in CH2Cl2 at 298 K [82] [Adapted with permission from
(Hierlinger et al.). Copyright (2017) American Chemical Society].

4. Comparative Studies of the Photophysical Properties of Cyclometalated
Diiridium(III) Complexes

As far as dinuclear iridium(III) complexes are concerned, there is still limited information in terms
of synthesis, photophysical, and optoelectronic properties when compared to the mononuclear types.
The challenges against dinuclear transition metal-ligand complexes (e.g., diiridium), which often show
them to be unsuitable as far as optoelectronic applications are concerned, include the occurrence of
symmetries, which tends to enhance chiral complex formation. This produces the racemic mixture of
∆ and Λ enantiomers that are cumbersome to purify, thus producing very low yield of products on the
overall, which is usually avoided or less pronounced in mononuclear complexes. However, as adduced
to their record of low luminescence quantum efficiencies when compared to their monoiridium
complex counterparts with outstanding photofunctional and spectroelectrochemical properties, work
on dinuclear complexes has been recently taken up by researchers [84–100]. A few examples of
important diiridium(III) complexes with their photophysical properties will be highlighted herein.
First, the work of Auffrant et al. reported quite a number of racemic complex mixtures originating
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from cyclometalating ligands to afford mixture of stereoisomeric cyclometallated iridium dinuclear
complexes, which only showed very small variations in its absorption and emission properties and
was related to interactions of the isomers [101].

M’hamedi et al. [102] presented a similar work on the development of optoelectronic materials
using diiridium(III) complexes with bridging oxamidato ligands based on structure similarity to
C2N2O2. Although their work explored the rigid structural motifs in the coordinated ligands, the
complexes exhibit many peaks in the nuclear magnetic resonance (NMR) spectra, clearly indicating
the presence of different isomeric forms in ratio 3:2. As shown in complexes 70 and 71 (Scheme 17),
complex 71 shows emission λmax = 522 nm, with a lower energy shoulder at λmax = 550 nm compared
to complex 70 at λmax = 529 nm, indicating a higher contribution from the 3LC states. Other important
optoelectronic features of the complexes include their red emission wavelengths at τP 0.84 and
1.16 µs, respectively.
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Scheme 17. Reaction profile for synthesis of cyclometalated diiridium(III) complexes with bridging
oxamidato ligands [102].

The luminance levels and quantum yields of dinuclear iridium complexes are low, which have
been attributed to their low triplet excited states that are often located on the conjugated spacers.
However, dinuclear iridium complexes 72, 73, and 74 (Scheme 18) were recently reported, which
contained extended π-conjugation length and were found to give better quantum yields and broad
profile peak spectra as high as 780 nm when compared to mononuclear types [103,104].

Accordingly, Yang et al. compared mononuclear and dinuclear iridium(III) complexes bearing the
same types of cyclometalating ligands to show the clear variations in their optoelectronic properties
(Figure 8). Clear significant differences were observed both in the photophysical and electrochemical
properties, with the dinuclear complexes showing better quantum yield efficiency compared to
mononuclear complexes, possibly due to molecular orbital arrangement [105].
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Figure 8. Emission profiles of mono- and dinuclear iridium(III) complexes with phenylpyrimidine
derivative [105]. [Adapted with permission from (Yang et al.). Copyright (2016) American Chemical
Society].

Wong et al. [92] reported the chemical and crystal structures (Figure 9) of diiridium cyclometalated
complexes to show the influence of electron-donating substituent group on the optoelectronic
properties displayed by the complexes. It was shown that the number of electron-withdrawing
groups, as well as their position on cyclometalating ligands, greatly shift the wavelengths to the red
region, as non-radiatiative rate constant is also reduced. For the synthesized complexes, emissions
range from 520–611 nm.

Meanwhile, the report by Congrave and his team to show photoluminent properties of diiridium
complexes void of 2-phenylpyridine cyclometalate was reported [106]. In their work, a new series of
hydrazide bridged diiridium complexes were represented in 75, whereby bulky 1,2-diaryl-imidazole
cyclometalating ligands were incorporated in the place of 2-phenylpyridine (Scheme 19). Common to
all complexes are the varied high emissive properties when infused in polymers, as well as aggregation
induced phosphorescent emission (AIPE).
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Scheme 19. Structures of dinuclear Ir(III) cyclometalated complexes with bulky 1,2-diarylimidazole
cyclometalating ligands [106].

According to Daniel et al., diiridium complexes often come with other impurities in isomeric
forms of the complexes in preparation. In other to overcome this challenge, eight new complexes of the
general formula {IrLxZ}2Ly (76 and 77), where Z represents a monodentate chloride or cyanide (Cl or
CN), were prepared (Scheme 20). All reported complexes show very bright luminescent with respect
to identity of ligands in solution. However, trends in photophysical properties of the these complexes
varied with the cyanide substituted complex being better than the chloride. This can be adduced to
the spin-orbit coupling pathways, which are supported by the rigidity of dinuclear structure and the
presence of second metal ion [107].

The problem of aggregation-induced enhanced emission (AIEE) experienced in certain molecular
species in the solid state was addressed by Park et al. [108]. Considerable attention and other reports
on AIE have shown that molecular packing in such molecules affects the molecular rotation, and
thus blocks non-radiative channels leading to molecular quenching. Luminescent properties in
dinuclear complexes were also found to be affected by the types of Schiff base coordinating ligands.
In view of the characteristics of diiridium cyclometalated complexes that have been studied so far
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over the years, two new complexes 78 and 79 (Scheme 21) displayed unusual emission properties,
which are quite different when same complexes were examined in different solvent systems during
photoexcitation [109]. For instance, a red-shift wavelength (~48 nm) in complex 79 when compared to
78 is possibly due to extension of conjugation in the molecule (Scheme 5). The information obtained in
this work support the earlier studies on AIE and/or AIEE that are related in terms of the restriction of
intermolecular rotation and specific aggregation formation. Introduction of Schiff base as bridging
ligands using different π-π mode interactions portend a possible supramolecular recognition sites for
AIPE process.Materials 2019, 12, x FOR PEER REVIEW 21 of 28 
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In 2000, the Francesco Neve group aimed at describing and studying some new series of
dinuclear luminescent compounds, and reported the synthesis and characterization of two iridium(III)
cyclometalated complexes 80, 81 with single and double ester-linked chelating sites to show influence
of photoinduced energy transfer across different chromophores (Scheme 22). In comparison, stronger
oscillator strength recorded for complex 80 is adduced to the more intense metal-to-ligand-charge
transfer (MLCT) transition. Although the two complexes show 646 and 631 nm emission wavelengths,
respectively, the luminescent properties are varied in the same solvents irrespective of symmetry of the
complexes [110–112].
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5. Conclusions

This work has examined some mono- and binuclear Ir(III) cyclometalated complexes in relation
to their photophysical and optoelectronic properties, which were found to be greatly influenced by
anionic, cationic, or neutral ligand types. Other factors, such as extension of π-conjugation bond,
introduction of electron-withdrawing and/or electron-donating substituent groups, hydrophobicity,
using heteroleptic ligands which tend to show better optical properties than homoleptic ligands,
substituent’s positions, and bulkiness on either cyclometalating ligands or ancillary ligands, all have
contributed to the enhancement of the photophysical properties. Terdentate Ir(III) cyclometalated
complexes show better photoluminescent properties as compared to both mono- and bidentate complex
types due to the latter decreased photosensing ability, which often originates from ligand dissociation
during photoexcitation processes. However, with respect to dinuclear iridium(III) cyclometalating
complexes, unlike those of mono-nuclear complexes, research efforts are expected to further probe
these new emerging coordination compounds for their optoelectronic potentials, especially in the area
of organometallic chemistry. In addition, efforts are expected to find a better way to overcome the
symmetries associated with increased chiral complex formation. To improve property characteristics
of Ir(III) cyclometalated complexes in general for any particular application, great attention should be
given to new ligand design and method of synthesis.

Funding: This work received no external funding.

Acknowledgments: The author would like to thank the Umaru Musa Yar’adua University, Katsina, Katsina
State, Nigeria, for the financial support. The author would also like to thank Abdullahi A. Mati (The Director,
ISSCeRER) for his constant support and encouragement; Umaru Muhammad Badeggi (Chemistry Department,
Cape Peninsula University of Technology, Cape Town), and Ninon GER Etsassala (Chemistry Department,



Materials 2019, 12, 2734 21 of 26

University of Western Cape, Cape Town), South Africa for their unflinching support in the search of some articles
used for references during the writing of this review.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Carella, A.; Borbone, F.; Centore, R. Research progress on photosensitizers for DSSC. Front. Chem. 2018, 6,
481. [CrossRef] [PubMed]

2. Sun, S.-S.; Dalton, L.R. Introduction to Organic Electronic and Optoelectronic Materials and Devices, 1st ed.;
CRS Press, Taylor & Francis Group: Boca Raton, FL, USA, 1970; p. 936.

3. Pimputkar, S.; Speck, J.S.; DenBaars, S.P. Prospects for LED lighting. Nat. Photon. 2009, 3, 180–182. [CrossRef]
4. Nazeeruddin, M.K.; Humphry-Baker, R.; Liska, P.; Grätzel, M. Investigation of sensitizer adsorption and

the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. J. Phys.
Chem. B 2003, 107, 8981–8987. [CrossRef]

5. O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.
Nature 1991, 353, 737–740. [CrossRef]

6. Ghann, W.; Kang, H.; Sheikh, T.; Yadav, S.; Chavez-Gil, T.; Nesbitt, F.; Uddin, J. Fabrication, optimization and
characterization of natural dye sensitized solar cell. Sci. Rep. 2017, 7, 41470. [CrossRef] [PubMed]

7. Adeloye, A.O.; Ajibade, P.A. Towards the development of functionalized polypyridine ligands for Ru(II)
complexes as photosensitizers in dye-sensitized solar cells (DSSCs). Molecules 2014, 19, 12421–12460.
[CrossRef] [PubMed]

8. Baranoff, E.; Yum, J.-H.; Jung, I.; Vulcano, R.; Gratzel, M.; Nazeeruddin, Md.K. Cyclometalated iridium
complexes as sensitizers for dye-sensitized solar cells. Chem. Asian J. 2010, 5, 496–499. [CrossRef] [PubMed]

9. Legalite, F.; Escudero, D.; Pellegrin, Y.; Blart, E.; Jacquemin, D.; Fabrice, O. Iriium complexes for p-type dye
sensitized solar cells. Dyes Pigments 2019, 171, 107693–107703. [CrossRef]

10. Shinpuku, Y.; Inui, F.; Nakai, M.; Nakabayashi, Y. Synthesis and characterization of novel cyclometalated
iridium(III) complexes for nanocrystalline TiO2-based dye-sensitized solar cells. J. Photochem. Photobiol.
A Chem. 2011, 222, 203–209. [CrossRef]

11. Telleria, A.; Emerson, B.S.; Kohlrausch, C.; Duarte, R.C.; Rodembusch, F.S.; Dupont, J.; Freixa, Z.; Santos, M.J.L.
Synthesis and characterization of diethylphosphonate and carboxylate-appended iridium complexes for the
application on dye-sensitized solar cells. Chem. Select 2016, 1, 2842–2848. [CrossRef]

12. Dragonetti, C.; Valore, A.; Colombo, A.; Righetto, S.; Trafiletti, V. Simple novel cyclometallated iridium
complexes for potential application in dye-sensitized solar cells. Inorg. Chim. Acta 2012, 388, 163–167.
[CrossRef]

13. Navaneetha, C.M.; Rishabh, C.; Batyr, B.; Onur, C. Organic light emitting diodes (OLED). Technical report.
Hochsch. Brem. City Univ. Appl. Sci. 2016, 25. [CrossRef]

14. Krames, M.R.; Shchekin, O.B.; Mueller-Mach, R.; Mueller, G.O.; Zhou, L.; Harbers, G.; Craford, M.G. Status
and future of high-power light-emitting diodes for solid-state lighting. IEEE/OSA J. Disp. Technol. 2007, 3,
160–175. [CrossRef]

15. Tsai, C.-C. Color rendering index thermal stability improvement of glass-based phosphor converted white
light-emitting diodes for solid-state lighting. Intl. J. Photoenergy 2014, 2014, 407239. [CrossRef]

16. Kuo, H.-C.; Hung, C.-W.; Chen, H.-C.; Chen, K.-J.; Wang, C.-H.; Sher, C.-W.; Yeh, C.-C.; Lin, C.-C.; Chen, C.-H.;
Cheng, Y.-J. Patterned structure of remote phosphor for phosphor converted white LEDs. Opt. Express 2011,
19, A930–A936. [CrossRef] [PubMed]

17. Broeckx, L.E.E. Cyclometalation of Phosphinines via C-H Activation: Towards Functional Coordination Compounds;
Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2013.

18. Cámpora, J.; Palma, P.; Carmona, E. The Chemistry of group 10 metalacycles. Coord. Chem. Rev. 1999,
193–195, 207–281. [CrossRef]

19. Darling, A.S. Some properties and applications of the platinum group metals. Intl. Met. Rev. 2013, 18, 91–122.
[CrossRef]

20. Ng, W.Y.; Gong, X.; Chan, W.K. Electronic and light-emitting properties of some polyimides based on bis
(2,2′:6′,2”-terpyridine) ruthenium(II) complex. Chem. Mater. 1999, 11, 1165–1170. [CrossRef]

http://dx.doi.org/10.3389/fchem.2018.00481
http://www.ncbi.nlm.nih.gov/pubmed/30364239
http://dx.doi.org/10.1038/nphoton.2009.32
http://dx.doi.org/10.1021/jp022656f
http://dx.doi.org/10.1038/353737a0
http://dx.doi.org/10.1038/srep41470
http://www.ncbi.nlm.nih.gov/pubmed/28128369
http://dx.doi.org/10.3390/molecules190812421
http://www.ncbi.nlm.nih.gov/pubmed/25153864
http://dx.doi.org/10.1002/asia.200900429
http://www.ncbi.nlm.nih.gov/pubmed/20014001
http://dx.doi.org/10.1016/j.dyepig.2019.107693
http://dx.doi.org/10.1016/j.jphotochem.2011.05.023
http://dx.doi.org/10.1002/slct.201600700
http://dx.doi.org/10.1016/j.ica.2012.03.028
http://dx.doi.org/10.13140/RG.2.2.17010.71360
http://dx.doi.org/10.1109/JDT.2007.895339
http://dx.doi.org/10.1155/2014/407239
http://dx.doi.org/10.1364/OE.19.00A930
http://www.ncbi.nlm.nih.gov/pubmed/21747563
http://dx.doi.org/10.1016/S0010-8545(99)00047-8
http://dx.doi.org/10.1179/095066073790137223
http://dx.doi.org/10.1021/cm981142j


Materials 2019, 12, 2734 22 of 26

21. Lu, C.W.; Wang, Y.; Chi, Y. Metal complexes with azolate-functionalized multidentate ligands: Tactical
designs and optoelectronic applications. Chemistry 2016, 22, 17892–17908. [CrossRef]

22. Choy, W.C.H.; Chan, W.K.; Yuan, Y. Recent advances in transition metal complexes and light-management
engineering in organic optoelectronic devices. Adv. Mater. 2014, 26, 5368–5399. [CrossRef]

23. Henwood, A.F.; Zysman-Colman, E. Lessons learned in tuning the optoelectronic properties of phosphorescent
iridium(III) complexes. Chem. Commun. 2017, 53, 807–826. [CrossRef]

24. Beeby, A.; Bettington, S.; Samuel, I.D.W.; Wang, Z. Tuning the emission of cyclometalated iridium complexes
by simple ligand modification. J. Mater. Chem. 2003, 13, 80–83. [CrossRef]

25. Baldo, M.A.; O’Brien, D.F.; Thompson, M.E.; Forrest, S.R. Excitonic singlet-triplet ratio in a semiconducting
organic thin film. Phys. Rev. B 1999, 60, 14422–14428. [CrossRef]

26. Brown, A.R.; Pichler, K.; Greenham, N.C.; Bradley, D.D.C.; Friend, R.H.; Holmes, A.B. Optical spectroscopy
of triplet excitons and charged excitations in poly (p-phenylenevinylene) light-emitting diodes. Chem. Phys.
Lett. 1993, 210, 61–66. [CrossRef]

27. Gitlina, A.Y.; Ivonina, M.V.; Sizov, V.V.; Starova, G.L.; Pushkarev, A.P.; Volyniuk, D.; Tunik, S.P.; Koshevoy, I.O.;
Grachova, E. A rare example of a compact heteroleptic cyclometalated iridium(III) complex demonstrating
well-separated dual emission. Dalton Trans. 2018, 47, 7578–7586. [CrossRef]

28. Tamura, Y.; Hisamatsu, Y.; Kazama, A.; Yoza, K.; Sato, K.; Kuroda, R.; Aoki, S. Stereo-specific synthesis
of tris-heteroleptic tris-cyclometalated iridium(III) complexes via different heteroleptic halogen-bridged
iridium(III) dimers and their photophysical properties. Inorg. Chem. 2018, 57, 4571–4589. [CrossRef]

29. You, Y.; Cho, S.; Nam, W. Cyclometalated iridium(III) complexes for phosphorescence sensing of biological
metal ions. Inorg. Chem. 2014, 53, 1804–1815. [CrossRef]
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