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ABSTRACT Genetic and environmental factors influence complex disease in humans, such as metabolic
syndrome, and Drosophila melanogaster serves as an excellent model in which to test these factors experimen-
tally. Here we explore the modularity of endophenotypes with an in-depth reanalysis of a previous study by Reed
et al. (2014), where we raised 20 wild-type genetic lines of Drosophila larvae on four diets and measured gross
phenotypes of body weight, total sugar, and total triglycerides, as well as the endophenotypes of metabolomic
and whole-genome expression profiles. We then perform new gene expression experiments to test for conser-
vation of phenotype-expression correlations across different diets and populations. We find that transcript levels
correlated with gross phenotypes were enriched for puparial adhesion, metamorphosis, and central energy
metabolism functions. The specific metabolites L-DOPA and N-arachidonoyl dopamine make physiological links
between the gross phenotypes across diets, whereas leucine and isoleucine thus exhibit genotype-by-diet
interactions. Between diets, we find low conservation of the endophenotypes that correlate with the gross
phenotypes. Through the follow-up expression study, we found that transcript-trait correlations are well con-
served across populations raised on a familiar diet, but on a novel diet, the transcript-trait correlations are no
longer conserved. Thus, physiological canalization of metabolic phenotypes breaks down in a novel environment
exposing cryptic variation. We cannot predict the physiological basis of disease in a perturbing environment from
profiles observed in the ancestral environment. This study demonstrates that variation for disease traits within a
population is acquired through a multitude of physiological mechanisms, some of which transcend genetic and
environmental influences, and others that are specific to an individual’s genetic and environmental context.
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Since the 1960s, the documented proportion of the United States
population that isobese,whichisdefinedbyabodymass indexexceeding

30 kg/m2, has increased by nearly 150%. Presently, 69% of Americans
are overweight or obese (bodymass index.25) (O’Rahilly and Farooqi
2006; Yamada et al. 2007;Monda et al. 2010; Ogden et al. 2014), and the
percentage of obese individuals is expected to grow tomore than 60% in
many states by 2030 (http://www.rwjf.org/content/dam/farm/reports/
reports/2012/rwjf401318). Moreover, the rates of the comorbidities as-
sociated with obesity, such as insulin resistance, elevated circulating
blood lipids, and elevated blood pressure, have concomitantly increased.
Collectively, these comorbidities are referred to as metabolic syndrome,
orMetS, a syndrome that is contributing to a national epidemic of type 2
diabetes and cardiovascular disease.

Similarnotable transitions to increasedprevalenceofMetS are actively
occurring inmany other countries. This drastic phenotypic transition can
beattributedprimarily toa shift towardamoreWesternizedenvironment,
characterized by reduced physical activity and increased caloric intake.
Yet, despite the obvious significant impact of lifestyle changes on public
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health, (Schulz et al. 2006; Musselman et al. 2011; Rulifson et al. 2002)
there also remains a substantial component of genetic variation contrib-
uting to an individual’s risk of developing MetS and associated diseases
(Yamada et al. 2007; Monda et al. 2010; O’Rahilly and Farooqi 2006).
Disentangling the relative contributions of genetic and environmental
factors to the mechanism of a complex human disease such as MetS is
daunting because of the expense of procuring the enormous sample sizes
necessary to make statistically valid conclusions, particularly in the face
of tremendous genetic and lifestyle variation. However, it is becoming
increasingly evident that we must employ some strategy to understand
the mechanisms linking genes, the environment, and these correlated
diseases. Fortunately, model organisms such as Drosophila can provide
such a strategy.

Because of our shared evolutionary history, Drosophila and humans
share many homologous physiological systems, including those relevant
to the development ofMetS, such as the insulin signaling pathway, central
metabolism, innate immune function, and heart physiology (Reed et al.
2010, 2014; Musselman et al. 2011; Rulifson et al. 2002; Bodmer and
Venkatesh 1998; Hoffmann and Reichhart 2002; Wessells et al. 2004).
But unlike humans,Drosophila are a highly tractable experimental system
and have been useful for a variety of systems biology-style experiments
(Harbison et al. 2009; Chintapalli et al. 2013; Tennessen et al. 2014; Hoff-
man et al. 2014; Reed et al. 2014). In the laboratory, unlimited number of
genetically identical Drosophila individuals can be exposed to different
environmental conditions to test howa specific genotype reacts to changes
in environment, thus allowing researchers to isolate the environmental
effect on phenotype. Correspondingly, different genotypes of Drosophila
can be measured in the same environment to understand how genetic
variation contributes to phenotypic variation. Therefore, by using this
multifactorial approach, it is possible to partition the genetic, environ-
mental, and genotype-by-environment interaction effects determining the
overall variation in a phenotype within a population.

Using this approach in previous studies, we observed highly signif-
icant genetic, dietary, and genotype-by-diet variation for each of the
gross phenotypes of weight, total sugar, and triglycerides (Supporting
Information, Figure S1) (Reed et al. 2010, 2014). Additionally, we
consistently found that the genetic variance and the genotype-by-diet
interaction effects account for a much larger proportion of the pheno-
typic variance than the diet effects alone for gross phenotypes and gene
expression profiles (Figure S1) (Reed et al. 2010, 2014). However, the
overall metabolite profiles showed a much stronger signature of dietary
variance than the gross phenotypes or the gene transcription profiles
(Reed et al. 2014).

Taken together, these results support the hypothesis that how an
environmental or lifestyle transition will affect an individual largely
depends on that individual’s genetic make-up rather than a generalized
species-level physiological reaction. Thus, understanding the mecha-
nisms driving the increasing incidence of MetS associated with West-
ernized-lifestyle and subsequently identifying methods to prevent and
treatMetS requires us to carefully dissect the specificmechanisms of the
genotype-by-environment interaction. Here we extend the analyses
performed in Reed et al. (2014) to probe the variance profiles of the
individual gene transcripts andmetabolites and explore how they relate
to the MetS-like phenotypes in Drosophila melanogaster. We identify
multiple individual molecular signals (endophenotypes) that are
strongly correlated with MetS and link together the gross phenotypes.

Through this work, we aimed to answer three primary questions: (1)
How are genotype-by-diet interaction effects reflected in metabolomic
and gene expression profiles, and do these profiles inform prediction of
genotype-by-diet effects on MetS-like phenotypes? (2) Which endo-
phenotypes link the gross phenotypes of body weight, triglyceride

storage, and total sugar? (3) Which endophenotypes are predictive of
gross phenotype in different dietary conditions? By integrating across
these physiological levels and leveraging the added structure induced by
genetic and dietary variation, we have identified several exciting new
avenues of mechanistic exploration for understanding the causes of
obesity and MetS.

MATERIALS AND METHODS

Experimental design

Original population sample generation: The initial portionof the data
analyzed to a greater depth here has been reported previously in Reed
et al. (2014), and the experimental design for sample generation is
provided therein. To summarize in brief, an analysis was performed
on 20 wild-type inbred genetic lines representing a diversity of dietary
reaction norms for pupal weight and larval lipid storage originally
collected from the wild populations in North Carolina and Maine.
Reaction norms for each line and phenotype are shown in Figure S1.
Four cornmeal-based diets that were identical except that they varied in
their sugar and fat content were used to raise the larvae [the rationale
for the diets has been described previously in detail (Reed et al. 2010,
2014)]. The diets were as follows: normal (4% sucrose by weight),
control (0.75% glucose by weight), high sugar (4% glucose), and high
fat (0.75% glucose, 3% added saturated fat—coconut oil). Food vials
were seeded with 50 first instar larvae, which then developed either to
third instar larvae or into pupae for phenotype measurement.

Larval sampleswere taken frompools of three tofive vials of third
instar after a 6-hr fasting period. TAG and total larval sugar content
(glucose and trehalose) levels were determined on two samples of six
larvae with the Sigma Triglyceride Determination and Sigma Glucose
Assay kit, respectively, as described in Reed et al. (2010). Two samples
each of six and 30 larvae were snap-frozen in liquid nitrogen for metab-
olomic and expression analyses, respectively. In addition, two food vials
were allowed to develop to the pupal stage to measure pupal weight
(individual wet weight of up to 15maturemale pupae) andwere collected
as described in Reed et al. (2010). Each genetic line was tested on all
diet treatments simultaneously in randomized blocks of four syn-
chronized lines per week and replicated at three independent time
points (n = 240).

RNAsamples forwhole-genomeexpressionprofilingwereextract-
ed with MagMAX-96 for Microarrays Kit (Ambion; #AM1839) with the
“Spin Procedure” and an additional TurboDNAse treatment (as de-
scribed in the no-spin protocol). RNA quality and quantity were assessed
with a Nanodrop spectrophotometer and by electrophoresis gel. Whole-
genome expression analysis was performed with Nimblegen 12-plex
microarrays by using Nimblegen protocols for cDNA synthesis and
hybridization. Slides were imaged on a GenePix 5-micrometer scanner.
Data were extracted from the image files with the Nimblescan soft-
ware then transferred to JMP-Genomics for subsequent analyses. A
total of 11,650 genes (of a possible 15,595) were expressed consis-
tently at detectable levels (n = 219). All of the expression data from
this study are deposited at the GEO database under accession number
GSE50745.

Metabolomic profiling was performed by gas chromatography-
mass spectrometry and is described in detail in Reed et al. (2014). To
summarize in brief, daily randomized blocks of 15222 unique samples
were prepared and run on a Thermo Scientific DSQ II Series Single
Quadrupole gas chromatography-mass spectrometry with an electron
impact source and an Agilent DB-5 column run in splitlessmodewith a
30-minute temperature ramp (total n = 425). Dilution series of pooled
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standards were run at the beginning, middle, and end of each day to
generate a standard curve, and PMIX standards were run at the begin-
ning and end to allow for retention time calibration (Kovats retention
index). Chromatograms were aligned andmolecular targets were called
with AnalyzerPro (http://www.spectralworks.com/analyzerpro.asp).
After quality control filtering, 187 putative metabolites were proposed
and their candidate compound ID was determined by searching their
profiles against the publically available NIST database. Sixty of the me-
tabolites were confirmedwith chemical standards, and 124werematched
to chemical class (e.g., amino acid or monosaccharide) on the basis of
database comparisons, facilitated by ChemBioDraw 12.0 (http://www.
cambridgesoft.com//) for visual compound ID and classification. Tar-
get/metabolite identities can be found in File S7.

Confirmation of gene expression patterns with diet: To generate the
new dataset used confirm expression patterns, 45 genetic lines
raised on the control and high-fat dietary treatments were used
for the follow-up experiment to confirm the lack of phenotype-
expression correlation across diets. These lines were selected to
represent the diversity of dietary reaction norms for triglyceride
levels on control and high fat diets, and included seven lines from
the original 20 assayed by microarray, with significant variation in
triglyceride levels on the control and high-fat diets. Samples for
TAG analysis and RNA profiling were collected from third instar
larvae from three or more pooled food vials for each genetic line at
two independent time point replicates raised in the same manner
described previously and fasted for 122 hr. Two samples of 10
larvae were used for the lipid analysis, whereas the remaining
larvae were used for expression analysis. RNA was extracted as
described previously and then sent to Expression Analysis Inc.
for quantitative reverse-transcription polymerase chain reaction
(Q-RT-PCR) analysis using the Fluidigm BioMark platform.
Forty-eight genes, including two housekeeping genes (Gapdh1
and Act5C), were assayed using custom FluidigmDeltaGene assays
(Table S12). One target gene failed to amplify in some samples,

resulting in a total of 45 target genes with complete data, from 45
genetic lines on two diets replicated at two independent times,
which totaled to 180 samples (File S8).

Data analysis
All statistical analyses were performed using JMP Genomics. The
standardization and normalization of the metabolomic and whole-
genome expression data sets is presented in Reed et al. (2014).

To identify metabolite and gene expression profiles that differed
significantly for the effects of diet, genetic line, and the genetic-by-diet
interaction, we used the linear model:

Yijm ¼ mþ Gi þ Dj þ G·Dij þ eijm

for measurements taken from the mth individual sample in the ith
genetic line (G) raised on the jth diet (D).

All results described as “significant” for individual genes and me-
tabolites are at a false discovery rate of 0.05 or less unless otherwise
noted.

Correlations among gene expression, metabolites, and gross pheno-
type were calculated from the least-squared means for each gene,
metabolite, and gross phenotype grouped by genetic line, diet, and
replicate. Forward stepwise regression was performed for each gross
phenotype against the metabolites and transcripts shown to have signif-
icant pairwise correlations with a given phenotype, using default settings
in JMP. A Bayesian information criterion was used for model selection.

Modulated modularity clustering analysis: An analysis to determine
coexpressed genes to identify possibly functionally relevant biological
modules was performed with modulated modularity clustering (Stone
andAyroles 2009) on sets of genes filtered by statistical correlationwith a
biological factor of interest (e.g., genes with significant genotype-by-diet
interactions or those highly correlated with weight). Genes were filtered
at a correlation significance level of P , 0.01 (Harbison et al. 2009)
unless otherwise noted. The gene lists identified as occupying correlated

Figure 1 Transcripts and metabolites significant for genetic, dietary, and genotype-by-diet interaction effects. Number of significant transcripts
(n = 219) of 11,650 (A) and metabolites (n = 425) out of 187 (B) determined by at a threshold of false-discovery rate = 0.05. Most genotype-by-diet
significant transcripts and genes also were significant for main genetic and/or dietary effects. Numbers outside of the Venn diagrams represent
the number of metabolites or transcripts that were not significant for any of these effects.
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expression modules via this method were subsequently queried against
the Gene Ontology (GO) database with the use of the default settings in
DAVID (Huang et al. 2009a,b) and filtered for an enrichment score of
1.3 or greater. The Kyoto Encyclopedia of Genes and Genomes (KEGG;
http://www.genome.jp/kegg/pathway.html) pathway enrichment was
also assessed with DAVID.

Data availability
The dataset supporting the results of this article is available in the GEO
database repository accessionnumberGSE50745, http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE50745.

RESULTS
In previous studies, we observed highly significant genetic, dietary, and
genotype-by-diet variation for each of the gross phenotypes of weight,
total sugar, and triglycerides, as well as in whole-genome expression
profiles and metabolomic profiles and found that the genotype-by-diet
interaction effect explained a surprisingly large portion of the total
phenotypic variance (Figure S1) (Reed et al. 2010, 2014). Building from
the dataset originally reported in Reed et al. (2014), here we have
presented the analyses that specifically focus on the complex geno-
type-by-diet interaction effects on MetS-like symptoms that can be
modeled using this multidimensional dataset with in-depth exploration
of the variance profiles of the individual phenotypes of gene expression
andmetabolite levels.We address how the genetic variation in the gross
phenotypes of body weight, triglyceride storage, and total sugar (glu-
cose and trehalose) are linked to metabolite profiles and gene expres-
sion profiles across four different diets. We also test how well gene
expression correlations with phenotypes across distinct environmental
conditions and populations can be replicated.

How are genotype-by-diet interaction effects reflected
in metabolomic and gene expression profiles, and do
these profiles inform prediction of genotype-by-diet
effects on MetS-Like phenotypes?
We analyzed individual gene expression levels for the contribution of
genetic, dietary, and genotype-by-diet effects. The lists of individually
significant genes can be found in File S1. Significant genetic effects were
present for 9908 transcripts (85% of the expressed transcripts), and
those genes showed significant (negative log10 p-value NLP . 4) GO
enrichment for the functions of oxidation-reduction and peptidases
(Table S1). Correspondingly, the KEGG pathways for the metabolism
of xenobiotics by cytochrome P450s, degradation of limonene and
pinene, drug metabolism, glutathione metabolism, and retinol metab-
olism all showed significant enrichment (P , 0.05, Table S1).

For diet effects, 311 transcripts were significant, and their GO enrich-
ment clusters included phospholipase activity, choline kinase-like, and
oxidation-reduction (Table S1). KEGG pathways enriched in the signif-
icant diet effect transcripts included glycerophosolipid metabolism, lim-
onene and pinene degradation, alpha-linolenic acidmetabolism, tyrosine
metabolism, and biosynthesis of unsaturated fatty acids (Table S1).

The genotype-by-diet effect was significant for 40 transcripts. The
reduced proportion of significant transcripts relative to the overall large
genotype-by-diet effect in the variance partition was largely due to the
low sample size, thus reduced power for each genotype-by-diet com-
bination. No KEGG pathways showed significant enrichment for ge-
notype-by-diet effects. The number of genes sharing significant genetic,
dietary, and genotype-by-diet effects can be seen in Figure 1A.

For individual metabolites, 106 showed significant genetic effects
(56.6% of the measuredmetabolites), and 67 showed significant dietary
effects (Figure 1B, File S2). The identified metabolites with the greatest

genetic variation were leucine, isoleucine, and maltose (NLP. 20; File
S2, Figure S2). However, the majority of metabolites tested in the
categories of amino acids, amines, saturated fatty acids, steroids, and
disaccharides showed significant genetic effects (Table S2). The iden-
tified metabolites with the strongest effect of diet were the saturated
fatty acids with 12-carbons (12c), 14-carbons (14c), and 16-carbons
(16c) (NLP.23; File S2, Figure S2). Seven metabolites were significant
for the genotype-by-diet interaction effect (P , 0.01), including four
fatty acids (12-, 14-, and 16-carbon saturated and 16-carbon unsatu-
rated-palmitoletic), two branch chain amino acids (leucine and isoleu-
cine), and adenosine (a building block of ATP, Figure 1B, Table 1, and
Figure S2). The diversity of diet-induced reaction norms is exemplified
in a group of 10 genetic lines that exhibited an increase in dodecanoic
(lauric) acid specifically on the high-sugar diet (Figure S2), demonstrat-
ing a diet-specific genetic effect present at a high frequency in the
population of sampled genetic lines.

We clustered the 40 transcripts found to be significant for the
genotype-by-diet effect using the Modulated Modularity Cluster
(MMC) algorithm on correlations (Stone and Ayroles 2009), resulting
in fourmodules of highly correlated transcripts (Figure 2 and Table S3).
Of the nine genes occupying module one, five had associated GO func-
tion in puparial adhesion (Table S3). For module one, the first principal
component (PC1) was correlated with the gross phenotype of pupal
weight (P, 0.0001) and total sugar (P = 0.0112). There was a trend for
significance in PC1 with triglycerides (P = 0.051). The tight correlation
in expression patterns and gross phenotypes provides evidence that this
particular suite of genes may be especially useful in explaining the
mechanistic link between these MetS-like phenotypes.

The remaining threemodules in theMMCanalysis of the significant
genotype-by-diet transcripts did not show an overall correlation across
dietwithanyof thegrossMetS-likephenotypes, although somedid show
diet-specific correlations. The second module was correlated with tri-
glyceride variation on the high-sugar diet (P = 0.0359) (Figure S1).
Module three was correlated with triglyceride levels on the control
(P = 0.0137) and high-sugar (P = 0.0181) diets, which are the two diets
that produced a notable reduction in larval triglycerides levels (Figure S1).
In general, genes that showed significant genotype-by-diet interaction
effects have the potential to help explain both the common mechanisms
for genotype-by-diet effects across the MetS-like phenotypes (e.g., mod-
ule one), as well as the ways the phenotypes may also have independent
mechanistic links to genetic and dietary variation (e.g., modules two
and three). The genetic line-specific reaction norms for PC1 of each
of the modules can be seen in Figure 3. The PC1ofmodule one showed
three lines to be distinct from the remaining 16 genetic lines with reduced
values on the normal and high-sugar diets. For modules two and three,
different individual genetic lines demonstrated themselves to be distinct
from the rest of the population for their PC1 reaction norms. Line-specific

n Table 1 Metabolites with significant genotype-by-diet
interaction, P < 0.01

Target Likely Category Confirmed ID

Target_0149 Amino acid Leucine
Target_0164 Amino acid Isoleucine
Target_0335 Saturated fatty acid Dodecanoic acid
Target_0428 Saturated fatty acid Tetradecanoic acid

(myristic acid)
Target_0511 Unsaturated fatty acid Palmitoletic acid
Target_0521 Saturated fatty acid Hexadecanoic acid

(palmitic acid)
Target_0779 Nucleoside Adenosine
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reaction norms for expression principal components indicate that genetic
mapping of causative loci for diet-specific expression quantitative trait loci
could be feasible.

Which endophenotypes link the gross
metabolic phenotypes?

Gene expression by gross phenotype: Pupal weight was significantly
correlated with 479 transcripts enriched for the GO categories of puparial
adhesion, regulationofprotein import intothenucleus,andironionbinding
(Table S4 and File S3). The KEGG pathways showing enrichment in the
transcripts correlated with weight include Insect Hormone Biosynthesis
and One Carbon Pool by Folate (Table S4 and File S3). Triglycerides were
correlated with 35 genes and had GO functional category enrichment for
instar larval or pupalmorphogenesis (Table S4 andFile S3). In addition, the
two linked KEGG pathways of inositol phosphate metabolism and phos-
phatidylinositol signaling system both showed enrichment in the genes
correlated with triglycerides due to the shared genes skittles and synapto-
janin. Total sugar was correlated with 82 transcripts that were significantly
enriched for theGO function of oxidation-reduction (Table S4 andFile S3).

Using forward stepwise regression, we asked how much of the
variation in the gross phenotypes could we explain with independent
transcripts (Table S5). There were eight genes that explained 56% of the
variation in weight, five genes explaining 33% of triglyceride variation,
and four genes explaining 27% of sugar variation. This means a rela-
tively small number of gene transcripts had the ability to explain a large
portion of the variance in metabolic phenotypes across variable genetic
populations and diets. When examining the functional annotations of
this subset of genes, we found there was no enrichment for any partic-
ular function, which is consistent with each gene reflecting a distinct
component of the organism’s physiological influences on these traits.

Metabolites by gross phenotype: For individual metabolites, 30 had a
significant correlation with weight (Table S6), dominated by amino

acids (9) and also included fatty acids (3) and sugars (3). Triglycerides
were correlatedwith 12metabolites, including amino acids (3) and sugars
and sugar alcohols (4), but surprisingly not fatty acids, whereas total
sugar was correlated with 14 metabolites, including amino acids (3),
carboxylic acids (2), and sugars and sugar alcohols (3), but once again
no fatty acids (Table S6).

Wewere then interested inwhethera subsetofmetabolitescouldexplain
a significant portion of the variation in the phenotypes using forward
stepwise regression.We found that twometabolites explained 18.6% of the
variance in weight, five metabolites explained 17.4% of the variance in
triglycerides, and two metabolites explained 10.2% of the variance in total
sugar (Table 2 and Table S7). This subset of nonredundant metabolites
represents distinct chemical groups and biological functions. For example,
the five informative metabolites for triglycerides consist of two neurotrans-
mitters, an amino acid, a sugar alcohol, and a polysaccharide.

Metabolite and gene expression correlations across gross
phenotypes: We were interested in identifying endophenotypes that
potentially could help to create new mechanistic links between the
different MetS-like phenotypes in the flies. We initially asked whether
any of the genes correlated with multiple phenotypes. We found 147
genes in common between the weight and sugar phenotypes (P, 0.01),
66 genes in common between weight and triglycerides (P, 0.01), and
93 between triglycerides and sugar (P , 0.05, Figure 4 and Table S8).
One intriguing set of three genes in common to triglyceride and sugar
phenotypes was purported to be involved in neuropeptide signaling,
which may indicate a behavioral or hormonal link between these traits.
Of the five genes that were common to all three phenotypes (Figure 4
and Table 3), two had no previously described function, and the
remaining three had no obvious link to metabolic function, but one
of the three genes was associated with histone acetylation. The lack of
profound functional enrichment of the common set of genes suggests
that there is much unexplored territory for new mechanistic links be-
tween MetS traits.

Figure 2 Modularity clustering of 40 transcripts
significant for a genotype-by-diet interaction effect
produces four distinct modules. Modules one
through 4 are ordered from left to right. A total of
11,650 transcripts were tested and significance was
determined at false-discovery rate = 0.05 (n = 219).
Transcripts are grouped by correlated expression
pattern, with red indicating a positive correlation
and blue a negative correlation. Gene Ontology
term enrichment is provided next to each module.
The most strongly intercorrelated module (module
one) was enriched for puparial adhesion and salivary
gland gene function.
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When testing for correlations between the gross phenotypes, we
found that raw values were positively correlated between weight and
triglycerides (NLP= 2.11; Table 4), but the correlations among the other
phenotype pairs were not significant. Given the general pattern of
correlation among these traits in other systems, we were led to ask
whether there was a signature of correlation among these phenotypes
within metabolite profiles or expression profiles. We found that the
correlation coefficients between metabolites and weight were positively
correlated with the correlation coefficients between metabolites and
triglycerides (NLP = 6.28; Table 4), meaning that metabolites expressed
at high levels in heavy flies alsowere expressed at high levels in flies with
high triglyceride levels, and vice versa. In fact, we found that for all three
traits there was a highly significant co-correlation between metabolites

and transcripts for each trait. Co-correlations of metabolites and tran-
scripts with weight and sugar, and between triglycerides and sugar, were
highly negative, whereas metabolites and transcripts were positively co-
correlated between weight and triglycerides (Table 4). This means that
even when there was no significant correlation among the gross phe-
notypes (e.g., R =20.092 for weight and total sugar), there could be an
enormous co-correlation among the endophenotypes (e.g., R =20.697
for transcript co-correlation between weight and sugar, Table 4).

Given the strength of the co-correlation of endophenotypes, we next
asked whether we could parse these broad correlations in a way that
could help identify the underlying mechanisms. To address this, we
performed MMC analysis on the genes significantly correlated with each
gross phenotype (weight, triglycerides, and sugar) at a significance thresh-
old of P = 0.01 (1154, 206, and 565 transcripts respectively, File S3) and
identified modules of genes with strong correlation in expression pattern
(Figure 5). For weight, we found six modules, containing 15 or more
transcripts with an average degree of correlation.0.5, four of which also
correlated with sugar (Table 5). The genes in weight module 25 were
significantly correlatedwith sugar andwere enriched (NLP. 12; Table 5)
for the GO function category puparial adhesion. For triglycerides, there
were three modules, with three or more transcripts, and module five also
correlated with weight and sugar (Figure 5, Table 5, File S4). Because
triglyceride module five correlates with all three gross phenotypes, its
correlated genes, which include a probable cytochrome P450, Cyp313a4,
and a signal transduction gene, CG32082, are particularly exciting and in
need of further functional experimentation and validation.

For sugar, there were five correlated modules with four or more
genes. Sugar module six was highly enriched for oxidation-reduction
function, containing four genes that code for components of Complex 1
of the electron transport chain. Sugar module eight, which was also
significantly correlated with weight, was highly enriched for enzymes in
the tricarboxylic acid cycle (Figure 5, Table 5, File S4).

Which endophenotypes are predictive of gross
phenotype in different dietary conditions?

Endophenotype correlations with gross phenotypes across diets: The
final question we wanted to address was whether gene transcripts or
metabolites that were correlated with a particular gross phenotype in one
environment (diet) would remain correlated in other environments. Col-
lectively, the overwhelming answer was no, there was no greater sharing of
phenotype-correlated genes across diets than expected by chance alone. Of
the 1180 transcripts that were correlated with weight on one or more diets,
1091of themwereunique to a specificdiet, andonly threewere significantly
correlated with weight across all four diets, whereas the pattern was even
starker for triglyceride- and sugar-diet-specific correlates (Figure 6).

Despite the lack of conservation of significant specific transcripts
correlated with phenotype across diet, we asked whether there was any
evidence of a conservation of gene function. We observed some slight
evidence of shared function in a few specific cases largely driven by the
few genes thatwere in common tomore than one diet (Table S9 and File
S5), but observed no generally compelling pattern. One category of
gene transcripts that might be useful in predicting weight across diets
was related to nucleosome organization and regulation of histonemod-
ification (Table S9, Table S10, and Table S11 and File S5).

The same pattern holds for metabolites. Using a significance
cutoff of P, 0.01 for metabolites correlated with a phenotype on a diet,
we found that only four of the 23 metabolites correlated with weight
were correlated on more than one diet (File S6). Of the nine correlated
with triglycerides, one was correlated on more than one diet, and for
total sugar, none of the 11 metabolites were correlated on more than

Figure 3 Genotype-by-diet interaction effects for significant transcript
modules. Modules are those shown in Figure 2 and Table S1. Geno-
type-by-diet2specific loadings for the first principle component (PC1)
of each module are graphed here. Each colored line corresponds to an
inbred isofemale line. Notice that the PC1 for module 2 separates a
single phenotypically distinct line, module 3 indicates two distinct
lines, whereas the PC1 of module one can distinguish three genetic
lines in a diet-specific manner.
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one diet (File S6). There were, however, a fewmetabolites that stood out
as being plausible candidates for explaining phenotypic variance across
diets. More than one phenotype showed diet-specific correlation be-
tween phenotype andmetabolite for nine metabolites (P, 0.05, Figure
S3). L-DOPA, a metabolic precursor to neurotransmitters such as do-
pamine, was correlated with weight on the normal and control diets,
and correlated with total sugar on the normal and high-sugar diets, but
was uncorrelated with triglycerides (Figure 7). Thus, L-DOPA provides
a good candidate for a neurological link betweenweight and total sugar,
as modulated by diet. Furthermore, N-arachidonoyl dopamine pro-
vides a very enticing mechanistic link between dietary influenced tri-
glycerides and weight because it was correlated with triglycerides and
weight on the normal and high fat diets, as well as with triglycerides on
the control diet (Figure 7). These two metabolites also were detected in
our original analyses (Reed et al. 2014) as having strong loadings in the
second principal component of the overall metabolite profiles, which
was the principal component that correlated with multiple gross phe-
notypes (weight, triglycerides, sugar, and heart arrhythmia index).

Population-specific effects: After observing the startling lack of con-
servation of transcripts correlated with phenotype on different diets, we
askedwhether thiswas a general patternor aphenomenonspecific to the
subset of genetic linesused in the initial study.Weperformeda follow-up
experimentwhere 45 genetic lines,whichwere selected fromamong those
studied in Reed et al. (2010) to represent the diversity of reaction norms
for triglyceride response to diet, were raised on normal and high fat diets.
In the original dataset, the correlation of the correlation coefficients be-
tween the high fat and control diets was a negligible 0.0188 (P = 0.90,
Table 6). However, the correlation of transcript-by-trait correlation
coefficients between the two diets in follow-up experiments was
0.8606 (P , 0.0001, Table 6). The differences in correlation and
methods for measuring gene expression lead us to conclude that, as
was already well-documented (Ayroles and Gibson 2006; Morey et al.
2006; Git et al. 2010), Q-RT-PCR analyses of gene expression are less
susceptible to experimental stochasticity and have a greater dynamic
range than microarray technologies, thus allowing for a more robust
documentation of biological signal.

We then asked whether the correlations between triglyceride
levels and these transcript-by-diet correlation coefficients in the
mainmicroarray experimentwas predictive of the correlations found
in the Q-RT-PCR follow-up. We found that the co-correlation bet-
ween the mircroarray control diet and the Q-RT-PCR control and
high-fat diet was both positive and substantial (Table 6). However,
although triglyceride-transcript correlations on a control diet were
predictive of triglyceride-transcript correlations in a Q-RT-PCR
experiment, the results from the high-fat diet were not (Table 6).

Puzzled by these findings, we next asked whether this pattern was
true for the subset of seven genetic lines that were used in both
experiments, and we found that all of the general patterns described
previously remained the same (Table 6). These results led us to conclude

that the patterns of correlation in gene expression with phenotypes in a
subset of a genetic population can be predictive of trends in the larger
population.

DISCUSSION
It is clear from this study that both metabolite profiles and expression
profiles are strongly influenced by genetic and genotype-by-environ-
ment interaction effects and thatdiet-specific effects areparticularlywell
detected through metabolite profiles. Because gene expression patterns
andmetabolomic profiles also react in different ways to variation in diet
and genotype, they each provide distinct perspectives regarding the
mechanisms linking environment and genotype to gross phenotypes.

Patterns in genotype-by-diet Interactions
Analyses of the subset of transcripts and metabolites that showed a
significant genotype-by-diet interaction effect are especially profitable
for identifying potential mechanisms influencing the genotype-specific
reactions to dietary changes observed for symptoms of metabolic
syndrome.

Transcript genotype-by-diet interaction: The first module from the
MMC analysis of the transcripts significant for a genotype-by-diet

n Table 2 Metabolites significant in a stepwise regression with gross phenotype

Weight Triglyceride Sugar

Sugar alcohol Target_0678 Arachidonoyl dopamine Target_0791 Cadaverine Target_0426
Hexadecanoic acid Target_0472 Scyllo-inositol Target_0524 Nonamide Target_0595

Catecholamine-like Target_0526
Glycine Target_0074
Pentasaccaride Target_1029

R-squared 0.186 0.174 0.102

Numbers in italics indicate confirmed ID.

Figure 4 Transcripts significantly correlated with weight, triglycerides,
or sugar. Significance determined at P , 0.01 (n = 80). Only five
transcripts of 11,650 possible transcripts were correlated with all three
traits, which is surprising given the correlations among these gross
phenotypes, and suggests the intertrait correlations may not be driven
by gene expression variation.
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interaction effect was a powerful example of how parsing the correla-
tional data into modules exposes underlying function. Each of the gross
phenotypes of weight, triglycerides, and total sugar was significantly or
nearly significantly correlated with this module, and eight of the nine
genes in the module were involved in puparial adhesion function,
suggesting that this is something linking the pathways used to prepare
a larvae for pupation with these metabolic symptoms.

We also found that expression of three genes in the insect hormone
biosynthesis pathway, Juvenile hormone esterase (Jhe), phantom (phm),
and shadow (sad), were positively correlated with pupal weight in our
dataset, whereas sad also was negatively correlated with sugar. Specific
pathways associated with metamorphosis have already been well char-
acterized in flies in relation to body size and development, such as those
mediated by ecdysone and juvenile hormones (Flatt and Kawecki 2007;
De Loof 2008; Mirth et al. 2009; Tennessen and Thummel 2011; Rid-
diford 2012; Schwedes and Carney 2012; Koyama et al. 2013; Danielsen
et al. 2013; Yamanaka et al. 2013), thus further confirming that these
expression patterns are useful signals. From this study, we cannot tell
which aspects of the ecdysone/puparial adhesion relationship with
MetS are causal and which of the effects are correlated responses to
an earlier developmental effect to genotype-by-diet interaction. How-
ever, knowing that genes associated with pupariation and metamor-
phosis in flies also are related to metabolic health in flies greatly focuses
our future explorations for causal mechanisms.

Metabolite genotype-by-diet interaction: Focusing on themetabolites
with a significant genotype-by-diet interaction effect also enabled us to
identify a subset of metabolites that may be especially important in
mediating an organism’s physiological reaction to a change in environ-
ment.We found that the branched chain amino acids (BCAAs), leucine
and isoleucine, had strong genotype-by-diet effects and were highly
correlated with each other (P , 0.0001). These two metabolites also

had strong loadings on the second principal component of the overall
metabolite profile that correlates with weight, triglycerides, sugar, and
arrhythmia index (Reed et al. 2014). BCAAs have been associated with
heart disease risk, gestational diabetes, and obesity in metabolomic
studies in humans (Zeanandin et al. 2011; Johnson et al. 2013; Patel
et al. 2013; Bhattacharya et al. 2014; Scholtens et al. 2014).

Leucine is used in the synthesis of sterols inadipose andmuscle tissue
(Rosenthal et al. 1974; Combaret et al. 2005), and it has the ability to
stimulate the synthesis of muscle protein (Aftring et al. 1986; Zeanan-
din et al. 2011). In addition, increased leucine doses to the rat brain
have been shown to decrease body weight through reduced food intake
by activating the TOR signaling pathway (Mensink et al. 2003; Com-
baret et al. 2005; Cota et al. 2006).

Isoleucine isgluconeogenic, as it canbebrokendowntosuccinylCoA
and then used by the tricarboxylic acid cycle, as well as functional in
ketosis by being converted into acetyl CoA and then synthesized into
fatty acids (Aftring et al. 1986; Doi et al. 2007). Isoleucine also was
correlated significantly with weight in our dataset. Because BCAAs play
a hub-like role in energy homeostasis, they are excellent targets for
potential MetS treatments as well as a proof-of-principle that a systems
biology approach of MetS in flies does recover pathways relevant to
mammalian systems.

The four fatty acids showing a significant genotype-by-diet inter-
action were between 12c and 16c in length. These interaction effects
remained significant for the 12c and 14c fatty acids, even when the data
from the high-fat diet were excluded from the analysis, suggesting that
increased exposure to fatty acids in the diet was not sufficient to explain
these correlations.

Dietary lauric acid (12c) is associated with an increase the “good”
HDL cholesterol in mammals and thus likely decreases atherosclerotic
risk (Mensink et al. 2003; Fattore and Fanelli 2013). Palmitic acid (16c),
when fed to rats, has been shown to suppress their leptin and insulin

n Table 3 Genes significant for weight, triglyceride, and sugar (P < 0.01)

Transcript ID Gene ID Molecular Function Biological Process

FBtr0073750 CG12715 Unknown Unknown
FBtr0076215 CG14143 Unknown Unknown
FBtr0077911 fritz Unknown Imaginal disc-derived

wing hair site selection;
establishment of
planar polarity

FBtr0084628 CG18528 GTP binding;
GTPase activity

tRNA modification; GTP
catabolic process

FBtr0100273 Rpb4 Protein binding;
DNA-directed RNA
polymerase activity;
chromatin binding

Histone H3 acetylation; cell
proliferation; mitotic cell
cycle G2/M transition
DNA damage checkpoint;
histone H4 acetylation;
transcription from RNA
polymerase II promoter;
neurogenesis

n Table 4 Phenotype correlations by raw, metabolite, and gene expression correlates

Phenotype 1 Phenotype 2
Raw Phenotypes Phenotypes by Metabolite Correlation Phenotypes by Expression Correlation

Correlation Count NLP Correlation Count NLP Correlation Count NLP

Triglyceride Weight 0.181 217 2.11 0.357 187 6.28 0.341 11650 312.0
Sugar Weight 20.092 212 0.74 20.550 187 15.43 20.697 11650 312.0
Triglyceride Sugar 0.059 205 0.40 20.456 187 10.27 20.429 11650 312.0

NLP, negative log10 p-value.
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signaling systems (Benoit et al. 2009), leading to increased appetite. In
addition, excess consumption of palmitic acid is thought to increase the
risk of cardiovascular disease (Cao et al. 2008; Fattore and Fanelli 2013).

In contrast, palmitoletic acid, a monounsaturated 16c fatty acid,
increases insulin sensitivity (Yang et al. 2011) and may influence fatty
liver deposition, and has thus been dubbed a “lipokine” for having
hormone-like effects (Cao et al. 2008). Palmitic acid also was correlated
significantly with weight in our dataset, whereas myristic acid (14c),
palmitic acid, and palmioletic acid were highly intercorrelated. The
strong correlation between these metabolites and the MetS-like symp-
toms suggests that all of these metabolites are excellent candidates for
mediating the genotype-by-diet effects of metabolic phenotypes.

Patterns in endophenotype and gross
phenotype correlations
Analyses focusing specifically onwhich transcripts andmetaboliteswere
correlated with multiple gross MetS-like phenotypes were also quite
illustrative.

Transcript-gross phenotype correlation: Gene transcripts correlated
with bothweight and triglycerides were enriched for oxidation-reduction
function (which is involved in central energy metabolism, a critical
component of maintaining energy homeostasis) and for the valine,
leucine, and isoleucine degradation pathway (BCAAs involved in gluco-
neogenesis, steroid synthesis, and appetite control as discussed previ-
ously). In the analysis of coexpressedmodules correlated with each of the
grossphenotypes studied,werecoveredsomemoduleshighlyenriched for
known importantmetabolic systems, suchas for componentsofComplex
1of the electron transport chainor for enzymes in theTCAcycle. Thus, as
previously demonstrated, functionallylinked metabolic genes can be re-
coveredonthebasisofcorrelatedexpressionpatternaloneandthen linked
to specific metabolic traits. This provides proof of principle that modules
lacking obvious previous functional information may contain very im-
portant functionally linked metabolic and disease genes.

We found many tightly correlated expression modules correlated
with MetS-like phenotypes had little or no previous functional charac-
terization. An example of one such model is triglyceride module five
from theMMC analysis that is also strongly correlated with weight and
sugar and contains only three genes, of which only one is annotated to
have any putative function (cytochrome P450). These newmodules will
be especially intriguing for future follow-updue to their potential tohelp
elucidate the new fundamental mechanisms linking phenotypes to
genetic and environmental conditions.

Metabolite-gross phenotype correlation: Two of the metabolites that
were correlated with body weight and one other phenotype, L-DOPA
and N-arachidonoyl dopamine (also with strong loadings on metPC2
correlated with weight, triglycerides, sugar, and arrhythmia index re-
ported in Reed et al. 2014), are important neurological signaling mol-
ecules. Additionally, a thirdmetabolite that correlated with both weight
and triglycerides was a yet to be determined catecholamine-like com-
pound. L-DOPA is the metabolic precursor to the neurotransmitter
dopamine, and dopamine can be converted into N-arachidonoyl do-
pamine by fatty acid amide hydrolase. N-arachidonoyl dopamine, also
known as NADA, is a recently discovered endocannabinoid (Bisogno
et al. 2000; Bellocchio et al. 2008). In mammals, NADA binds the
neuronal cannabinoid receptor CB1 and is an agonist for the vanilloid
receptor (TRPV1) (Ralevic 2003; Bisogno et al. 2005).

The endocannabinoid signalingsystemhasbeendescribedasplaying
a very important role in appetite regulation and obesity in mammals

Figure 5 Modularity of transcripts significantly correlated with weight,
triglycerides, and total sugar. Strong modularity of expression-phenotype
correlates is apparent. Significance determined at P , 0.01 (n = 80). Tran-
scripts are grouped by correlated expression pattern, with red indicating a
positive correlation and blue a negative correlation. Modules are numbered
from left to right, and the composition is given in Table 5 and File S4.
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(Bellocchio et al. 2008), but it has not been implicated previously in
appetite control in invertebrates. However, because we saw in our
studies that an endocannabinoid was correlated with weight and tri-
glyceride levels in Drosophila, as were two other catecholamine-related
metabolites, Drosophila may be a powerful tool to explore the link
between appetite and metabolic disease as mediated through the endo-
cannabinoid/catecholamine signaling system.

We also observed that gene transcripts correlated with NADA
were significantly enriched for enzymes in the tyrosine synthesis
pathway. The tyrosine pathway is responsible for the synthesis of
L-DOPA and dopamine, which are precursors to NADA, thus dem-
onstrating a logical confirmation of biological function recovered
from correlational data. In addition, the genes highly correlated with
L-DOPA include six that code for components of the electron

transport chain, themitochondrial system that drives ATP synthesis,
thus making an obvious potential link between the metabolite and its
impact on energy homeostasis in the organism.

Endophenotype-gross phenotype links across diets
Finally, in attempting to ascertain which endophenotypes contribute to
MetS-like phenotypes across multiple dietary conditions, we were sur-
prised to find a significant lack of common actors. The genes and
metabolites highly correlated with a phenotype on one diet were almost
never the endophenotypes that were most correlated with the phenotype
on a different diet. This places even greater importance on the few
endophenotypes that do correlate with MetS-like symptoms on multiple
diets.Onesuchgenegroup,whichcorrelatedwithweightonmultiplediets,
was enriched fornucleosomeorganizationand thusmaybe involved in the

n Table 5 Modulated modularity clustering analysis of genes correlated with traits

Trait Module
Number of
Transcripts

Average
Degree of
Correlation

Significance of Module
PC 1 Correlation With Trait Top GO

Category/Named Gene(S) KEGGWeight Triglyceride Sugar

Weight 25 23 0.612 ���� � Puparial adhesion (6, 1.9E-12)
Weight 28 15 0.580 ��� � Regulation of protein

polymerization (2, 2.2E-2)
Weight 32 25 0.544 ���� � Macromolecular complex

assembly (3, ns)
Weight 33 16 0.535 ���� �� Cytochrome P450 (2, ns)
Weight 36 20 0.521 ���� Proteasome regulatory particle,

lid subcomplex (2, 7.3E-3)
Proteosome (2, ns)

Weight 40 22 0.501 ��� Glycerol-3-phosphate metabolic
process (2, 9.0E-3)

Triglyceride 5 3 0.713 ��� ��� �� Cyp313a4
Triglyceride 6 4 0.608 � Posttranslational modification,

protein turnover,
chaperones (2, ns)

Triglyceride 7 6 0.564 �� RNA processing (4, 5.7E-4)
Sugar 6 17 0.758 ��� Oxidation reduction (7, 5.3E-5) Oxidative phosphorylation

NADH dehydrogenase
Complex 1 (4, 4.3E-3)

Sugar 7 4 0.725 ��� GSTE6/bloated tubules
Sugar 8 25 0.685 �� ��� Generation of precursor

metabolites and energy
(5, 9.8E-4)

Citrate cycle /TCA
cycle(4, 7.0E-4)

Sugar 9 4 0.652 �� ��� Collagen type IV
Sugar 10 9 0.612 ��� Oxidation reduction (2, ns)

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; TCA, tricarboxylic acid, � p,0.05, �� p,0.01, ��� p,0.001, ���� p,0.0001.

Figure 6 Transcripts significantly correlated by diet with weight, triglycerides, or sugar. Significance determined at P , 0.01 (n = 80). A
surprisingly low number of transcripts of 11,650 were found to be significant for more than one diet for weight (A), triglycerides (B), and total
sugar (C).
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epigenetic regulation of weight. Another example was N-arachidonoyl
dopamine, which correlated with both weight and triglycerides on mul-
tiple diets.

There are important evolutionary implications for the general lack of
conservationof correlated endophenotypes across diets and the inability
of correlation patterns in one genetic sample to generalize to a second
genetic sampleonaperturbingdiet.Thecanalizationof thephysiologyof
metabolism is apparent across genetically variable populations tested in
an environment to which they are well adapted. However, the break-
down of physiological homeostasis in a novel environment exposes
cryptic variation for disease thus helping to explain how maladaptive
traits such as those of MetS can occur at a high frequency in otherwise
well-adapted populations (Gibson and Reed 2008; Gibson 2009; Reed
et al. 2010, 2014). This suggests that great caution needs to be exercised
when drawing general conclusions about what endophenotypes in one
experiment, treatment, or population can tell us about the physiological
underpinning of phenotypes in another condition.

Returning to the original questions motivating this study, first, we
found that metabolomic and gene expression profiles both inform
prediction of genotype-by-diet effects on MetS-like phenotypes but in
a modular fashion. Individual pathways implicated by these correlated
endophenotypes frequently have genotype-specific, diet-specific, and
phenotype-specific effects, allowing for the largely independent influ-
ences from disparate components of metabolic physiology. Forward

stepwise regression identified a minimum set of genes or metabolites,
each representing independent upstream physiologies, needed to ex-
plain the maximum amount of variation in the gross phenotypes. We
were able to explain 10–56% of the variation in phenotype across the
population with eight or fewer variables, providing a handful of endo-
phenotypes that might be good for screening for metabolic disease,
many of whomhave no previous recognized association withmetabolic
disorders.

We also found that the correlation coefficients between endopheno-
types and the gross phenotypes were more strongly correlated with each
other across the population than the gross phenotypes were on their own.
Thus, analyzing co-occurring traits through their co-correlated endophe-
notypes such as in genetic mapping experiments may be much more
informative than analyzing the raw traits alone for identifyingmechanistic
genetic links. The increased power of metabolites to facilitate genetic
mapping has already been demonstrated in human metabolite GWAS
studies where genetic effects explaining 15260% of the variation in me-
tabolites levels can be detected (Adamski and Suhre 2013; Shin et al. 2014).

Second, some of the endophenotypes linking the gross phenotypes
of body weight, triglyceride storage, and sugars include metabolites like
L-DOPA andNADA, fatty acids, and BCAAs, as well as correlated gene
expressionmodules associatedwithpupariation,ATP synthesis, and the
TCA cycle. In addition, a number of genes and metabolites with no
previous association with MetS are implicated as candidates for met-
abolic homeostasis control through this study.

Third, the patterns of endophenotype-by-gross phenotype correla-
tions found in a genetically variable population in a stable environment
(i.e., control diet) can predict how a different genetic population will
perform in a perturbing environment (i.e., high-fat diet), but the per-
formance in a perturbing environment of one genetic population has
no predictive power of performance of a different genetic population in
that same perturbing environment. Therefore, a novel environment can
expose latent genetic variation for physiological traits that differentiates
populations that was not detectable in a stable environment. This has
broad reaching implications from whether analysis of endophenotypes
of predisease individuals can be informative of disease risk after a
change in lifestyle to how to best perform research linking endophe-
notypes to gross phenotypes in heterogeneous populations.

Overall, this study shows that a multitude of physiological mecha-
nisms influence a population exhibiting variation fordisease traits, some
that are specific to the genetic or environmental context of an individual
andothers that transcendgenetic and environmental influences. Parsing
larger endophenotype datasets into correlatedmodules has the potential
to identify genotypeswithuniquephysiologicalmechanisms for reacting
to changes in the environment. Thus, there aremultiple ways to achieve
similar phenotypic outcomes, and recognition of this phenomenon
could lead to the accelerated identification of the rare genetic variants
contributing to common disease.

This study illustrates the power of systems biology conducted in
model organisms to provide new insights into how the physiology of

Figure 7 Selected metabolites showing strong correlation with weight,
triglycerides, or total sugar. Values above the dashed line at 0 indicate
a positive correlation, while values below the dashed line indicate
a negative correlation. �Indicates a significant correlation at P , 0.01
(n = 80). L-DOPA was positively correlated with weight and negatively
correlated with sugar and uncorrelated with triglycerides.N-arachidonoyl
dopamine was negatively correlated with both weight and triglycerides
on all but the high fat diet, but not significantly correlated with sugar.

n Table 6 Gene expression and triglyceride storage correlations across experimental methods and diet

Methods Mircroarray Quantitative PCR

Diet Control Fat Control Fat
Microarray Control 0.0188 (-0.0588) 0.4867 (0.3379) 0.4195 (0.2859)

Fat 0.9003 (0.6946) 20.2501 (-0.4168) 20.2914 (-0.5079)
Quantitative PCR Control 0.0005 (0.0202) 0.09 (0.0036) 0.8606 (0.7299)

Fat 0.0033 (0.0514) 0.0469 (0.0003) <0.0001 (5.80E-09)

Correlations are shown above the diagonal and P-values below; values from subset of common genetic lines are in parentheses, values significant at p,0.05 indicated
in bold. PCR, polymerase chain reaction.
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complex disease with both genetic and environmental factors may be
parsed into more tractable experiments for mammalian and human
systems. If we can freely explore the enormous parameter space of these
physiologies and test preliminary hypotheses with relatively low risk in
an invertebrate model, we can investigate entirely new ways of thinking
about problems and perhaps find new promising avenues on which to
focus our research efforts andfinancial resources inhumans, avenueswe
might never have stumbled upon if we limited our focus to just humans.
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