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In the last decade, cold water immersion (CWI) has emerged as one of the most

popular post-exercise recovery strategies utilized amongst athletes during training

and competition. Following earlier research on the effects of CWI on the recovery

of exercise performance and associated mechanisms, the recent focus has been on

how CWI might influence adaptations to exercise. This line of enquiry stems from

classical work demonstrating improved endurance and mitochondrial development in

rodents exposed to repeated cold exposures. Moreover, there was strong rationale

that CWI might enhance adaptations to exercise, given the discovery, and central

role of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in

both cold- and exercise-induced oxidative adaptations. Research on adaptations to

post-exercise CWI have generally indicated a mode-dependant effect, where resistance

training adaptations were diminished, whilst aerobic exercise performance seems

unaffected but demonstrates premise for enhancement. However, the general suitability

of CWI as a recovery modality has been the focus of considerable debate, primarily

given the dampening effect on hypertrophy gains. In this mini-review, we highlight the

key mechanisms surrounding CWI and endurance exercise adaptations, reiterating the

potential for CWI to enhance endurance performance, with support from classical and

contemporary works. This review also discusses the implications and insights (with

regards to endurance and strength adaptations) gathered from recent studies examining

the longer-term effects of CWI on training performance and recovery. Lastly, a periodized

approach to recovery is proposed, where the use of CWI may be incorporated during

competition or intensified training, whilst strategically avoiding periods following training

focused on improving muscle strength or hypertrophy.

Keywords: recovery, cryotherapy, hypertrophy, mitochondrial biogenesis, muscle adaptations

INTRODUCTION

Cold water immersion (CWI) is a strategy aimed at enhancing recovery from strenuous exercise,
typically involving the submersion up to the waist or mid-torso for ∼5–20min in temperatures
between ∼8 and 15◦C (Versey et al., 2013; Ihsan et al., 2016; Machado et al., 2016). Following
contemporary work by Vaile et al. (2008a,b,c); Vaile et al. (2011) and Peiffer et al. (2010a,b) in
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late-2000s investigating the effect of CWI on the recovery
of physical performance, research in this area has
extended to investigate a plethora of recovery outcomes
including thermoregulatory response (Stephens et al., 2018),
hemodynamics (Mawhinney et al., 2013; Choo et al., 2016),
hormonal balance (Halson et al., 2008), skeletal muscle damage
(Goodall and Howatson, 2008), and autonomic nervous function
(Bastos et al., 2012; Choo et al., 2018). Complementing this
growth in research, CWI has become one of the most popular
post-exercise recovery strategies utilized amongst athletes during
training and competition (Périard et al., 2016; Crowther et al.,
2017; Murray et al., 2018; Cross et al., 2019).

Meta-analyses and experimental research in general show
that CWI can beneficially influence the recovery of physical
performance (Montgomery et al., 2008; Bleakley and Davison,
2010; Rowsell et al., 2011; Poppendieck et al., 2013; Tabben
et al., 2018). Nevertheless, many consider the efficacy of CWI
to be equivocal. The inconsistent findings of CWI hence must
be acknowledged, and this is likely driven by factors such
as the nature of exercise modality preceding CWI, nature of
recovery variables assessed, timing between recovery assessment
and completion of CWI, and the CWI protocol itself. While
such complexities need to be resolved to appropriately compare
study findings and interpret with context, recent discussions
have revolved extensively around how the regular use of CWI
for recovery might in parallel influence adaptations to exercise
(Broatch et al., 2018; Malta et al., 2021). Yet, the first study
to address this extends considerably back to 2006 (Yamane
et al., 2006). Following a hiatus, a series of studies examining
the influence of CWI on adaptation to endurance exercise
emerged from independent laboratories (Ihsan et al., 2014b, 2015,
2020b; Aguiar et al., 2016; Joo et al., 2016; Allan et al., 2017,
2019, 2020; Broatch et al., 2017), which was followed up by
others examining the influence of CWI on resistance training
adaptations (Frohlich et al., 2014; Roberts et al., 2015; Figueiredo
et al., 2016; D’Souza et al., 2018; Fyfe et al., 2019; Fuchs et al.,
2020; Peake et al., 2020; Poppendieck et al., 2020). A recent meta-
analytical review showed that CWI effects on exercise adaptations
are mode-dependant, where resistance training adaptations
were diminished, whilst aerobic exercise performance seemed
unaffected (Malta et al., 2021). Alongside these publications,
detailed narrative reviews on the adaptative response following
regular CWI have been published within this research topic
series (Petersen and Fyfe, 2021), and elsewhere (Broatch et al.,
2018). Additionally, editorials, point-counterpoints, and opinion
pieces (Allan and Mawhinney, 2017; McPhee and Lightfoot,
2017; Méline et al., 2017; Peake, 2017, 2020; White and Caterini,
2017; Cheng, 2018; Ihsan et al., 2020a) have been published
discussing the suitability of CWI as a post-exercise recovery
tool given its dampening effect on hypertrophy gains. However,
potential adaptive benefits that can be harnessed from CWI
following endurance exercise, or from a recovery objective are
often overlooked.

In this mini-review, we have adopted an introspective
approach in discussing the molecular mechanisms and
rationale surrounding CWI and endurance exercise adaptations.
Moreover, we review and discuss key studies which provide
information on the applied scenarios where CWI can be utilized

to promote physical recovery and adaptation whilst avoiding
potential negative effects on hypertrophy and strength gains.

COLD EXPOSURE AND ENDURANCE
EXERCISE ADAPTATION

Cold stimulus is a physiological stressor capable of triggering
primary signals and downstream cascades implicated in exercise-
induced improvements in muscle oxidative function (Ihsan
et al., 2014a). Evidence for cold-induced changes in a/the
mammalian oxidative profile can be derived from as early
as 1960, where Hannon (1960) demonstrated robust increases
in the enzyme activities of several electron transport chain
components of rat gastrocnemius muscle following 3–4 weeks
of cold exposure. Subsequent studies extended these initial
findings by demonstrating comparable increases in muscle
oxidative enzymes between cold acclimation and exercise
(Hamilton and Ferguson, 1972; Harri and Valtola, 1975).
More recent studies have since shown improved fatigue
resistance and exercise capacity following cold adaptation, in line
with molecular signatures implicating increased mitochondrial
content (Schaeffer et al., 2003; Bruton et al., 2010). In summary,
research within rodent models highlight cold exposure as
a viable modality to enhance muscle oxidative adaptations
and endurance.

Seminal work by Spielgeman’s group in the late 90’s
generatedmajor breakthroughs in themechanisms underpinning
mitochondrial biogenesis (Puigserver et al., 1998; Wu et al.,
1999), which incidentally further supported the use of cold
therapeutic strategies such as CWI. Their work investigating the
mechanisms of adaptive thermogenesis led to the discovery of
the transcriptional coactivator peroxisome proliferator-activated
receptor gamma coactivator-1α (PGC-1α), which was found
to robustly increase in response to cold exposure (3 and 12 h
exposure @ 4◦C) in mice brown fat and skeletal muscle,
concomitant with an increase in numerous mitochondrial
markers (Puigserver et al., 1998; Wu et al., 1999). Subsequent
work highlighted a regulatory role for PGC-1α in mitochondrial
biogenesis (Lira et al., 2010), and other oxidative adaptations
such as angiogenesis through the vascular endothelial growth
factor (VEGF) (Chinsomboon et al., 2009), muscle fiber type
transformation (Lin et al., 2002), glucose (Wende et al., 2005),
and fat metabolism (Vega et al., 2000) in cell culture and murine
models. Following evidence within human exercise models
demonstrating a regulatory role for PGC-1α in skeletal muscle
aerobic adaptations (Pilegaard et al., 2003; Russell et al., 2003;
Perry et al., 2010), there was understandably speculation that
CWI might additively enhance adaptations to exercise through
common mechanisms involving PGC-1α (Ihsan et al., 2014a).

ENDURANCE EXERCISE ADAPTATION TO
POST-EXERCISE CWI: DISCREPANCY
BETWEEN MOLECULAR SIGNALING AND
EXERCISE PERFORMANCE

Whilst CWI was not conceived as a strategy specifically meant
to supplement exercise adaptations, there was substantial interest
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in examining how recovery-based CWI might influence skeletal
muscle adaptations to endurance exercise (Ihsan et al., 2014b,
2015, 2020b; Aguiar et al., 2016; Joo et al., 2016; Allan et al., 2017,
2019, 2020; Broatch et al., 2017). This line of enquiry is likely
motivated by work in cell cultures and rodents demonstrating
robust increases in mitochondrial markers following exercise
and cold exposure with common mechanisms involving PGC-
1α. Moreover, recent work in humans extends further support,
where markers of mitochondrial development have been shown
to be enhanced in the skeletal muscle after acute aerobic exercise
in the cold compared with room temperature (Shute et al.,
2018), or when post-exercise recovery was undertaken in a
cold environment (Slivka et al., 2013). In agreement, CWI (10–
15min @ 8–10◦C) administered independently, or following an
acute bout of endurance exercise was shown to increase the
mRNA of PGC-1α and VEGF (Ihsan et al., 2014b; Joo et al.,
2016). Additionally, regular CWI (15min @ 10◦C) application
during 4 weeks of endurance training (30 s to 8min interval
bouts @ 80–110% of peak power/velocity) has been shown
to increase a variety of mitochondrial markers (mRNA and
protein abundance) and upstream regulatory kinases (Ihsan et al.,
2015; Aguiar et al., 2016). However, an increase in PGC-1α
protein content was not consistently observed in these studies
(Ihsan et al., 2015; Aguiar et al., 2016) with only Ihsan et al.
(2015) reporting an CWI-mediated increase following training.
Regardless, complimenting the aforementioned studies showing
an increase in VEGF mRNA (Ihsan et al., 2014b; Joo et al.,
2016), regular CWI (10–15min @ 10◦C) incorporated during
exercise training lasting 4–12 weeks has been shown to enhance
skeletal muscle microvascular function (Ihsan et al., 2020b)
and increase skeletal muscle capillarity (D’Souza et al., 2018).
Conversely, Broatch et al. (2017) found no effect of CWI (15min
@ 10◦C) on molecular markers indicative of mitochondrial
development (i.e., mRNA responses, phosphorylation status, and
protein abundance) following a single sprint interval training
session or following 6 weeks of sprint interval training. Factors
such as subcutaneous fat, muscle mass, body surface area,
and acclimation status may influence the adaptations that are
driven by the magnitude of tissue temperature change, and
hence partly account for such disparity in findings. Alternatively,
high-intensity exercise/training as undertaken by Broatch et al.
(2017) can robustly increase mitochondrial markers (Granata
et al., 2016) creating a ceiling effect, resulting in diminished
potential for CWI augment further adaptations. Collectively,
these findings indicate that the effects of post-exercise CWI
may be less pronounced following high-intensity exercises,
but is able to influence molecular and structural adaptations
befitting muscle oxidative function following lower intensity
endurance exercise.

Although such molecular responses would expectedly
improve endurance performance in the longer term, Yamane
et al. (2006) reported attenuated improvements in maximal
oxygen uptake and cycling time to exhaustion following regular
CWI (2 × 20min at 5◦C) during 4 weeks of endurance training.
The authors suggested that the decrease in muscle temperature
and metabolism following cooling might have suppressed
regenerative mechanisms mediated through inflammatory

and heat shock proteins (HSP). This mechanism is unlikely
prevalent during recovery-based CWI protocols resulting in
mild to moderate decreases in tissue temperature. Indeed,
typical post-exercise CWI involves 10–15◦C immersion for
10–15min, and such protocols have been shown to not influence
skeletal muscle inflammatory response, HSP expression, or
trafficking (Aguiar et al., 2016; Peake et al., 2017). Interestingly,
HSF-1, a transcription factor for multiple HSPs, has been
shown to be upregulated following regular CWI administered
throughout 4 weeks of endurance training (Aguiar et al.,
2016). As such, the findings demonstrated by Yamane et al.
(2006) likely involve other mechanisms such as increased
muscle proteolysis, increased oxidative stress or lowered
tissue metabolism and consequently remodeling (Fu et al.,
1997; Manfredi et al., 2013; Broatch et al., 2018) that are
associated with aggressive cooling and extreme decreases in
tissue temperature.

In contrast to Yamane et al. (2006) initial report,
studies investigating the longer-term effects of recovery-
based CWI do not support concerns of this modality
being detrimental to endurance training adaptations. For
instance, regular CWI administered during 4–6 weeks
of sprint- or aerobic-interval training similarly improved
maximal oxygen uptake, peak aerobic power, and time-trial
performance compared to control conditions (Aguiar et al.,
2016; Broatch et al., 2017). Likewise, CWI administered
to competitive cyclists undergoing 3-4 weeks of intensified
training reported similar improvements in most cycling
performance parameters, although some parameters were
reported to improve to a greater extent following CWI
(Halson et al., 2014).

While these findings refute suggestions that CWI might
counteract endurance adaptations, it nevertheless questions
whether post-exercise CWI is an effective strategy to promote
muscle adaptations resulting in improved exercise performance.
Indeed, changes in acute signaling response (Ihsan et al.,
2014b; Joo et al., 2016; Broatch et al., 2017), training-induced
protein accretion (Ihsan et al., 2015; Aguiar et al., 2016),
and vascular adaptations (D’Souza et al., 2018; Ihsan et al.,
2020b) do not seem to translate into improved exercise
performance following regular CWI. Some have reasoned
that endurance performances are largely governed by central
factors (e.g., cardiovascular, hematological adaptations), and
changes in muscle aerobic function following CWI may only
marginally contribute (Malta et al., 2021). Alternatively, frequent
CWI might have de-sensitized transcriptional responses. For
instance, the magnitude of PGC-1α mRNA increases have
been shown to progressively diminish in response to repeated
exercise stimulus (Perry et al., 2010). Similarly, PGC-1α mRNA
has been shown to robustly increase following exercise in
a cold environment, but demonstrated a blunted PGC-1α
mRNA response to an identical stimulus following 3 weeks of
endurance training in the cold (Shute et al., 2020). However,
it remains to be ascertained if this attenuated response is
due to habituation to cold, exercise or a combination of
both stimuli. Regardless, it must be re-iterated that CWI does
not appear to impair aerobic training adaptations, and can
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be confidently incorporated as a recovery modality following
endurance training sessions.

EFFECT OF CWI ON ENDURANCE AND
RESISTANCE EXERCISE ADAPTATIONS:
DIVERGENT EFFECTS OR COORDINATED
REGULATION?

While some studies have shown that CWI can enhance physical
recovery following resistance exercise (Vaile et al., 2008c; Roberts
et al., 2014), practitioners should avoid scheduling this modality
at least during the immediate recovery period. Indeed, regular
CWI has been shown to attenuate the magnitude of anabolic
signaling (Roberts et al., 2015) and protein synthesis (Fuchs et al.,
2020), leading to reducedmagnitude of strength andmuscle mass
gain following resistance training (Frohlich et al., 2014; Roberts
et al., 2015; Fyfe et al., 2019; Poppendieck et al., 2020). Readers
are directed to excellent reviews elsewhere (Broatch et al., 2018;
Malta et al., 2021) and within this research topic (Petersen and
Fyfe, 2021) elaborating on the mechanisms surrounding CWI
and resistance training.

Complimenting these mechanisms, we suggest that the
attenuated increase in muscle mass observed following CWI and
resistance training may be part of a macro-level mechanism
protecting the oxidative profile of the muscle. This is supported
by D’Souza et al. (2018) demonstrating increased muscle
capillarity following 12 weeks of resistance training with regular
CWI application with concomitant decreases in muscle mass
reported in other companion papers (Roberts et al., 2015; Peake
et al., 2017). Reductions in muscle blood flow and metabolism
during CWI may reduce O2 supply and utilization (Ihsan et al.,
2013; Mawhinney et al., 2013, 2020; Choo et al., 2016), triggering
compensatory adaptation involving decreased muscle mass and
microvascular expansion to maintain perfusion capacity. Further
support for such a phenotypic response can be derived from
rodent and human models of cold-acclimation. Cross-sectional
areas of gastrocnemius and soleus muscle fibers were found to
be 15–21% smaller in cold-acclimated rats, with concomitant
increases in capillarity (Suzuki et al., 1997). Similarly, Bae
et al. (2003) showed that cold-acclimated breath-hold divers
possessed higher skeletal muscle capillary density, a lower oxygen
diffusion distance and a smaller muscle fiber CSA, whist no such
adaptations were evident in breath-hold divers who dived at
moderate water temperatures (29–30◦C) (Park et al., 2005).

While we rationalize that the dampened increase in muscle
mass observed following CWI is a compensatory mechanism
improving oxidative function, further research is needed to
understand how this might influence athletic function and
performance. For instance, it is currently unknown if CWI
influences the regulation of muscle mass following aerobic
exercise, and whether this hypothetical trade-off involving the
attenuated increase in muscle mass and strength might be
beneficial to endurance performance. On the other hand, co-
assessment of muscle aerobic function within these resistance
training studies (Frohlich et al., 2014; Roberts et al., 2015; Fyfe
et al., 2019; Poppendieck et al., 2020) would have furthered our

understanding of the functional consequence of the dampened
increase in mass coupled with increased capillarity.

CWI AND RESISTANCE TRAINING:
INSIGHTS FROM APPLIED RESEARCH

Athletes embark on a variety of training sessions such
as cardiovascular conditioning, strength/resistance training,
technical, and tactical work. In sports science practice, CWI
is likely to be incorporated at various instances to promote
recovery, particularly when recovery time between sessions is
limited. Caution should be warranted against the regular use of
CWI particularly following resistance exercise sessions.

Recent work (Table 1) examining the longer-term effects
of CWI on training performance and recovery amongst
professional and semi-professional athletes provides invaluable
insights regarding CWI programming and recovery-adaptation
interaction throughout training/competition phases (Lindsay
et al., 2016; Tavares et al., 2019, 2020; Seco-Calvo et al.,
2020). These studies collectively demonstrate no impairments in
strength gains despite administering frequent post-exercise CWI
over 2.5 weeks to 8 months. In contrast to the current literature
(Frohlich et al., 2014; Roberts et al., 2015; Fyfe et al., 2019;
Poppendieck et al., 2020), most of these studies (Table 1) report a
trend for improved strength gains over the training/study period.
Such divergent findings are hard to reconcile. One possibility,
as Broatch et al. (2018) highlighted is that laboratory-based
experimental studies are designed with 2–3 sessions per week
permitting adequate recovery between sessions, and by extension
not capitalizing on the recovery effects of CWI.

Training frequency reported within these applied studies
surmounts to at least 10 sessions per week (Table 1). Perhaps,
in scenarios where recovery between training sessions may
be limited, CWI can improve training performances and
consequently the stimulus for adaptation. In support, post-
exercise CWI has been shown to enhance the ability to perform
more volitional work during subsequent squat exercise (Roberts
et al., 2014), or better maintain day-to-day exercise performance
during intensified periods of endurance training (Vaile et al.,
2008b; Stanley et al., 2013). Given that adaptations to exercise
stimulus are volume and intensity dependant, it seems reasonable
to consider that the recovery benefits of CWI (and resultant
increase in training quality) might outweigh its dampening
effects on hypertrophy response. Conversely, it can be argued
that anabolic adaptations are better enhanced if CWI is avoided,
albeit this might deter the quality of subsequent training sessions.
It is currently unknown which approach would better influence
athletes’ recovery-adaptation interaction. Longer term applied
studies similar to those highlighted in this review (Table 1) will
significantly contribute to our understanding in this area.

Another key feature of these studies (Table 1), and perhaps
within sport science practice is that CWI is often not
administered immediately following a resistance training session,
but instead following technical/tactical or conditioning sessions.
These findings show promise that beneficial recovery outcomes
can be harnessed whilst avoiding negative effects of CWI on
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TABLE 1 | Summary of studies examining the longer-term effect of CWI on the recovery of exercise performance.

Study Level/Sport Training

Phase/Duration

Training description CWI frequency

and protocol

CWI Timing Main outcomes

Lindsay et al.,

2016

Semi-professional

MMA athletes

6-week

pre-competition

training camp

Strength and conditioning

(60–90min, 3x/week), MMA,

wrestling, jiu-jitsu, and boxing

(90–120min, 7x/week)

3x/week whole

body CWI @ 10◦C

for 15min

Performed following last session

of the day which consisted of

MMA or wresting training

Similar

improvements in

SBJ, pull-ups, and

press-ups in CON

vs. CWI group

Tavares et al.,

2019

Elite Rugby Union 3 weeks during

pre-season period

Strength sessions (4x/week),

technical/tactical sessions

(7x/week), speed, and

conditioning (5x/week)

4x/week whole

body CWI @ 10◦C

for 10min

Performed following afternoon

sessions which consisted of

technical/tactical or conditioning

Better

maintenance in

CMJ performance

in CWI group

Seco-Calvo

et al., 2020

Professional

Basketball players

from the Spanish

Premier League

Competitive

season (8 months)

Gym sessions (4x/week),

conditioning (3x/week), speed,

and reaction (2x/week)

4x/week whole

body CWI @ 10◦C

for 5 × 2min

Performed following the speed

and conditioning or following

match-play

Better

maintenance of

shoulder strength

Tavares et al.,

2020

U21 Portuguese

national players

2.5-week

pre-competition

training camp

10 resistance training and 19

on-court sessions over 2.5

weeks

CWI @ 10◦C for

10min after last

training session

Performed following on-court

volleyball sessions

Better

maintenance in

CMJ performance

in CWI group

MMA, mixed martial arts; SBJ, standing broad jump; CMJ, counter-movement jump.

strength gains by simply avoiding the use of this recovery
modality in the proximity of resistance training sessions.
Regardless, we acknowledge that these studies were not
specifically designed to address this notion. Moreover, the
majority of these studies were relatively short-term (2.5–6 weeks).
Specific, longer-term studies are therefore required to address the
effect of CWI timing on strength adaptation.

SUMMARY AND PERSPECTIVES

Cold water immersion is widely utilized by athletes during
training and competition. Given that both a cold stimulus
and exercise are independent stressors capable of enhancing
muscle oxidative function, there remains substantial interest in
examining how this modality might influence adaptations
to exercise. Although post-exercise CWI up-regulates
mitochondrial-related signaling, longer-term changes in
protein content and result in vascular adaptations, these changes
do not seem to translate to improved endurance performance.
As such, further research is required to elucidate how endurance
performance can be improved through its positive molecular
signaling outcomes for CWI to be incorporated to enhance
exercise-induced oxidative adaptations. It must be re-iterated

that CWI does not impair aerobic training adaptations,
and can be incorporated as a recovery modality following
endurance training if needed. In contrast, regular CWI recovery
incorporated into a resistance training program will dampen
strength adaptations, and therefore the use of this modality
following resistance exercise sessions should be discouraged.
However, there is emerging data showing no impairments in
strength gains in athletes incorporating regular use of CWI
during intensified training periods; this either indicates that
the recovery benefits conferred by CWI may outweigh its
dampening effects on hypertrophy response, or the negative
effects of CWI on strength may be circumvented by programing
CWI following technical or aerobic conditioning sessions. In
this regard, “recovery periodization” may be an important
approach, where the use of CWI may be incorporated during
competition or intensified training, whilst strategically avoided
following training focused on improving muscle strength
or hypertrophy.
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