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Sexually transmitted infections (STIs) are predicted to play an important role in the evolution of host mating strategies, and vice

versa, yet our understanding of host-STI coevolution is limited. Previous theoretical work has shown mate choice can evolve to

prevent runaway STI virulence evolution in chronic, sterilizing infections. Here, I generalize this theory to examine how a broader

range of life-history traits influence coevolution; specifically, how host preferences for healthy mates and STI virulence coevolve

when infections are acute and can cause mortality or sterility, and hosts do not form long-term sexual partnerships. I show

that mate choice reduces both mortality and sterility virulence, with qualitatively different outcomes depending on the mode of

virulence, costs associated with mate choice, recovery rates, and host lifespan. For example, fluctuating selection—a key finding

in previous work—is most likely when hosts have moderate lifespans, STIs cause sterility and long infections, and costs of mate

choice are low. The results reveal new insights into the coevolution of mate choice and STI virulence as different life-history traits

vary, providing increased support for parasite-mediated sexual selection as a potential driver of host mate choice, and mate choice

as a constraint on the evolution of virulence.
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Parasite-mediated sexual selection (PMSS) is predicted to lead

to the evolution of reproductive strategies that limit the risk of

infection from mating (Hamilton and Zuk 1982; Sheldon 1993;

Loehle 1997). By avoiding mates with signs of disease, organ-

isms should be able to increase their reproductive success, either

because they might choose partners possessing genes that con-

fer resistance to disease (the “good genes” hypothesis; Hamilton

and Zuk 1982) or simply because they choose mates that are cur-

rently uninfected and hence are a low-risk option (the “transmis-

sion avoidance hypothesis”; Loehle 1997). Both hypotheses have

been the subject of intense empirical research with varying evi-

dence in support of and against PMSS (Borgia 1986; Borgia and

Collis 1989; Clayton 1990, 1991; Hamilton and Poulin 1997; Ab-

bot and Dill 2001; Webberley et al. 2002; Balenger and Zuk 2014;

Jones et al. 2015; Ashby et al. 2019). Empirical studies have ex-

plored both sexually and nonsexually transmitted infections, but

although one may intuitively expect sexual transmission to be

the main driver of PMSS, this is not necessarily the case, and in

theory both sexual and nonsexual transmissions may contribute

to PMSS. In some cases, females have been found to prefer un-

infected males—for example, Clayton (1990) found that female

Rock Doves (Columba livia) prefer males without lice (which

can be transmitted by physical contact during mating or other-

wise, or by a vector), suggesting support for PMSS—whereas in

other cases females appear unable to distinguish between infected

males—for instance, female milkweed leaf beetles (Labidomera

clivicollis; Abbot and Dill 2001) and two-spot ladybirds (Adalia

bipunctata; Webberley et al. 2002) do not avoid males with sex-

ually transmitted mites.

In parallel, there has been much theoretical interest in un-

derstanding the role of parasites, especially sexually transmitted

infections (STIs), in the evolution of host mating strategies, and

the role of host mating behavior in the evolution of STIs (Thrall

et al. 1997, 2000; Knell 1999; Boots and Knell 2002; Kokko et al.

2002; Ashby and Gupta 2013; McLeod and Day 2014; Ashby and

Boots 2015). STIs are of particular interest as they are inherently

tightly linked to host reproduction, unlike non-STIs, and are more

likely to have negative effects on host fecundity (Lockhart et al.
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1996). This body of theoretical work has generally predicted that

STIs may indeed act as a strong force of selection on host mating

strategies.

Although changes in host mating behavior arising from

PMSS will in turn affect STI evolution, forming a coevolutionary

feedback, almost all theoretical studies only consider one-sided

adaptation of either the host or the STI. To date, it appears that

only two theoretical studies have considered host-STI coevolu-

tion. First, Ashby and Boots (2015) showed that the evolution of

mate choice can prevent runaway selection for sterility virulence

in STIs, leading to either stable levels of choosiness and virulence

or coevolutionary cycling in these traits. Second, Wardlaw and

Agrawal (2019) showed how mortality virulence escalates sexual

conflict, whereas sterility virulence de-escalates sexual conflict,

thus showing how the mode of virulence can qualitatively change

host-STI coevolution. Together, these results represent important

first steps in understanding host and STI coevolution, but we

have only begun to scratch the surface. For example, Ashby and

Boots (2015) focused on chronic, fertility-reducing STIs in se-

rially monogamous hosts, which are reasonable assumptions for

many host species and STIs: for example, approximately 90%

of bird species are thought to be monogamous (Kleiman 1977),

and STIs often cause chronic infections, are more likely to cause

reductions in fecundity, and typically have less of an impact on

mortality than non-STIs (Lockhart et al. 1996; Knell and Webber-

ley 2004). Although serial monogamy is a useful place to start,

many species do not form exclusive monogamous partnerships

and instead carry out extra-pair copulations or form no lasting

sexual partnerships at all (Kleiman 1977; Forstmeier et al. 2014).

Because many species are not serially monogamous, it is of par-

ticular interest how mate choice coevolves with STIs in other

mating systems. For instance, if hosts form ephemeral rather than

long-term sexual partnerships, how and when will mate choice

evolve? Although the importance of any given ephemeral sexual

partnership is lower than under serial monogamy, the accumula-

tion of many sexual partners over the lifetime of the host may

still select for mate choice. In addition, many STIs are known

to increase mortality—for example, HIV and syphilis in humans,

and dourine in equines (Gizaw et al. 2017)—and to cause acute

rather than chronic infections (e.g., Chlamydia trachomatis can be

cleared by a number of mammalian species; Miyairi et al. 2010).

Broadening our understanding of host-STI coevolution therefore

requires the development of theory that captures alternative host

mating systems and disease outcomes.

Here, I examine a simple model of host-STI coevolution

when sexual partnerships are short term (ephemeral) and disease

causes variable mortality or sterility virulence, and for different

recovery rates. Using evolutionary invasion analysis, I first show

how mate choice leads to lower optimal levels of mortality and

sterility virulence. I then show how and when mate choice is

likely to evolve under different disease characteristics. Finally, I

consider host-STI coevolution, showing that coevolutionary cy-

cling is typically more common under sterility virulence, whereas

mortality virulence tends to lead to more stable outcomes. I also

identify conditions when polymorphism in host mate choice can

evolve through evolutionary branching, but this outcome only oc-

curs under a narrow set of conditions. Finally, I examine how

costs associated with mate choice, the rate of recovery from in-

fection, and the lifespan of the host impact host-STI coevolution.

Combined with previous studies, these results show that PMSS

can occur for a broad range of host and STI life-history traits.

Methods
I model the dynamics of an STI in a well-mixed host popula-

tion, which for simplicity I treat as a single hermaphroditic sex

as there is assumed to be no sex-specific variation in disease

characteristics. The epidemiological and mating dynamics of a

one-host-one-STI system are described by

dS

dt
= b( f, g, v)︸ ︷︷ ︸

births

− β[SI]︸︷︷︸
infection

− dS︸︷︷︸
natural mortality

+ γI︸︷︷︸
recovery

, (1)

dI

dt
= β[SI]︸︷︷︸

infection

− dI︸︷︷︸
natural mortality

− αI︸︷︷︸
mortality virulence

− γI︸︷︷︸
recovery

, (2)

where S and I are the densities of susceptible and infected individ-

uals, respectively; b( f, g, v) is the host birth rate, which depends

on the fecundity of infected hosts relative to uninfected hosts, f ,

with 0 ≤ f ≤ 1, the strength of mate choice (i.e., how strongly

individuals prefer uninfected mates), g ≥ 0, and v, which is used

to relate the mode of virulence to mate choice (defined below);

d is the natural mortality rate; α is the disease-associated mor-

tality rate; β is the transmission probability per sexual contact;

γ is the recovery rate; and [XY ] is the mating rate between in-

dividuals in classes X ∈ {S, I } and Y ∈ {S, I } (see Table 1 for

full list of parameters and variables). Hereafter, I assume that

mortality virulence and sterility virulence may be functions of

transmissibility (i.e., α = α(β), f = f (β)) as parasites may need

to damage their hosts or use host resources to produce trans-

mission stages, and the more transmission stages produced the

greater the damage is likely to be to the host (see Alizon et al.

2009 and Acevedo et al. 2019 for discussions of the transmission-

virulence trade-off hypothesis). For simplicity, I assume linear

functions to control the relationships between transmission and

virulence such that f (β) = 1 − ηβ for ηβ < 1 and 0 otherwise for

sterility virulence, and α(β) = κβ for mortality virulence, with η

and κ parameters that define the strength of these relationships.

Such functions correspond to a situation where the damage caused

to the host is proportional to the number of transmission stages
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Table 1. Description of parameters and variables. The variables for the polymorphic model (equations 12–13) are identical except for

the addition of subscripts.

Parameter/variable Description

b( f (β), g, v(β)) Host birth rate
d Natural mortality rate
f (β) Fecundity of infected hosts relative to uninfected hosts, which may be a function of transmission
g Strength of mate choice
h Strength of density-dependent competition
mS(g) Probability of accepting an uninfected mate
mI (g, v(β)) Probability of accepting an infected mate
p Baseline per-capita mating rate
r Maximum reproduction rate per mating
v(β) The impact of STI virulence on mate choice
R0(g, β) Basic reproductive ratio
S, I Density of susceptible and infected hosts, respectively
N Total density of hosts
[XY ] Sexual contact rate between hosts in the X and Y classes
[XY ]b Contribution to births from hosts in the X and Y classes in the polymorphic model
S◦ Sum over all susceptible hosts in the polymorphic model
I i◦ Sum over all parasite types in hosts of type i in the polymorphic model
I◦ j Sum over all host types infected with parasites of type j in the polymorphic model
I◦◦ Sum over all infected hosts in the polymorphic model
α(β) Mortality virulence, which may be a function of transmission
β Transmission probability per sexual contact
γ Recovery rate
ζ Strength of host costs
η Strength of transmission-sterility virulence relationship
κ Strength of transmission-mortality virulence relationship
nh, n p Number of host and parasite types, respectively, in the polymorphic model

produced by the STI. I restrict my analysis to how one mode of

virulence at most varies and affects mate choice by setting η = 0

and/or κ = 0 and by using v = v(β) to relate the current mode

of virulence to mate choice, with v(β) = 1 − f (β) in the case

of sterility virulence and v(β) = α(β)/κ in the case of mortality

virulence.

Sexual partnerships are assumed to be ephemeral, and the

mating dynamics occur as follows. The baseline per-capita mating

rate is p, which is independent of the population size, N = S + I .

This means that larger populations do not have a higher per-capita

mating rate than smaller populations. Before deciding whether to

mate, each host inspects its prospective partner for signs of in-

fection (e.g., through visual or olfactory clues). If the prospective

partner is currently uninfected, the probability that the focal host

accepts the mate is mS(g), with dmS
dg ≤ 0. The function mS(g)

allows for the fact that hosts may imperfectly assess the condi-

tion of other individuals and those who are choosier (higher g,

lower mS(g)) may be generally more cautious in their approach to

mating, potentially declining healthy prospective partners. If the

prospective partner is currently infected, the probability of accept-

ing them as a mate is m I (g, v(β)) with ∂m I
∂g , ∂m I

∂v
≤ 0. By causing

more damage to their hosts, more virulent STIs may be easier to

detect by prospective mates (e.g., due to a general deterioration

in health or more visible signs of infection). Preferential mating

with uninfected hosts is somewhat comparable to the notion of

disease causing lower contact rates (e.g., due to decreased move-

ment) in classical evolution of virulence theory (Ewald 1983),

although there are also a number of other notable differences in

the present framework (sexual rather than direct transmission, and

a reduction in contact rates affects reproduction).

Note that g is a dummy variable, which indicates the

“strength of mate choice”, whereas mS(g) and m I (g, v(β)) are

the actual probabilities of accepting an uninfected or infected

prospective partner as a mate, respectively. I use a dummy vari-

able for the strength of mate choice so that the host responses

to susceptible and infected individuals are correlated. Through-

out, it is assumed that the probability of accepting an uninfected

individual as a mating partner is at least as large as the proba-

bility of accepting an infected individual: mS(g) ≥ m I (g, v(β)).

Without this assumption, there would never be any advantages to

mate choice, as choosier individuals would mate with infected

members of the population at a higher rate than less choosy
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individuals. I therefore set m I (g, v(β)) = mS(g)m̃ I (g, v(β)) with

m̃ I (g, v(β)) ≤ 1 the mate choice response specific to prospec-

tive partners who are infected. In the analysis that follows, I set

mS(g) = 1 − ζg for ζg < 1 and 0 otherwise, where ζ is the cost

of mate choice, and either m̃ I (g, v(β)) = 1 − gv(β) (linear re-

sponse) or m̃ I (g, v(β)) = 1 − gv(β)2 (nonlinear response) with

both functions restricted to m̃ I (g, v(β)) ≥ 0. I only examine a

linear function for mS(g) because g is a dummy variable and

therefore one only needs to consider linear and nonlinear forms

of one of the two correlated mate choice functions. Biologically,

the linear and nonlinear functions for m̃ I (g, v(β)) mean that the

effects of mate choice either increase proportionately or acceler-

ate with virulence. In other words, the linear function implies that

the probability of accepting an infected mate is proportional to

the damage caused by the STI, and the nonlinear function implies

that hosts are disproportionately choosier when STIs are more

virulent or that the STI is increasingly easier to detect. Although

empirical evidence for how mate choice varies with virulence

is currently lacking, it is plausible that either linear or nonlin-

ear relationships could exist and therefore varying the shape of

these functions is important for a better understanding of potential

host-STI coevolutionary dynamics.

The mating rates for each combination of the S and I classes

are given by

[SS] = pmS(g)2S2

N
, (3)

[SI ] = 2pmS (g) m I (g, v (β)) SI

N
, (4)

[I I ] = pm I (g, v (β))2 I 2

N
. (5)

The factor of 2 in the equation for [SI ] appears when there

is mating between individuals in different classes and is required

to balance the total mating rate, M :

M = [SS] + [SI ] + [I I ] , (6)

= p(mS (g) S + m I (g, v (β)) I )2

N
. (7)

Note that for the specific case when mS(g) = m I (g, v(β)) =
1 (i.e., there is no mate choice), the total mating rate reduces to

M = pN . For the general case, hosts that have mated produce

offspring at a total rate of

b ( f (β) , g, v (β)) = pr (1 − hN ) ([SS] + f (β) [SI ]

+ f (β)2 [I I ]), (8)

= pr (1 − hN ) (mS (g) S + f (β) m I (g, v (β)) I )2

N
, (9)

where r is the maximum reproduction rate per pair and the birth

rate is subject to density-dependent competition given by the

parameter h.

The disease-free equilibrium (S, I ) = (S∗, 0) of this system

occurs at

S∗ = 1

h

(
1 − d

(mS (g))2 pr

)
(10)

and is viable provided (mS(g))2 pr > d (i.e., the birth rate is higher

than the death rate). A newly introduced STI will spread in a

susceptible population when the basic reproductive ratio,

R0(g, β), is greater than 1, where

R0 (g, β) = 2pmS (g) m I (g, v (β)) β

d + α (β) + γ
. (11)

The above model describes the dynamics when there is only

one host type and one STI type in the population. To account for

situations where hosts vary in their strength of mate choice and

STIs in the transmissibility/virulence, I adapt the above monomor-

phic model for populations that are polymorphic in these traits.

The dynamics for nh hosts each with strength of mate choice gi ,

where i ∈ {1, . . . , nh} and n p STIs each with transmissibility β j

and virulence v j where j ∈ {1, . . . , n p}, are fully described by

the following system of ordinary differential equations:

d Si

dt
= bi −

∑
j

β j
[
Si I◦ j

]− d Si +
∑

j

γIij, (12)

d Iij

dt
= β j

[
Si I◦ j

]− (
d + α

(
β j
)+ γ

)
Iij, (13)

where [Si I◦ j ] = 2pm I (gi ,v j )Si

N

∑
k mS(gk)Ik j , which is the total mat-

ing rate between susceptible hosts with trait gi and all hosts in-

fected by STIs with traits β j and v j , and the birth rate for each

host type is

bi = pr (1 − hN )

N
([Si S◦]b + [Si I◦◦]b + [S◦ Ii◦]b + [Ii◦ I◦◦]b),

(14)

where for notational convenience circles in subscripts correspond

to sums over all host or parasite types (i.e., S◦ is the sum over

all uninfected hosts, Ii◦ is the sum over all hosts of type i that

are infected, I◦ j is the sum over all hosts that are infected with

parasite type j , and I◦◦ is the sum over all infected hosts), so that

[Si S◦]b = mS (gi ) Si

∑
k

mS (gk) Sk, (15)
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[Si I◦◦]b = Si

∑
j

(
f
(
β j
)

m I
(
gi , v j

)∑
k

mS (gk) Ik j

)
,

(16)

[S◦ Ii◦]b = mS (gi )
∑

j

(
f
(
β j
)

Iij

∑
k

m I
(
gk, v j

)
Sk

)
,

(17)

[Ii◦ I◦◦]b =
∑

j

(
f
(
β j
)

Iij

∑
l

(
f (βl ) m I (gi , vl )

∑
k

m I
(
gk , v j

)
Ikl

))
.

(18)

This model is related to the pair formation framework pro-

posed in Ashby and Boots (2015), but there are two key dif-

ferences. First, the model in Ashby and Boots (2015) assumes

there is serial monogamy with separate pools of paired and un-

paired individuals. Here, I focus on a single pool of individuals

with ephemeral sexual partnerships, which is analogous to hav-

ing infinite pair dissolution rates and instantaneous reproduction.

However, it is not possible to move directly between the models

by letting the pair dissolution rates tend to infinity, as this would

mean individuals are never in the paired state and reproduction

only occurs while individuals are paired. The second major differ-

ence is in the nature of the infection: the model in Ashby and Boots

(2015) assumes STIs cause sterility rather than increase mortality,

and that individuals are unable to recover once infected. Relaxing

these assumptions, by allowing STIs to cause mortality and hosts

to clear infection (as is the case for many STIs; e.g., Miyairi et al.

2010; Gizaw et al. 2017), will reveal how a broader range of STI

life-history traits affect coevolution with host mate choice. An

additional difference in the current model is that the mate choice

functions have been generalized to mS(g) and m I (g, v(β)) for eas-

ier interpretation and so that different functions governing mate

choice can be readily explored.

I use evolutionary invasion analysis to determine the long-

term trait dynamics of the host and STI (Geritz et al. 1998). This

assumes that mutations have small phenotypic effects, and for an-

alytic rather than simulated solutions, mutations are sufficiently

rare so that the system has reached a stable state before a new mu-

tant emerges. For one-sided adaptation (either host or STI evolu-

tion), I numerically solve the one-dimensional fitness gradients to

find the singular strategies, as the system is intractable to nonnu-

merical methods of stability analysis. For host-STI coevolution, I

solve the dynamics using simulations to capture nonequilibrium

dynamics (i.e., fluctuating selection). In the coevolutionary sim-

ulations, host and STI traits are discretized into a finite number

of different types and mutations between adjacent types occur at

regular intervals (source code in the Supporting Information).

Results
PARASITE EVOLUTION

The invasion fitness of a rare mutant strain of the STI (subscript

m) in a population at equilibrium N ∗ = S∗ + I ∗ is

wP (g, βm) = 1

Im

d Im

dt
= 2pmS (g) m I (g, v (βm)) βm S∗

N ∗

− (d + α (βm) + γ). (19)

The mutant STI can only invade when wP (g, βm) > 0, which

requires

REFF (g, βm) = R0 (g, βm)

(
S∗

N ∗

)
> 1, (20)

where REFF(g, βm) is the effective reproductive ratio of the STI.

Because STI fitness can be written in this form, we know that

parasite evolution maximizes its basic reproductive ratio R0 (Lion

and Metz 2018). The STI will evolve in the direction of ∂ R0
∂β

until

β is maximized at 1, one or both populations are driven extinct, or

a singular strategy β∗ is reached at ∂ R0
∂β

|β=β∗ = 0, which requires

∂m I

∂β

∣∣∣∣
β=β∗

= m I
(
g, v

(
β∗)) ( 1

d + α (β∗) + γ

dα

dβ

∣∣∣∣
β=β∗

− 1

β∗

)
.

(21)

Because mS(g) does not feature in this equation, we do

not need to consider the effects of costs of mate choice on

STI evolution. In general, m I (g, v(β)) and f (β) will be de-

creasing (or constant) functions of β, and α(β) will be an

increasing (or constant) function. In the absence of mate

choice (mS(g) = m I (g, v(β)) = 1), a continuously stable strategy

(CSS)—analogous to an evolutionary stable strategy or ESS—can

only exist when α(β) is concave up (i.e., mortality virulence ac-

celerates with the transmission probability). In the presence of

mate choice, however, a CSS can exist under a broader set of

conditions, such as concave down mortality-transmission trade-

offs and with sterility-transmission trade-offs. This is clear from

the equation for R0(g, β) (eq. 11), which features the product of

m I (g, v(β)) and β (i.e., the product of decreasing and increasing

functions of β; Fig. 1A).

To illustrate the above, suppose first that sterility virulence

is constant ( d f
dβ

= 0). When there is no mate choice and mortality

virulence is a linear function of β with α(β) = κβ, we have ∂ R0
∂β

>

0, so the STI will evolve to maximize transmission at β = 1 and

virulence at α(1) = κ. If, however, mate choosiness is a linear

function of mortality virulence (i.e., increasing damage has a

linear effect on the probability of being accepted as a mate) such

EVOLUTION JANUARY 2020 4 7
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Figure 1. STI evolution in response to host mate choice for sterility (solid) and mortality (dashed) virulence. (A) The STI basic reproductive

ratio, R0, for weaker (g = 1; green curves, circular markers) and stronger (g = 2.3; purple curves, diamond markers) mate choice. The

horizontal line indicates the extinction threshold for the STI and the markers indicate the maximum value of R0. (B) Curves show the

continuously stable strategies (CSSs, i.e., β∗) for a given strength of mate choice, g. The regions to the right and below the corresponding

grey curves show where the STI is unviable. Mate choice and virulence functions as described in the text. Parameters: mS(g) = 1,γ = 0.5,

η = 1, κ = 1, d = 1, h = 10−6, p = 7.5, and r = 20.

that v(β) = α(β)/κ and m̃ I (g, v(β)) = 1 − gα(β)
κ

for gα(β) < κ and

0 otherwise, then a singular strategy exists at

β∗ =
√

g (d + γ) (g (d + γ) + 1) − g (d + γ)

gκ
, (22)

(Fig. 1B), which is always evolutionarily stable since

∂2 R0

∂β2

∣∣∣∣
β=β∗

= − 4gpκmS (g)√
g (d + γ) (g (d + γ) + 1)

< 0. (23)

Now suppose instead that mortality virulence is constant

( dα
dβ

= 0) and sterility virulence is a function of the transmission

probability such that f (β) = 1 − ηβ, with v(β) = 1 − f (β). If

host mate choosiness is a linear function of sterility virulence such

that m̃ I (g, v(β)) = 1 − g(1 − f (β)), then the singular strategy oc-

curs at β∗ = 1
2gη

(Fig. 1B), which again is always evolutionarily

stable since

∂2 R0

∂β2

∣∣∣∣
β=β∗

= −4ηpmS (g)
√

3g

d + γ
< 0. (24)

All else being equal, the effects of mate choice on the ecology

and evolution of the STI under sterility and mortality virulence

are qualitatively similar (Fig. 1). However, because mortality vir-

ulence causes an additional reduction in R0 compared to sterility

virulence due to the presence of α(β) in the denominator (eq.

11), a given level of mate choice will have a greater impact

on an STI that causes mortality virulence. This can be seen in

Figure 1, where both R0 and the evolved probability of transmis-

sion, β∗, of the STI are always lower under mortality virulence

and the region of viability is smaller compared to STIs that cause

sterility virulence.

In summary, host mate choice prevents the evolution of

greater mortality or sterility virulence in an acute STI even in

the absence of long-term partnerships, but the effects on STIs that

cause mortality virulence will tend to be greater, leading to lower

disease prevalence and selection for slightly lower transmissibility

for a given level of mate choice.

HOST EVOLUTION

The initial dynamics of a rare mutant host (subscript m) in a

resident population at equilibrium are given by

d Sm

dt
= bm − β

[
Sm I ∗]− d Sm + γIm (25)

d Im

dt
= β

[
Sm I ∗]− (d + α (β) + γ) Im (26)

with

bm = p

N ∗
(
r
(
1 − hN ∗) (mS (gm) S∗ + f (β) m I (gm, v (β)) I ∗)

(mS (g) Sm + f (β) m I (g, v (β)) Im)) . (27)

Using the next-generation method (see Supporting Informa-

tion; Hurford et al. 2010), it can be shown that host fitness is

sign-equivalent to

wH (gm )

=
prmg

S (1 − hN ∗)
(

2p fβmg,β

I m
gm ,vβ

I βI ∗ + �β N ∗
) (

mgm

S S∗ + fβm
gm ,vβ

I I ∗)
N ∗ (2pβmg

Sm
gm ,vβ

I I ∗ (�β − γ
)+ d�β N ∗) − 1,

(28)
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Figure 2. Evolution of the strength of host mate choice, g, in the presence of a nonevolving STI. Solid lines correspond to continuously

stable strategies (CSSs), dashed lines to unstable strategies which act as evolutionary repellers, and circles to branching points, in the

presence (black; ζ = 0.1) and absence (gray; ζ = 0) of host costs, with mS(g) = 1 − ζg. The component of mate choice specific to infected

individuals is as described in the text. Only one type of virulence (mortality or sterility) is assumed to occur in each panel with mate

choice of infected individuals based on: (A) fixed sterility virulence, v(β) = 0.9; (B) fixed mortality virulence, v(β)
κ

= 0.5; (C) variable sterility

virulence, v(β) = 1 − f (β) = βη; and (D) variable mortality virulence, v(β) = α(β) = βκ. Remaining parameters as described in Figure 1,

except κ = 8.

where �β = d + α(β) + γ, fβ = f (β), mg
S = mS(g), and m

gm ,vβ

I =
m I (g, v(β)) for the sake of brevity. The host will evolve in the

direction of ∂wH
∂g until g is minimized at 0, one or both popula-

tions are driven extinct, or a singular strategy, g∗, is reached at
∂wH
∂g |g=g∗ = 0.

Suppose initially that there are no costs of mate choice

(mS(g) = 1) and that mate choice is a linear function of viru-

lence such that m̃ I (g, v(β)) = 1 − gv(β). In this scenario, there

may be one or two singular strategies. The singular strategy at

g∗
1 = (2pβ − d − α(β) − γ)/2pβv(β) always exists, and corre-

sponds to the point where the host drives the STI extinct. The

second singular strategy (g∗
2 ), if it exists, is an evolutionary re-

peller (i.e., a fitness minimum, so the direction of selection al-

ways points away from the singular strategy) with 0 < g∗
2 < g∗

1 ,

in which case the outcome depends on the initial conditions, with

g < g∗
2 causing selection against mate choice, and g > g∗

2 leading

to STI extinction due to mate choice (Fig. 2A, B).

If we first suppose that virulence is fixed (i.e., it does not vary

with transmission, η = κ = 0), mate choice is likely to evolve for

intermediate transmission probabilities (Fig. 2A, B). When the

probability of transmission is small, the STI is unable to spread

even in the absence of mate choice (R0 < 1) and if the probability

of transmission is close to 1, there may be selection against weak

mate choice caused by the evolutionary repeller. This is because

disease prevalence is high and so most attempted matings are

with infected individuals, meaning that even weak mate choice

dramatically reduces the mating rate for invading host mutants

compared to the resident population. If, however, there is already

a sufficient level of mate choice in the resident population (i.e.,

the initial conditions are above the repeller), disease prevalence is

sufficiently low to allow runaway selection for mate choice, even-

tually driving the disease extinct. This pattern is similar regard-

less of whether virulence has fixed effects on mortality or steril-

ity (Fig. 2A, B). When sterility or mortality virulence is linked
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Figure 3. Coevolutionary dynamics between the strength of host mate choice, g (blue), and the STI transmission probability, β (red),

under sterility (left column, v(β) = 1 − f (β) = ηβ) and mortality (right column, v(β) = α(β)/κ) virulence. (A–B) The host and STI evolve to

co-continuously stable strategies (co-CSS). (C–D) The host and STI exhibit coevolutionary cycling (fluctuating selection). (E–F) The STI

evolves to a continuously stable strategy (CSS) but the host branches into two strategies, one with high mate choice and the other with

low/no mate choice. Fixed parameters: η = 0.95, κ = 8, d = 1, h = 10−6, p = 7.5, and r = 20. Other parameters: (A) γ = 0.5 and ζ = 0.5. (B)

γ = 0.3 and ζ = 0.03. (C) γ = 0.5 and ζ = 0.1. (D) γ = 0.25 and ζ = 0.15. (E) γ = 3 and ζ = 0.1. (F) γ = 0.3 and ζ = 0.075. Mating functions:

(A) m̃I (g, v(β)) = 1 − gv(β). (B–F) m̃I (g, v(β)) = 1 − g[v(β)]2.

to the transmission probability, the dynamics are more complex

(Fig. 2C, D). Notably, the threshold for driving the STI extinct is

lower at high transmission probabilities because virulence (and

hence the effects of mate choice) are also stronger. An evolution-

ary repeller may exist, but it now occurs for intermediate values

of β.

The system is intractable to classical analysis when mate

choice also affects prospective partners that are susceptible (i.e.,

there is a “cost” of being choosy, with mS(g) < 1 for g > 0), and

so one must find the evolutionary dynamics using numerical anal-

ysis. Although many of the results are qualitatively similar to the

no-cost scenario, there are some notable exceptions. In particular,

if the host evolves mate choice, then it no longer drives the STI ex-

tinct, and is instead likely to reach a CSS with the STI endemic in

the population. When virulence is correlated with transmission,

the host only evolves mate choice de novo at sufficiently high

values of β (Fig. 2C, D). Additionally, there is a very small re-

gion of parameter space at intermediate values of β that can yield

evolutionary branching, with stable coexistence between two host

types: one that exhibits moderate mate choice and the other that

does not discriminate against infected mates.

COEVOLUTION

I now consider coevolution of the host and the STI, focusing on

how the costs associated with mate choice (ζ), the recovery rate

(γ), and the natural mortality rate of the host (d) interact with the

mode of virulence (sterility or mortality) and the shape of the mate

choice response to infected individuals. The model exhibits the

same range of qualitative outcomes under both sterility and mor-

tality virulence: (1) co-CSS where STI virulence and host mate

choice are at a stable equilibrium (Fig. 3A, B); (2) coevolution-

ary cycling, whereby host and STI phenotypes fluctuate through
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Figure 4. Qualitative and quantitative coevolutionary outcomes between the strength of host mate choice, g (blue), and the STI

transmission probability, β (red), under sterility virulence (v(β) = 1 − f (β) = βη). Shading corresponds to the maximum frequency of each

trait value over the final 2,000 evolutionary time steps (cycles are indicated by large solid regions). Panels A–C correspond to a linear

mate choice function for m̃I (g, v(β)) and panels D–F to a nonlinear function of virulence. The outcomes are identified as maximization

(max), minimization (min), co-continuously stable strategies (co-CSS), coevolutionary cycling (cycles), and dimorphism (dimorph.). (A and

D) Effects of variation in the cost of mate choice, ζ. (B and E) Effects of variation in the recovery rate, γ. (C and F) Effects of variation in

the natural mortality rate of the host, d. Fixed parameters as described in Figure 3, with: (A and D) γ = 0.5; (B and C) ζ = 0.1; and (C and

F) γ = 0.5 and ζ = 0.1.

time (Fig. 3C, D); and (3) a stable level of virulence in the STI

coupled with evolutionary branching in the host, where more and

less choosy hosts are able to coexist (Fig. 3E, F). Note that the

STI did not branch under any conditions.

The coevolutionary dynamics under sterility and mortality

virulence are summarized in Figures 4 and 5 and Table 2. Overall,

higher costs associated with mate choice (i.e., greater ζ leading

to mistaken avoidance of uninfected individuals) tend to sup-

press choosiness and allow higher levels of virulence to evolve

(Figs. 4A, D and 5A, D) and faster recovery rates have a stabilizing

effect on the dynamics (Figs. 4B and 5B), as do both short (high d)

and long (low d) host lifespans (Figs. 4C, F and 5C, F). Although

both sterility and mortality virulence produce the same range of

qualitative coevolutionary outcomes, there are some notable dif-

ferences between the two scenarios. First, coevolutionary cycling

is much more common under sterility virulence than mortality

virulence, with the latter more likely to lead to stable equilibria.

Even when mortality virulence does produce coevolutionary cy-

cling, the amplitude of the cycles tends to be smaller compared

to sterility virulence (Fig. 3C, D). Second, mate choice requires

much lower costs (ζ) to evolve when the STI causes mortality

virulence (Figs. 4A, D and 5A, D). Third, higher costs cause

qualitatively different transitions in the coevolutionary dynamics,

from cycling to stable strategies in the case of sterility virulence

and from stable strategies to dimorphism and cycling in the case

of mortality virulence (Figs. 4A and 5D). Fourth, although mate

choice peaks for intermediate host lifespans in the case of steril-

ity virulence (Fig. 4C, F), under mortality virulence mate choice

generally decreases (or for a narrow window becomes dimor-

phic) as host lifespan shortens (as d increases; Fig. 5C, F). These

general differences in outcomes are broadly consistent whether

mate choice is linearly or nonlinearly related to virulence. Still,

there are some notable differences in outcomes between the lin-

ear and nonlinear versions. For example, when greater virulence

is associated with an acceleration in mate choice, there is usu-

ally a greater potential for coevolutionary cycling under sterility

virulence (Fig. 4) and for coevolutionary cycling and evolutionary

branching under mortality virulence (Fig. 5).

Discussion
Understanding the role of STIs in the evolution of host mating

strategies, and in turn, the effects of mating behavior on disease

evolution are inherently linked (Hamilton and Zuk 1982; Ashby
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Figure 5. Qualitative and quantitative coevolutionary outcomes between the strength of host mate choice, g (blue), and the STI

transmission probability, β (red), under mortality virulence (v(β) = 1 − α(β)/κ). Shading and labels as described in Figure 4. Fixed parameters

as described in Figure 3, with: (A and D) γ = 0.5; (B and E) ζ = 0.15; (C and F) γ = 0.5 and ζ = 0.15.

Table 2. Summary of the conditions that favor the different coevolutionary outcomes.

Sterility virulence Mortality virulence

Stable strategies Most likely for short/long lifespans, higher
recovery rates, and intermediate/high costs.

Most likely for low costs, higher recovery
rates, and short/long lifespans.

Coevolutionary
cycling

Most likely for intermediate lifespans, low
recovery rates, and low costs.

Only occurs for a narrow range of intermediate
costs, with low recovery rates and
intermediate lifespans.

Host branching
(polymorphism)

Only occurs for a narrow range of intermediate
costs, recovery rates, and lifespans.

Most likely for intermediate costs, low
recovery rates, and intermediate lifespans.

and Boots 2015; Wardlaw and Agrawal 2019). Yet despite the

large number of theoretical studies on coevolution between hosts

and non-STIs, to date theoretical models of STIs have almost

exclusively focused on one-sided adaptation rather than coevolu-

tion (Thrall et al. 1997, 2000; Knell 1999; Boots and Knell 2002;

Kokko et al. 2002; Ashby and Gupta 2013; McLeod and Day

2014; Johns et al. 2019), which limits our ability to understand

parasite-mediated sexual selection.

Using a theoretical model of host-STI coevolution, I have

shown that host mate choice can readily evolve under a broad

range of conditions, including when hosts have ephemeral sexual

partnerships, STIs cause sterility or mortality virulence, hosts can

recover from infection, and across large variations in host lifes-

pan. In addition to showing when mate choice is most likely to

evolve, I have also shown when qualitatively different coevolu-

tionary outcomes typically occur (Table 2). Interestingly, coevo-

lutionary cycling (fluctuating selection) in mate choice and STI

virulence is much more common when the STI causes sterility

virulence than mortality virulence, which may be because reduc-

tions in fecundity can cause sudden declines in population size

and are generally known to induce oscillatory dynamics (Ashby

and Gupta 2014). This suggests that STIs associated with higher

mortality, such as dourine in equines (Gizaw et al. 2017), are

more likely to lead to stable coevolutionary outcomes. But be-

cause STIs typically cause reductions in host fecundity (Lockhart

et al. 1996), fluctuating selection may be a more probable out-

come overall. Similarly, STIs often but not always cause chronic

or long-lasting infections, which will promote coevolutionary cy-

cling because lower recovery rates tend to have a destabilizing

effect. Higher clearance rates are associated with more stabi-

lizing outcomes, so, for example, we might expect acute STIs

such as Chlamydia trachomatis in mammalian species (Miyairi
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et al. 2010) to produce more stable coevolutionary dynamics than

STIs with low or zero clearance rates. Furthermore, fluctuating

selection dynamics appear to be limited to hosts with moderate

rather than short or long lifespans. It is not entirely clear why

fluctuating selection does not occur when host lifespans are taken

to extremes, although it is likely to be related to changes in disease

prevalence. Other factors may too vary with lifespan, but all else

being equal, shorter host lifespans reduce the infectious period

and hence disease prevalence and the risk of infection, whereas

the converse is true for hosts with longer lifespans. Precisely what

corresponds to an “intermediate lifespan” will clearly be system

dependent, but overall, such predictions may help guide compar-

ative analyses and other empirical studies toward systems that

are more favorable to generating certain types of coevolutionary

dynamics.

The model also revealed that evolutionary branching in host

mate choice is possible, leading to the stable coexistence of more

and less choosy individuals in the population. Hence if choosy

individuals are above or below their equilibrium frequency, then

they will decrease or increase in frequency, respectively. This

only occurs when there are costs associated with being choosy,

such that choosier individuals are not only less likely to mate

with infected individuals but are also less likely to mate with sus-

ceptible individuals, for example, due to false-positive detection

of infection among healthy prospective partners. Hosts who are

less choosy do not pay this cost but have a higher infection rate,

which also increases disease prevalence in the population. This

is analogous to trade-offs with host life-history traits that are of-

ten associated with resistance or tolerance to infection (Schmid-

Hempel 2003). Polymorphism in risky and prudent mating be-

havior has been identified previously by Boots and Knell (2002),

although their model only allowed for variation in the overall mat-

ing rate rather than for condition-dependent mate choice, and the

mating rate for all infected individuals was the same regardless

of whether hosts initially belonged to the risky or prudent mat-

ing type. Although the model presented herein can also generate

polymorphism, this time in terms of host mate choosiness, it is

only predicted to occur under a fairly narrow set of conditions,

requiring moderate costs, recovery rates, and host lifespans.

A number of studies have looked at the evolution of host

mating preferences in the presence of nonevolving STIs, show-

ing, for example, that STIs can reduce mating skew provided

disease prevalence is not too high (Kokko et al. 2002) and that

STIs which cause mortality rather than sterility are more likely to

drive the evolution of serial monogamy (McLeod and Day 2014).

In general agreement with the present study, this body of theory

predicts that STIs are likely to be a potent force of selection in

host mating system evolution, and that factors such as the mode of

virulence can lead to qualitatively different outcomes. Crucially,

however, these studies do not account for reciprocal coevolution

with the STI. Previous theoretical work on host-STI coevolution

appears to be limited to two models. A recent paper by Wardlaw

and Agrawal (2019) explored the coevolution of hosts and STIs in

the context of sexual conflict, showing that the mode of virulence

(sterility or mortality) can lead to contrasting coevolutionary out-

comes, analogous to the present study. Specifically, sterility viru-

lence was shown to de-escalate sexual conflict, whereas mortality

virulence increased conflict, and furthermore led to an increase

in STI virulence. The other study, Ashby and Boots (2015), is

more closely related to the current model, as it too concerns the

evolution of host mate choice for preferential mating with healthy

hosts. The present study differs from this work both in terms of

the mating dynamics (ephemeral sexual partnerships rather than

serial monogamy) and the disease characteristics (acute infections

causing sterility or mortality, rather than chronic sterilizing infec-

tions). Previously, it was unclear whether the qualitative coevolu-

tionary outcomes such as fluctuating selection were restricted to

the particular host and STI characteristics that were explored in

Ashby and Boots (2015), but the current model reveals this not

to be the case, and furthermore, predicts when these and other

coevolutionary outcomes are most likely to occur. To build on

these results, future work should continue to explore the evolu-

tion of mate choice under different mating systems, for example,

for polygynous or polyandrous hosts, as different mating systems

have previously been shown to select for contrasting levels of

virulence (Ashby and Gupta 2013). One especially interesting di-

rection for future research that would bridge the gap between the

ephemeral partnership and serial monogamy scenarios would be

to examine the evolution of mate choice when serially monog-

amous hosts engage in extra-pair copulations (Forstmeier et al.

2014). This would help to elucidate whether mate choice should

be stronger when choosing long- or short-term mating partners.

Examining a broader set of STI characteristics helps to build

up a more general picture of host-STI coevolution, which is im-

portant given that many STIs do not cause chronic infections or

sterility virulence (Lockhart et al. 1996; Miyairi et al. 2010; Gizaw

et al. 2017). As discussed above, the mode of virulence has an im-

portant impact on the nature of the coevolutionary dynamics, with

mortality virulence tending to have a stabilizing effect compared

to sterility virulence. Overall, one might expect the benefits of

mate choice to be greater if STIs cause sterility rather than mor-

tality, as (1) individuals may be unable to reproduce following

infection by a sterilizing STI but may still reproduce if infected

by a nonsterilizing STI that increases mortality; and (2) disease

prevalence is likely to be higher as mortality virulence reduces R0

by lowering the infectious period (eq. 11), which means all else

being equal the risk of infection will be lower under mortality vir-

ulence. Recovery from infection will typically reduce the benefits

of mate choice as both disease prevalence and the costs of con-

tracting an infection are lower (since infection is acute rather than
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chronic). Recovery did not prevent the evolution of mate choice,

but it did tend to have a stabilizing effect. As expected, high

recovery rates reduce selection for mate choice, but surprisingly

the difference in optimal levels of mate choice when infections

are of relatively short or long durations is fairly small (Figs. 4B, E

and 5B, E), which supports the notion that both acute and chronic

STIs can select for mate choice. For simplicity, I assumed that

recovery does not lead to immunity from future infection and that

the condition of recovered individuals does not differ from those

who have yet to experience infection. The former assumption is

reasonable for many STIs, which are less likely than non-STIs

to result in lasting immunity (Lockhart et al. 1996), but the latter

deserves further investigation.

Although it is possible for hosts to fully recover from infec-

tion, it is also reasonable to suspect that host condition may remain

lower for some time following pathogen clearance, in which case

these hosts should have lower mating success than individuals

who have never been infected. In future, a simple extension of the

current model would be to explore the effects of temporary or per-

manent reductions in host condition following infection, as this

will separate the effects of mate choice into components represent-

ing transmission avoidance (i.e., avoiding infectious individuals)

and partner fertility (i.e., choosing more fertile partners). Another

potentially important extension to the current model would be

to split the host population into males and females with differ-

ent disease outcomes and transmission rates between the sexes.

Here, the hosts were treated as a single hermaphroditic sex for

the sake of simplicity, but such an extension would add greater

realism and expand predictions for an even broader set of STIs

with sex-specific characteristics.

To date, many empirical studies have struggled to find evi-

dence that hosts are able to discriminate between individuals with

and without STIs (Abbot and Dill 2001; Webberley et al. 2002;

Nahrung and Allen 2004). At first this seems surprising given

that hosts should, in theory, be under strong selection to avoid

choosing infected mates. There are a number of possible reasons

as to why this may not always be the case. For example, hosts may

simply be unable to detect signs of infection due to physiological

constraints. This is not a particularly satisfying or general expla-

nation, because various species have been found to prefer social

or sexual partnerships based on visual or olfactory cues relating to

infection (Clayton 1990; Willis and Poulin 2000; Moshkin et al.

2012). Instead, it is more likely that hosts may be unable to detect

infection due to strong selection on STIs to be inconspicuous or

asymptomatic, potentially through low virulence. For instance,

sexually transmitted mites in ladybirds and the eucalypt beetle

appear to have no negative impact on fertility or mortality under

nonstress conditions, which may explain why mites do not appear

to impact on mate choice in this system (Webberley and Hurst

2002; Nahrung and Clarke 2007; Ashby et al. 2019). It is also

possible that STIs can evolve to be asymptomatic or difficult to

detect despite being virulent, as is commonly the case with Neis-

seria gonorrhoeae infections (Gonnorrhea) in humans (Walker

and Sweet 2011). More empirical evidence is needed to deter-

mine how STI virulence varies with detectability, whereas future

theory needs to examine coevolution with virulent STIs, which

may be asymptomatic and thus not easily detectable.

Another possibility is that hosts can sometimes discrimi-

nate between infected and uninfected individuals, but the costs

of mate choice are too high relative to infection. In the current

model, mate choice only evolves under certain conditions, and

may not evolve even when the STI is relatively virulent, conspic-

uous, or prevalent, if mate choice is intrinsically costly. Clearly,

any costs associated with mate choice (e.g., fewer mating op-

portunities) must be weighed against the potential benefits of

avoiding infection. Alternatively, hosts may have more effective

forms of defense against STIs, such as post-copulatory grooming

or urination to remove parasites (Hart et al. 1987; Nunn 2003).

This area has received very little theoretical attention. Finally, it

is possible that STIs cause changes in host characteristics such

as attractiveness, mating frequency, or choosiness, which may

potentially counter or increase selection for mate choice. In prin-

ciple, such changes could simply be by-products of infection or

could be host or STI adaptations to increase fitness by achiev-

ing a higher mating rate, potentially leading to sexual conflict

(Knell and Webberley 2004; Apari et al. 2014; Johns et al. 2019;

Wardlaw and Agrawal 2019). The evolutionary consequences for

STIs increasing mating rates have yet to be thoroughly explored

and deserve much greater attention in future theoretical work.

Similarly, the present model does not specify the cue for infection

and whether this is via a sexually selected trait such as bright

plumage that may affect the intrinsic attractiveness between in-

dividuals, but this would be a worthwhile distinction to explore

theoretically. It is also worth noting that although the present study

has focused on STIs, parasites that can be transmitted via other

routes may also impact on mate choice (e.g., Clayton 1990), but

theoretical models of mate choice have yet to consider coevolution

with non-STIs.

Given the general lack of predictions and data on host-STI

coevolution, there are clearly a number of important avenues for

future theoretical and empirical research in this area. Still, the

present study, combined with previous theoretical work (Ashby

and Boots 2015; Wardlaw and Agrawal 2019), predicts that STIs

and host mating systems are readily shaped by coevolutionary

feedbacks. More specifically, this study has shown how mate

choice and STI virulence are likely to coevolve under different

host and STI life-history traits, including variation in the mode

of virulence, recovery rates, and host lifespan. Together, these

results suggest that parasite-mediated sexual selection is likely to

select for mate choice under a broad set of conditions.
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