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A B S T R A C T   

Why some children learn, and transfer their knowledge to novel problems, better than others remains an 
important unresolved question in the science of learning. Here we developed an innovative tutoring program and 
data analysis approach to investigate individual differences in neurocognitive mechanisms that support math 
learning and “near” transfer to novel, but structurally related, problems in elementary school children. Following 
just five days of training, children performed recently trained math problems more efficiently, with greater use of 
memory-retrieval-based strategies. Crucially, children who learned faster during training performed better not 
only on trained problems but also on novel problems, and better discriminated trained and novel problems in a 
subsequent recognition memory task. Faster learners exhibited increased similarity of neural representations 
between trained and novel problems, and greater differentiation of functional brain circuits engaged by trained 
and novel problems. These results suggest that learning and near transfer are characterized by parallel learning- 
rate dependent local integration and large-scale segregation of functional brain circuits. Our findings demon
strate that speed of learning and near transfer are interrelated and identify the neural mechanisms by which 
faster learners transfer their knowledge better. Our study provides new insights into the behavioral, mnemonic, 
and neural mechanisms underlying children’s learning.   

1. Introduction 

Efficient learning involves the ability to acquire knowledge quickly 
while also being able to transfer the newly acquired knowledge beyond 
specific contexts and instances. A fundamental unresolved question in 
the science of learning is why some individuals learn and transfer their 
knowledge better than others, a question first posed by Thorndike in his 
seminal studies of learning (Thorndike, 1906). This issue is particularly 
relevant in childhood when transfer of knowledge is critical for suc
cessful learning and cognitive development (Spelke, 2000). Here we 
employ an individual differences approach to address critical gaps in our 
understanding of brain and cognitive mechanisms that support learning 
and near transfer in elementary school children. 

Cognitive training in adults has been shown to be effective in 
improving performance on specific tasks and problem sets that in
dividuals are trained on. Whether training also improves performance 
on novel problems or contexts remains controversial, even for near 

transfer involving “transfer tasks that share many elements with the 
practiced tasks” (Simons et al., 2016). Possible reasons are that extant 
studies have focused on difficult-to-achieve “far” transfer effects across 
disparate cognitive domains and contexts (Melby-Lervåg and Hulme, 
2013) and few have considered individual differences in learning that 
may influence transfer abilities to novel problems (Jaeggi et al., 2011). 
Whether cognitive training facilitates “near” transfer of knowledge be
tween trained and novel, but structurally similar, problems remains 
unresolved (Jaeggi et al., 2014). Understanding the mechanisms un
derlying individual differences in learning and near transfer is thus 
crucial for addressing this question and, specifically, for determining 
why some children learn and transfer their knowledge better than 
others. 

Investigations of the brain basis of learning and transfer are faced 
with a central challenge. On the one hand, learning of specific instances 
should lead to formation of more distinct or segregated circuits that 
allow trained problems to be processed differently from novel ones 
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(Bassett et al., 2015; Iuculano et al., 2015; Jolles et al., 2013). On the 
other hand, generalizable knowledge should depend on formation of 
shared neural representations and functional integration of circuits 
involved in processing trained and novel problems (Dahlin et al., 2008; 
Schlichting et al., 2015). Thus, learning and transfer may rely on 
competing neural mechanisms; consequently, a major unaddressed 
question in the field is whether segregation and integration processes 
occur in parallel to support different aspects of learning. In the present 
study, we use multiple brain imaging analysis techniques to investigate 
this question by examining overlap of neural representations within 
specific brain areas as well as segregation of large-scale functional brain 
circuits during a critical stage of cognitive skill acquisition in elementary 
school children. 

We developed a novel interactive five-day math tutoring program 
(Fig. 1) and data analysis approach (Fig. 2), which allowed us to charac
terize individual differences in learning profiles, its relation to near 
transfer, and the neural mechanisms underlying successful learning and 
near transfer in children. We focus on arithmetic problem solving in which 
learning-related brain and behavioral changes, as well as changes in 
problem-solving strategies, can be systematically assessed in a quantita
tively rigorous manner (Anderson et al., 2014; Cho et al., 2011; Delazer 
et al., 2003; Geary, 2011; Rosenberg-Lee et al., 2018). Understanding 
mechanisms underlying successful learning and near transfer in this 
domain is particularly relevant in today’s technologically-driven world as 
arithmetic knowledge provides foundational knowledge and skills gained 
in early childhood are strongly predictive of later academic achievement 
and professional success (Butterworth and Walsh, 2011; Faulkner, 2008; 
Geary, 2011; Geary et al., 2017; Jordan et al., 2009). 

Behavioral studies have shown that repeated practice is associated 
with improved performance and a shift from effortful procedural to 

memory-based retrieval strategies during arithmetic problem solving 
(Barrouillet and Fayol, 1998; Imbo & Vandierendonck, 2008; LeFevre 
et al., 1996; Logan, 1988; Siegler and Shipley, 1995; Siegler & Shrager, 
1984). Neuroimaging studies in adults have demonstrated that arith
metic training is associated with decreased activation in the 
fronto-parietal cortex and relative increases in the left angular gyrus 
(Delazer et al., 2003, 2005; Grabner et al., 2009; Ischebeck et al., 2006) 
and the medial temporal lobe (MTL) (Bloechle et al., 2016; Klein et al., 
2018). In children, the hippocampus has been implicated in 
training-related performance gain and increase in retrieval rates as well 
as age-related changes in brain activation and neural representational 
stability (Qin et al., 2014; Rivera et al., 2005; Rosenberg-Lee et al., 2018; 
Supekar et al., 2013). However, there have been no systematic in
vestigations of how children’s learning and near transfer of 
problem-solving knowledge and skills varies across individuals. Here we 
employ an individual differences approach to address critical gaps in our 
understanding of brain and cognitive mechanisms that support learning 
and near transfer of arithmetic problem-solving skills in elementary 
school children. 

Prior to tutoring, children aged 8–10 years completed a basic arith
metic fluency test, used to control for baseline math ability, and a 
strategy assessment task, which assessed the relative use of retrieval and 
elaborate verbal and finger counting procedures during problem solving 
(Wu et al., 2008). During tutoring, children practiced a set of 
double-digit plus single-digit addition problems – problems not typically 
solved by memory retrieval without deliberate practice and appropriate 
for training 8–10 years old children – across five sessions within a 
one-week period. The tutoring was designed to facilitate arithmetic 
problem-solving skills as well as rapid retrieval of math facts through 
interactive sessions with a tutor (Supekar et al., 2013). The present study 

Fig. 1. Training protocol and sample tutoring materials. (a) Before training, children completed a WJ-III math fluency test, a strategy assessment, and received an 
introductory lesson for addition problem solving. Training sessions were spread across five days within a week and consisted of a variety of activities for solving 14 
problems in the training set. The number of exposures to each problem in each activity is reported in parenthesis. Each problem was presented 14 times per day, and 
70 times over the training period. At the end of training, children’s problem-solving strategies for trained and novel problems were reassessed. After training, children 
completed a fMRI task that involved solving trained and novel problems in the scanner. This was followed by a recognition memory task, outside of the scanner, in 
which children were asked to discriminate between problems they have practiced during tutoring and those they saw in the fMRI task. The type of problems 
presented at each stage are indicated below the training protocol. (b) Sample materials used in the tutoring. In flash cards, children verbally produced an answer to 
trained problems presented on a physical flash card. The tutor proceeded to the next problem once a correct answer was provided. Children completed untimed flash 
cards without a timer. In timed flash cards, the tutor marked the time children spent in each of three rounds (each round: full deck of trained problems) on a sailboat. 
Children were instructed to try to beat their previous time(s). In computerized flash cards, children typed in their answer to trained problems and received feedback on 
their response. In treasure hunt, children placed physical cards with trained problems on numbers corresponding to the answers in a ‘treasure map.’ Upon completion 
of all tutoring activities, children filled a treasure board and received a prize. (c) Sample lesson presented during tutoring. At pre-training and on training days 1–3, 
children reviewed a break-apart strategy with the problems in the training set and were encouraged to solve them using a method of their choice. On training days 
4–5, children were asked to retrieve answers directly from memory whenever possible. 
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used a similar one-on-one tutoring protocol as in Supekar et al., but here 
we used more complex addition problems and employed a more inten
sive, short-term training lasting 5 days. Similar to experimental designs 
used in arithmetic training studies of adults (Delazer et al., 2003), 
children’s performance on both trained and novel problems were 
examined post-training. Crucially, performance on trained problems 
was assessed by a computerized task on each of the 5 days of tutoring 
and individual learning profiles were determined in each child. To our 
knowledge, no other studies used a similar experimental design and 
individual differences approach in 8–10 years old children. 

Following tutoring, children’s problem-solving strategies were reas
sessed. Children were asked to solve recently trained problems intermixed 
with a set of novel addition problems during a functional magnetic reso
nance imaging (fMRI) scanning session. Novel problems, matched to 
trained problems in structure and difficulty, were presented only at post- 
training fMRI session in order to minimize exposure to these problems, 
similar to the experimental design used in arithmetic training fMRI studies 
in adults (Delazer et al., 2003, 2005; Grabner et al., 2009; Ischebeck et al., 
2006). After the fMRI scan, a recognition memory task was administered 
outside of the scanner to determine children’s ability to discriminate be
tween trained and novel problems. By carefully designing matched two 
types of problems, trained and novel, only varying in whether or not they 
were practiced, the current study examined training-induced differences 
between these problems while minimizing practice effects on novel 
problems. 

We first examined behavioral performance and strategies used to 
solve problems before and after training. We hypothesized that training 
would result in more efficient performance and increased reliance on 
memory-retrieval-based strategies for trained, compared to novel, 
problems, similar to past developmental and training studies (Bar
rouillet and Fayol, 1998; Delazer et al., 2003; Siegler and Shipley, 1995). 
We next examined brain activation levels for trained versus novel 
problems. Based on previous developmental findings (Skeide et al., 
2018; Qin et al., 2014; Rosenberg-Lee et al., 2018) and training studies 
(Bloechle et al., 2016; Klein et al., 2018), we predicted that for trained, 
compared to novel, problems after training, children would exhibit 

greater responses in the MTL, reflecting greater engagement of learning 
and memory systems for specific problems they had practiced, and a 
relative decrease in fronto-parietal network activation, due to reduced 
working memory demands (Chein & Schneider, 2012; Salmi et al., 2018) 
for practiced problems (Delazer et al., 2003). 

We then examined individual differences in learning and tested the 
hypothesis that children who were faster learners, with steeper learning 
curves across training, would, after training, solve novel problems more 
efficiently, reflecting near transfer. We investigated whether faster 
learning rate would be associated with greater ability to discriminate 
between trained and novel problems. To elucidate the neural mechanisms 
by which individuals transfer their learnt knowledge to novel problems, 
we then used representational similarity analysis (RSA). RSA provides a 
unique window into common neural patterns of information processing 
across task conditions and problem types within specific brain areas 
(Haxby et al., 2014; Kriegeskorte et al., 2008). Here, we used RSA to assess 
the degree of overlap in the spatial patterns of brain activity between 
trained and novel problems and predicted that, after training, faster 
learners would exhibit greater similarity in neural representations be
tween trained and novel problems, reflecting integration of local neural 
representations across structurally similar problems. To determine how 
learning rate influences responses to individual problems, we examined 
stability of neural representational patterns, across individual trained or 
novel problems. Building on a previous study where we found that neural 
representations of individual problems become more stabilized across 
cognitive skill development (Qin et al., 2014), we hypothesized that 
children who learn faster would reach later stages of learning more 
quickly and demonstrate greater neural representational pattern stability 
across individual problems. 

Finally, we examined whether individual differences in learning 
rates are associated with greater segregation of functional circuits 
associated with trained and novel problems. We reasoned that as a child 
acquires greater expertise, specific functional brain pathways would be 
preferentially strengthened (Jolles et al., 2016). Thus, we hypothesized 
that faster learners would show greater differentiation between func
tional circuits and reconfiguration of large-scale brain networks engaged 

Fig. 2. Schematic overview of analysis approach. Behavioral and neural correlates of learning outcomes were examined (i) at the group level and (ii) in terms of 
individual differences in learning and near transfer across trained and novel problems. Trained problems consisted of a set of 14 addition problems learned across five 
days; Novel problems consisted of a set of 14 novel addition problems that were matched in difficulty to Trained problems. Behavioral performance was assessed 
using an efficiency score (ES) in each child that was based on accuracy and reaction times. Learning rates were computed in each child using an exponential 
regression fit to daily ES of trained problems (see Methods for details). 
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by trained and novel problems including the MTL and fronto-parietal 
cortical regions that support numerical problem solving in children 
(Arsalidou et al., 2018; Cho et al., 2012; Menon, 2016). Together, this 
approach allowed us to uncover the neurocognitive mechanisms by 
which rapid learning facilitates enhanced near transfer in children. 

2. Methods 

2.1. Participants 

A total of 29 children in 3rd and 4th grades (age: M ¼ 9.49, SD ¼ .46, 
14 females) were recruited with flyers sent to schools and posted at li
braries and community centers in the San Francisco Bay Area. All par
ticipants were right-handed and did not report any current neurological 
or psychiatric illness. All study protocols were approved by the Stanford 
University School of Medicine Institutional Review broad and informed 
consent was obtained from the parents of the children. Children received 
$50 for participating in the training program and $50 for completing the 
fMRI scanning session. Children had average to above average math 
abilities as reported by their parents and confirmed using the Mathe
matical Fluency subtest of the Woodcock Johnson Third Edition (stan
dardized score: M ¼ 107.50, SD ¼ 12.96; percentile rank: M ¼ 65.45, 
SD ¼ 26.86; WJ-III, Woodcock et al., 2001). 

fMRI data from 22 children (age: M ¼ 9.46, SD ¼ .48, 10 females) were 
investigated in the current study; data from 7 children were excluded due 
to (i) missing behavioral data recorded from the fMRI task (n ¼ 3) or (ii) 
inadequate whole brain coverage or excessive head movement (see fMRI 
preprocessing section below) in the scanner (n ¼ 4). Analysis of the in
fluence of learning rate on brain activity and connectivity was based on 
data from 17 children (age: M ¼ 9.42, SD ¼ .53, 8 females) who had 
complete behavioral data on a computerized flash card task administered 
in each training session across the five training sessions as well as high- 
quality fMRI and in-scanner behavioral data. These sample sizes were 
determined to be adequate based on previous fMRI studies of learning in 
adults (Delazer et al., 2003, 2005). Critically, each child performed four 
runs of an event-related fMRI task (as described below) which signifi
cantly enhanced power to detect effects of interest within each individual, 
similar to fMRI designs used in visual neuroscience research (Nee, 2018). 

2.2. Training sets 

There were two training sets, Group A and Group B (Supplementary 
Figure S5 shows all problems), counterbalanced across participants. 
Problems used as training set (presented across training sessions) in Group 
A (or Group B) was used as novel set (presented in fMRI task) in Group B 
(or Group A). The training (or novel) sets consisted of 14 single-digit plus 
double-digit problems. The stimuli were created by taking all the possible 
single-digit problems with operands from 2 to 9, excluding ties. This set 
contained 56 problems of which 28 had the smallest number first and 28 
were the reverse problems with the largest digit first. We divided the 28 
smallest digit first problems into two well-balanced sets of 14 such that the 
sum of each set equaled exactly 154. Specifically, each set had 6 ‘small’ 
problems with sums of 10 or less and 8 ‘large’ problems with sums of 11 or 
more.1 In both sets, the sum of all the small problems was 49 and the sum 
of all the large problems was 105. The problems were randomly assigned 

to be involved in seven double-digit first or seven double-digit second 
problems, such that the total sum of either type of problems was 77. For 
each training set, the numbers 2–9 appear at least once in the single-digit 
spot. Decade values in the double-digit operands ranged from 20 – 80. 
These seven values were added to the first operand in the seven double- 
digit first problems and to the second operand in the seven double-digit 
second problems. The assignment of decades to single-digit problems 
had several constraints: (1) double-digit multiples of 11 were excluded; 
(2) amongst the set of 14 problems, at least one problem summed to a 
value in each of the decades from 20 to 90; (3) within the training sets, 
sums were separated by at least 3 units; (4) between the training sets all 
sums were unique. 

We also created alternate novel sets that were used as novel problems 
in strategy assessments and unseen problems in recognition memory 
task (see below for task descriptions). These stimuli were created using 
the same single-digit problems as the A and B sets, but reversing the 
presentation order. Thus all 56 single-digit problems were used once. 
The same procedure was used to produce the double-digit operands, 
except that a few criteria were relaxed because there were no problems 
which met all of the criteria. Specifically, we allowed double-digit 
numbers to be multiples of 11, divisions of the stimuli into two groups 
had sums from 76 to 78 instead of 77 exactly and not all sums were 
unique between the alternate sets. Between the training sets and the 
alternate sets, all problems were unique (including reverses), but sums 
did repeat. 

2.3. Training protocol 

The overall training protocol is summarized in Fig. 1. Children 
participated in five days of training with a tutor, after completing WJ-III 
Math Fluency sub-test, strategy assessment, and introductory lesson for 
addition problem solving. 

Strategy assessment. Children completed a 28-item pre-training 
strategy assessment in which they were asked to solve the problems 
from the training set (either A or B, counterbalanced across participants) 
and an alternate novel set. After providing their answers, children were 
asked which method they used to solve the problem, including counting, 
decomposing the problem, or retrieving the answer from memory. 
Children’s responses and the category of the strategy used were recorded 
by trained assessors. Despite the inherent noise in this approach, this 
method has been shown to have good fidelity to expected response 
pattern across problem types (Wu et al., 2008). Children solved the same 
problems in a different order before and after training. Half of the 
problems for strategy assessment consisted of problems that were later 
practiced during training (trained problems), and the other half were 
novel problems. Trained and novel problems were designed to be 
matched in structure and difficulty. 

Introductory lesson. After the strategy assessment, all problems were 
drawn from the training set for that participant (A or B). To facilitate 
learning of complex arithmetic, children were introduced to a break- 
apart strategy that involved breaking down a double-digit number to a 
multiple of 10 plus single-digit numbers (e.g., 65 þ 7 ¼>
60 þ 5 þ 7 ¼ 60 þ 12 ¼ 72). On a 14-problem worksheet, the tutor 
demonstrated this method on a problem not involving a carry and then 
asked the child to use it for the next non-carry problem. Then the tutor 
demonstrated the method on a carry problem and asked the child to 
solve two more problems using this method. Children then completed 8 
problems using the method of their choice. For the final problem, they 
were instructed to use the break-apart rule. 

2.4. Five-day training 

Training consisted of the multiple activities across five days (see 
Supplementary Materials for details). Fig. 1a lists the activities seen each 
day and the number of exposures to each problem in each activity. 
Tutoring gradually strengthened associations between problems and 

1 It should be noted that carry operation was not manipulated within each 
problem size category: a ‘small’ problem that sums to 10 and all ‘large’ prob
lems involve carry operations, while ‘small’ problems that sum to less than 10 
do not require carry operations. Nonetheless, these problems were carefully 
distributed across two problem sets (trained and novel) to be matched in dif
ficulty and counterbalanced across participants to allow comparisons between 
trained and novel problems. Future studies may benefit from an experimental 
design that manipulates both problem size and carry operations to understand 
whether individuals learn these problems differently. 
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answers for trained problems through repeated practice (14 times per 
problem each day). For the first three days of tutoring, children prac
ticed solving the addition problems using the break-apart method; in the 
last two days, children were asked to retrieve answers directly from 
memory whenever possible. Children accumulated stickers for 
completing each activity. Each tutoring session took less than one hour. 
Upon completion of all activities, children accumulated 20 stickers on a 
“treasure board” and selected a small plastic prize from a “treasure box.” 

2.5. Learning rate 

Each individual’s learning rate was computed by first regressing 
their efficiency score (ES: accuracy divided by mean reaction time for 
correct trials) on days of training in an exponential regression model 
(y ¼ aebx). Participants’ initial performance on computerized flash card 
task (intercept of learning curve) and their standardized score of WJ-III 
math fluency test were then regressed out from the slope of the learning 
curve. Higher scores indicated faster learning rates. Ranging from -1.72 
(slowest learner) and 1.16 (fastest learner), this measure of learning rate 
controlled for basic arithmetic fluency and initial task performance. 

2.6. fMRI task 

Participants completed a delayed verification task in the scanner 
(Supplementary Fig. 1). Participants held a custom-made MR-compat
ible button box, in their right hand. Each trial began with a 500 ms 
fixation cross, followed by a double-digit plus single digit problem 
presented for 6 s. During the response phase, a possible sum was pre
sented for up to 3 s. Participants were instructed to press the left button 
with their index finger if the potential solution was the correct answer or 
the right button with their middle finger if it was incorrect. Upon indi
cating their choice, a blank screen was presented until the full 10-second 
trial length was reached. Trials were followed by a jitter period ranging 
from 8 to 12 seconds. 

In each run, 7 trained and 7 novel problems were drawn from the set 
of 14 trained problems that participants practice during training, and 14 
novel problems (different from the set of novel problems used in the 
strategy assessment). There were 4 runs total, and participants saw each 
problem twice, once in the first two runs, and once in the second two 
runs. The problems were randomly assigned to appear in the first or 
second run. For the third and fourth runs, a new random distribution of 
the items was used. Each run lasted 4 min and 50 s, including 10 s at the 
beginning of each run to allow for scanner equilibration. 

In each run, half the problems were presented with their correct sums 
and the other half were presented with incorrect sums. Incorrect sums 
were created by adding or subtracting 1, 2, or 10 from the correct sum2 . 
In each run all possible incorrect sums were used once. One extra 
problem with either þ1 or -1 was included to have seven incorrect 
problems. If the first run had an extra þ1 trial, then the second run 
would have the -1 trial and vice versa. Problems with presented sums 
that differed by þ10 and -10 from the correct answer were used to 
prevent participants from using only the ones digit to solve the 

problems. Within each run correct and incorrect problems were pre
sented in a pseudo-random order where no more than 3 correct or 
incorrect problems appeared in a row. 

2.7. Recognition memory task 

After the fMRI task, participants performed a source memory test 
aimed at assessing their explicit knowledge of problems in the training 
set and problem seen in the scanner. Participants saw 42 problems in 
total, presented in a random order: 14 problems they practiced in 
tutoring (trained problems), 14 novel problems they saw in the scanner 
(novel problems) and 14 problems they had not seen before (unseen 
problems). For each problem participants were first asked: Did you see 
this problem in the scanner? (seen in the scanner question) and then asked: 
Did you practice this problem in tutoring? (practiced in tutoring question). 
For each problem type, children’s accuracy in identifying whether it was 
seen in the scanner and whether it was seen in tutoring was computed. 
Children’s discrimination sensitivity (d’: z (hit rate) – z (false alarm 
rate)) was measured using responses to problems recently seen and 
unseen for seen in the scanner question and those to trained and novel 
problems for practiced in tutoring question. For individuals with false 
alarm rates of 0, false alarm rate of 1

2 � number of lures was used to reduce 
biased estimates. 

2.8. fMRI data acquisition 

Images were acquired on a 3 T GE Signa scanner (General Electric, 
Milwaukee, WI) using a custom-built head coil at the Stanford Univer
sity Lucas Center. Head movement was minimized during the scan by 
cushions placed around the participant’s head. A total of 31 axial slices 
(4.0 mm thickness, 0.5 mm skip) parallel to the anterior commissure 
(AC)-posterior commissure (PC) line and covering the whole brain were 
imaged with a temporal resolution of 2 s using a T2* weighted gradient 
echo spiral in-out pulse sequence (Glover and Lai, 1998) with the 
following parameters: TR ¼2 s, TE ¼ 30 msec, flip angle ¼ 80�, 1 inter
leave. The field of view was 22 cm, and the matrix size was 64 � 64, 
providing an in-plane spatial resolution of 3.4375 mm. To reduce blur
ring and signal loss from field inhomogeneity, an automated high-order 
shimming method based on spiral acquisitions was used before 
acquiring functional MRI scans (Kim et al., 2002) 

2.9. fMRI preprocessing 

Functional MRI data were analyzed using SPM8 (http://www.fil.ion. 
ucl.ac.uk/spm/). The first 5 volumes were not analyzed to allow for T1 
equilibration. A linear shim correction was applied separately for each 
slice during reconstruction (Glover and Lai, 1998). Images were real
igned to the first scan to correct for motion and slice acquisition timing. 
Following procedures similar to those used in AFNI 3dDespike (Cox, 
1996), deviant volumes resulting from spikes in movement greater than 
0.5 voxels or spikes in the global signal greater than 5% were then 
interpolated using the two adjacent scans. All participants included in 
the analysis had less than 10% of volumes interpolated from spikes due 
to movement and less than 15% total volumes interpolated. Images were 
then spatially normalized to standard MNI space using the echo-planar 
imaging template provided with SPM8, resampled every 2 mm using 
trilinear sinc interpolation, and smoothed with a 6 mm full-width 
half-maximum Gaussian kernel to decrease spatial noise prior to statis
tical analysis. 

2.10. fMRI statistical analyses 

Task-related brain activation was identified using the general linear 
model (GLM) implemented in SPM8. In the individual subject analyses, 
interpolated volumes flagged at the preprocessing stage were de- 

2 Considering the possibility that the difficulty of arithmetic problems may 
vary depending on the distance between the correct answer and presented so
lution, we have carefully matched the distribution of different distances be
tween trained and novel problems in order to minimize interaction with such 
distance effect. In fact, we found a significant main effect of problem type 
(trained, novel), F (1, 21) ¼ 9.91, p ¼ 0.0049, and a significant main effect of 
absolute distance between correct answer and presented solution (0,1,2,10), F 
(3, 63) ¼ 31.27, p < .001, but did not observe a significant interaction between 
problem type and distance, F (3, 63) ¼ 0.95, p ¼ 0.42. Thus, while participants’ 
performance varied across problems with different distances between correct 
answer and presented solution, these variations were not significantly different 
between trained and novel problems. 
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weighted and did not contribute to calculating the model fit. Brain ac
tivity representing correct and incorrect trials for each trained and novel 
condition – a total of four conditions – was modeled using boxcar 
functions corresponding the 6 s where the problem was presented and 
convolved with a canonical hemodynamic response function and a 
temporal dispersion derivative to account for voxel-wise latency dif
ferences in hemodynamic response. Additionally, six movement pa
rameters generated from the realignment procedure were included as 
regressors of no interest. Low-frequency drifts at each voxel were 
removed using a high-pass filter (.5 cycles/min). Serial correlations were 
accounted for by modeling the fMRI time series as a first-degree autor
egressive process. Voxel-wise t-statistics maps contrasting correct trials 
for trained and novel problems were generated for each participant. 
Significant activation clusters, were identified using a height threshold 
of p < .01, with whole-brain family-wise error rate correction at p < .01 
(cluster extent of 128 voxels) based on Monte Carlo simulations using 
custom Matlab scripts. 

2.11. Multivoxel representational similarity analysis 

To assess the neural representation shared across trained and novel 
problems, indicative of near transfer of knowledge, multivariate spatial 
correlation of patterns of brain activity between trained and novel 
problem solving was computed across the whole brain in each individ
ual. Specifically, representational similarity across two conditions in the 
neighborhood surrounding each voxel of each individual’s brain was 
obtained using a searchlight mapping method (Kriegeskorte et al., 2006, 
2008). First, a 6-mm spherical region centered on each voxel was 
selected. Next, similarity between trained and novel problems (we only 
included correct trials) was computed within this region using the 
spatial correlation between voxel-wise brain activation (beta-weights). 
Searchlight maps were then created for each individual by going 
through every voxel across the whole brain. Parametric correlation an
alyses were performed between similarity scores and the behavioral 
index of learning rate to examine whether the extent of similarity in the 
patterns of neural activity between trained and novel items relate to 
individual differences in learning. Significant clusters were determined 
using the same threshold criterion noted above. 

2.12. Multivoxel pattern stability analysis 

A trial-by-trial pattern stability analysis was implemented to obtain a 
measure of inter-problem pattern stability (Qin et al., 2014), separately 
for trained and novel problems, in the neighborhood surrounding each 
voxel in each participant’s brain. Inter-problem neural pattern stability 
scores only for correctly solved problems were computed using a pair
wise correlation method in a 6-mm spherical region centered on each 
voxel. Pairwise correlation maps of two consecutive neighbor trials were 
excluded in order to mitigate potential collinearity because of close 
proximity in time. The averaged similarity scores were assigned to the 
central voxel and repeated across all brain voxels to create 
participant-specific similarity maps. These searchlight maps were sub
sequently entered into a second-level random effects analysis to deter
mine variations in pattern stability in each participant. Significant 
clusters were determined using the same threshold criterion noted 
above. 

2.13. Functional connectivity analysis 

A seed-based generalized psychophysiological interaction (gPPI) 
analysis (McLaren et al., 2012) was performed to examine functional 
connectivity of the right MTL seed with the rest of the brain during 
trained, compared to novel, problem solving. The seed ROI was defined 
as a 5-mm sphere centered at the peak of the right MTL cluster where a 
significant association between similarity across trained and novel items 
and learning was observed. Functional connectivity was modeled using 

a standard GLM at the individual subject level. To control for 
task-related activation, physiological noise, and other confounding 
factors, (i) the four task conditions (correct and incorrect trained and 
novel problems; psychological variable), (ii) deconvolved average time 
series from the seed ROI (physiological variable), and (iii) 6 motion 
parameters were included as regressors of no interest. Psychophysio
logical regressors of interest were defined as a product of the first two 
regressors (psychological and physiological variables) convolved with a 
canonical HRF. Contrast images corresponding to trained, compared to 
novel, condition were entered into a group level analysis. Learning rate 
was included as a regressor of interest to determine whether the func
tional connectivity of the seed ROI with the rest of the brain is associated 
with individual differences in learning. Significant clusters were deter
mined using the same threshold criterion noted above. 

2.14. Network analysis 

Network analysis was performed to investigate discriminability of 
large-scale brain network connectivity patterns between trained and 
novel problems, and its relation to individual learning rates. Network 
nodes were defined using 5-mm spheres centered at regional peaks in 
brain activation for correctly solved trained and novel problems. For 
each participant and for each task condition (trained and novel), a 
23 � 22 connectivity matrix, excluding the diagonal elements, was 
created using gPPI. To ensure normality, connectivity values across the 
two task conditions were first z-transformed. We then used a linear SVM 
classifier (LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvm/) and 
leave-one-out cross validation to determine discriminability of func
tional connectivity patterns between trained and novel problems. For 
each participant we then computed the sum of the distance from the 
hyperplane to trained and novel problems to obtain network connec
tivity pattern distance between trained and novel problems and exam
ined its relation to individual differences in learning rate, using a similar 
procedure to build the hyperplane separating two conditions as Uddin 
et al. (2011). 

3. Results 

3.1. Training improves behavioral performance and increases children’s 
use of retrieval strategy, with some children learning faster than others 

We examined training-induced improvements in behavioral perfor
mance using multiple quantitative assays. 

Assessment of learning over 5 days of training. Computerized flash 
cards were used to examine learning. To control for variations in speed- 
accuracy tradeoff and to lower the probability of type I errors by 
reducing the number of statistical tests required, we computed a com
posite efficiency score (ES; Townsend and Ashby, 1978), obtained by 
dividing accuracy by mean reaction time, for each child on each day. 
Over the course of training, participants improved significantly on 
trained problems from day 1 (ES: M ¼ 0.14, SD ¼ 0.05) to day 5 (ES: 
M ¼ 0.23, SD ¼ 0.08; F (4, 64) ¼ 39.69, p < .001). Next, we fitted daily 
measures of the ES in an exponential regression model (y ¼ aebx) to 
determine each child’s learning rate b. Learning curves were well fit by 
the exponential regression (y ¼ 0.125e0.133x, adjusted R2 ¼ 0.99, p <
0.001), with large individual differences in learning rates (coefficient of 
variation ¼ 0.34; Fig. 3a). 

fMRI task performance on trained and novel problems. After training, 
participants performed significantly better on trained (ES: M ¼ 0.72, 
SD ¼ 0.17), compared to novel (ES: M ¼ 0.65, SD ¼ 0.14), problems (t 
(21) ¼ 4.2, p < 0.001; Fig. 3b). 

Strategies used for solving trained and novel problems. We examined 
children’s strategies for problem solving before and after training, 
including direct memory-based retrieval, counting, and other proce
dural strategies (Wu et al., 2008). Training increased children’s use of 
direct memory-based retrieval strategies for both trained (22%–71%) 
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and novel (19%–43%) problems. Increases in memory-based retrieval 
strategies were greater for trained (M ¼ 0.50, SD ¼ 0.36), compared to 
novel (M ¼ 0.24, SD ¼ 0.30) problems (t (20) ¼ 3.50, p ¼ 0.002; Fig. 3c). 

These results demonstrate that five days of training results in sig
nificant performance gains and increased use of memory-based retrieval 
strategies for trained problems. 

3.2. Faster learners show greater transfer to novel problems 

We examined how individual differences in learning rate during 
training influences performance on trained and novel problems. 
Learning rates predicted performance on both trained (r ¼ 0.57, p ¼
0.018; Fig. 4a) and novel (r ¼ 0.62, p ¼ 0.008; Fig. 4b) problems per
formed during fMRI scanning. The correlation between learning rate and 
performance did not differ between trained and novel problems (z ¼
-0.53, p ¼ 0.60). Because we controlled for arithmetic problem-solving 
abilities prior to training, these effects are driven by differences in 
training-induced learning rather than pre-existing differences. Learning 
rate was not significantly associated with pre-training math fluency or 
retrieval strategy use (rs � 0.25, ps � 0.33), which further rules out the 
possibility that faster learners were better at arithmetic or used more 
retrieval strategy before training. These results suggest that faster 
learners perform better not only on problems they learned during 
training but were also able to transfer their skills to novel but struc
turally similar problems. 

3.3. Faster learners show better discrimination between trained and novel 
problems 

We then investigated whether individual learning rates during 
training are associated with children’s ability to discriminate between 
trained and novel problems. Following the fMRI scan, we presented 
children with the same trained and novel problems that they had just 
solved during the fMRI scan, along with novel lures they had not seen in 
either the training sessions or during fMRI scanning. Children were 
asked to determine whether they practiced the presented problem dur
ing the 5 days of tutoring. We found that learning rates were positively 
correlated with discrimination sensitivity (d’) between trained and 
novel problems (r ¼ 0.60, p ¼ 0.011; Fig. 4c). Children were also asked 
to determine whether the problem had been presented during fMRI 
scanning itself. In this case, learning rates were not significantly corre
lated with d’ between recently seen (trained and novel) and unseen 
problems (r ¼ 0.18, p ¼ 0.50). These results indicate that faster learners 
do not simply have better recognition memory overall, as they were not 
better than slower learners at distinguishing between trials seen and 
unseen during fMRI scanning. Rather, faster learners had better recol
lection of which specific problems they had practiced during the five 

days of training. 

3.4. Training-induced differences between trained and novel problems in 
the MTL and neocortical systems in children 

To identify overall training-related differences between problems in 
neural activity, we contrasted brain responses between correctly solved 
trained and novel problems. We found that trained problems elicited 
significantly greater activity in the anterior and medial hippocampus 
(HIP), parahippocampal gyrus (PHG), the middle temporal gyrus, and 
the angular gyrus bilaterally, as well as the left medial prefrontal cortex 
and the right posterior cingulate cortex. We also observed significantly 
reduced activity for trained problems in the inferior frontal gyrus, 
intraparietal sulcus, supramarginal gyrus, supplementary motor area, 
middle occipital gyrus, cerebellum, and the right caudate (Fig. 5; Sup
plementary Table S1). These results indicate that five days of training 
decreases engagement of fronto-parietal systems and increases 
involvement of the MTL and angular gyrus on trained, compared to 
novel, problems. 

3.5. Faster learners show greater representational similarity between 
trained and novel problems in the MTL and neocortex 

To investigate how learning influences shared neural representations 
across trained and novel problems, we conducted an RSA between the 
two types of problems across the whole brain and then examined its 
relation to individual learning rates. We found that learning rates pre
dicted representational similarity in the right MTL (both HIP and PHG) 
with local maximum at MNI coordinates x ¼ 38, y ¼ -10, z ¼ -28 (r ¼
0.59, p ¼ 0.012; Fig. 6), and in multiple temporal and frontal cortical 
regions (Supplementary Figure S2; Supplementary Table S2). These re
lations were specific to multivoxel representations, as activation levels 
in these regions were not correlated with learning rate (Supplementary 
Figure S3). These results indicate that faster learners show a greater 
degree of shared neural representations between trained and novel 
problems, reflecting a key mechanism underlying near transfer. 

3.6. Faster learners show greater stability of representational patterns 
between individual novel problems in the MTL and IPS 

To investigate how learning rate influences neural responses to in
dividual problems, we conducted analysis on a trial-by-trial stability of 
multivariate representational patterns, known to be associated with 
cognitive skill development (Qin et al., 2014), separately for trained and 
novel problems. We found that multivoxel representational similarity 
across individual novel trials in the right MTL (HIP) and the right 
intraparietal sulcus was positively correlated with learning rate 

Fig. 3. Behavioral changes with training. (a) Individual learning profiles assessed by efficiency score (ES) for trained problems in the computerized flash card task 
across five days of training. (b) ES for trained and novel problems after training in the fMRI task. (c) Increase in use of memory-based retrieval strategies for trained 
and novel problems, measured from strategy assessments before and after training. Error bars represent standard error of the mean. 
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(Supplementary Figure S4, Supplementary Table S4). This effect was 
specific to novel problems, as no brain region showed significant rela
tionship between learning rate and trial-by-trial pattern stability for 
trained problems. These results suggest that faster learners show 
enhanced neural pattern stability when solving novel problems, high
lighting another mechanism underlying stable near transfer. 

3.7. Faster learning is associated with segregation of MTL circuitry 
between trained and novel problems 

We next investigated the relation between learning rate and training- 
related differences between trained and novel problems in functional 
circuits, focusing on the right MTL region (MNI coordinates: x ¼ 38, y ¼
-10, z ¼ -28) where faster learners showed greater neural representation 
similarity (Fig. 6, Supplementary Table S2). Seed-based generalized 
psychophysiological interaction (gPPI; McLaren et al., 2012) analysis 

revealed that faster learners demonstrate reduced functional connec
tivity between the right MTL and multiple brain regions including the 
HIP, bilateral supramarginal gyrus, middle temporal gyrus, left angular 
gyrus, and right supplementary area for trained, compared to novel, 
problems (Fig. 7, Supplementary Table S3). These results suggest that 
faster learners demonstrate greater differentiation of MTL circuits 
engaged by trained and novel problems. 

3.8. Faster learning is associated with greater network distance between 
trained and novel problems 

Finally, we examined how short-term training alters functional 
network configuration to support learning gains. We used 23 regions of 
interest (ROIs) that showed task-related activity (Fig. 8a) as nodes in 
gPPI analysis to determine connectivity between 23 � 22 links of this 
network for trained and novel problems (Fig. 8b-c). To determine how 

Fig. 4. Faster learners show enhanced performance on trained and novel problems and better discrimination between trained and novel problems. (a–b) Learning 
rates across a 5-day training predicted greater efficiency in solving trained and novel problems in the fMRI task. (c) Learning rate predicted discrimination sensitivity 
(d’) between trained and novel problems during a recognition memory task in which children were asked to determine whether they had practiced specific problems 
during training. Individual learning rates were computed as described in Fig. 2 and Methods. d’: z (hit rate) – z (false alarm rate). Dashed lines represent 95% 
confidence interval. 

Fig. 5. Brain areas showing differences in activation for trained versus novel problems. (a) Trained problems elicited greater activity than novel problems (shown in 
red-yellow) in the hippocampus (HIP), parahippocampal gyrus (PHG), angular gyrus (AG), middle temporal gyrus (MTG), medial prefrontal cortex (mPFC) and 
posterior cingulate cortex (PCC). Novel problems elicited greater activity (shown in blue-green) in the inferior frontal gyrus (IFG), insula, middle and superior frontal 
gyri, intraparietal sulcus (IPS), supramarginal gyrus (SMG), supplementary motor area (SMA), middle occipital gyrus (MOG), cerebellum (CBL), and the caudate 
(CAU). (b) Medial temporal lobe (MTL) activation clusters (shown in orange) overlaid on anterior (a) and medial (m) HIP (cyan) and PHG (green) anatomical 
boundaries from the AAL atlas. L: left; R: right. 
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learning induces different multivariate connectivity patterns, a linear 
support vector machine (SVM) classifier was performed, using links that 
showed significant differences in connectivity between trained and 
novel problems as input features (Fig. 8d). A network connectivity 
pattern distance between trained and novel problems was then 
computed using the sum of the distance from the hyperplane to trained 
and novel problems. We found that this multivariate measure of distance 
in connectivity patterns between trained and novel problems was 
significantly correlated with learning rate (r ¼ 0.52, p ¼ 0.032; Fig. 8e). 
These results indicate that faster learners demonstrate greater segrega
tion of network configuration between trained and novel problems. 

4. Discussion 

The current study investigated neurocognitive mechanisms under
lying learning and near transfer of problem-solving skills in children at 
ages 8–10, a developmental stage crucial for knowledge acquisition. A 
five-day math tutoring protocol was sufficient to elicit significant 
learning of arithmetic facts, characterized by marked differentiation of 
behavioral and brain responses between trained and novel problems. 
Crucially, individual differences in learning rate obtained during the 
five-day training predicted near transfer of learning, with faster learners 
showing greater performance gains on novel, but similarly structured, 
problems. Faster learners showed greater overlap in neural representa
tions within MTL regions implicated in memory formation, as well as 
greater segregation of large-scale brain circuits between trained and 
novel problems, indicating emergence of more distinct specialized 
functional circuitry with learning. Taken together, our study provides 
new insights into the neurocognitive mechanisms underlying learning 

and near transfer in a domain critical for academic and professional 
success (Geary et al., 2017; Menon, 2016). 

4.1. Faster learning during short-term training predicts near transfer to 
novel problems 

Following five days of training, all children exhibited significant 
improvements on trained problems. Compared to novel problems, 
children completed trained problems more efficiently with an overall 
11% greater performance efficiency. Children also showed 26% greater 
increase in use of sophisticated memory-based retrieval strategies for 
trained, relative to novel, problems. These findings demonstrate that 
one-week training was effective in improving task efficiency, with 
greater use of memory-based strategies for trained, compared to novel, 
problems. The finding that children also showed an increase in retrieval 
strategy for novel problems after tutoring indicates that children were 
able to transfer their strategy use to structurally similar problems that 
were not explicitly trained on. 

Crucially, children who were faster learners showed greater transfer 
to novel problems. Previous behavioral research has shown that children 
learn single-digit math facts by progressing from frequent use of 
counting, through intermediate strategies, until they are eventually able 
to directly retrieve the answer from long-term memory (Barrouillet and 
Fayol, 1998). However, there is a large variation between individuals in 
this progression as children use a mix of different strategies across 
different problems and contexts (Geary et al., 2004; Imbo and Van
dierendonck, 2007; Siegler and Shipley, 1995). In line with these 
developmental studies, we uncovered an important source of individual 
variability with respect to both learning of trained problems and near 

Fig. 6. Faster learners show increased representational similarity between trained and novel problems in the MTL. (a) Learning rate predicts multivoxel repre
sentational similarity between trained and novel problems in the R MTL region of interest (ROI, black circle). The ROI was defined using a 5-mm sphere centered at 
MTL cluster peak with a significant association between learning rate and representational similarity across trained and novel problems [MNI coordinates: 38 -10 
-28]. (b) Learning rate predicted representational similarity across trained and novel problems in R MTL region encompassing R HIP (white) and R PHG (orange). (c) 
R MTL ROI overlaid on R HIP activation for trained, compared to novel, problems (purple). (d–f) Scatter plots of the relationship between learning rate and 
representational similarity between trained and novel problems in R MTL ROI (d) as well as R MTL region that overlapped with R HIP (e) and R PHG (f). Anatomical 
boundaries from the AAL atlas are shown for visualization of brain structures. Gray shaded area represents 95% confidence interval. Abbreviations as in Fig. 5. 
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transfer of learning. Specifically, faster learning rates predicted better 
performance on both trained and novel problems. Learning rates also 
predicted better discrimination between trained and novel problems as 
assessed by a subsequent recognition memory task. Notably, these ef
fects were not dependent on problem solving abilities prior to training, 
ruling out the possibility that faster learners are better at problem 
solving or mathematics in general. 

Together, these behavioral results demonstrate that five days of 
training are sufficient to achieve significant learning of trained problems 
and that transfer of learning to similar but novel problems is dependent 
on how well a child learns. More broadly, these findings suggest that 
training can induce learning and near transfer – children who learn more 
quickly are better able to apply such knowledge and skills to novel but 

structurally similar problems. 

4.2. Faster learners show greater similarity in neural responses between 
trained and novel problems 

To identify neural mechanisms underlying learning and near transfer 
to novel problems in children, we used RSA and determined the degree 
of overlap in the spatial patterns of brain activity between trained and 
novel problems. We found that faster learners showed greater similarity 
of neural representations between trained and novel problems in the 
MTL including the right anterior hippocampus and parahippocampal 
gyrus, suggesting that the MTL facilitates near transfer of learning in 
children. The role of the MTL in learning and near transfer to 

Fig. 7. Faster learners show greater differentiation of MTL functional connectivity between trained and novel problems. (a) Generalized psychophysiological 
interaction (gPPI) analysis revealed reduced functional connectivity between the right MTL and multiple fronto-parietal and temporal lobe regions for trained, 
compared to novel, problems in faster learners. MTL seed region was defined as described in Fig. 6. (b) Scatter plots show relationship between learning rate and MTL 
connectivity for trained, compared to novel, problems. Dashed lines represent 95% confidence interval. Abbreviations as in Fig. 5. 
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structurally similar problems is consistent with a large body of evidence 
from the memory literature suggesting that the hippocampus, and in 
particular its anterior aspects, is involved in generalizable representa
tions of recently learnt items (Bowman and Zeithamova, 2018; Collin 
et al., 2015; Gerraty et al., 2014; Komorowski et al., 2013; Schlichting 

et al., 2015; Shohamy and Wagner, 2008; Tompary and Davachi, 2017). 
In addition to the MTL, faster learners showed greater representational 
similarity in the superior frontal gyrus, supplementary motor area, 
precentral gyrus, superior, middle, and inferior temporal gyri, middle 
occipital gyrus, and thalamus/brainstem, indicating that they also rely 

Fig. 8. Faster learners show greater differentiation in large-scale brain network configuration between trained and novel problems. (a) Task-related brain activation 
was used to identify 23 network nodes. (b–c) Task-related effective connectivity was used to compute a network connectivity matrix for trained (b) and novel (c) 
problems. (d) 23 links showed significant differences in connectivity between trained and novel problems (p < .05, in yellow). These links were used as input features 
in a linear SVM classifier. Leave one out cross validation and permutation tests (1000 samples) revealed a classification accuracy of 70% (p ¼ 0.01). (e) Learning rate 
predicted greater differentiation of brain networks between trained and novel problems. Connectivity pattern distance was computed using sum of absolute distance 
from the SVM hyperplane (separating connectivity between trained and novel problems) to each condition. Dashed lines represent 95% confidence interval. Ab
breviations as in Fig. 5. 
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on multiple cortical systems to transfer their learning. 
Next, to examine whether faster learners also show more stable 

representations across individual trained or novel problems, we used 
trial-by-trial similarity analysis, which assesses similarity of neural 
representations across individual problems (Qin et al., 2014). This 
approach previously revealed that inter-problem pattern stability in the 
MTL increases from childhood to adulthood as individuals’ problem 
solving strategies and underlying neurocognitive processes become 
more stable with cognitive skill development (Qin et al., 2014). We 
discovered that faster learners showed greater pattern stability across 
individual problems, specifically for novel problems, in the right hip
pocampus and right intraparietal sulcus. This finding suggests that 
children who learn trained problems more quickly may be able to 
scaffold knowledge from training sessions and apply it more consistently 
to novel problems, compared to those who learn more slowly. In 
contrast, for trained problems, all children show similar inter-trial 
pattern stability possibly due to item-specific representations of 
well-practiced instances. Interestingly, within parietal cortex, the 
enhanced pattern stability for novel problems were observed not in the 
angular gyrus, a region involved in integrating general contextual in
formation (Ramanan et al., 2017), but in the right intraparietal sulcus, a 
region important for representing and manipulating numerical quantity 
(Cantlon, 2012; Menon, 2016; Nieder, 2016). As previous arithmetic 
training studies have not examined neural representations and their 
relation to individual differences in learning rate, changes in 
learning-rate-dependent neural representations across typical and 
atypical development (Kucian, 2016) remains an important topic for 
future research. Our findings demonstrate for the first time that children 
who are faster learners rely on both MTL for associative learning and IPS 
for quantity processing to build generalizable problem-solving skills. 

Although the hippocampus and parahippocampal regions of the MTL 
showed greater task-related activation for trained, relative to novel, 
problems, activation levels in these regions were not correlated with 
learning rate, suggesting that common neural representations underly
ing near transfer of learning are independent of overall engagement of 
the MTL. This finding, along with behavioral evidence of enhanced 
performance on novel problems, supports the hypothesis that children, 
who learn quickly during tutoring, are more likely to transfer their 
knowledge to novel problems - through the engagement of overlapping 
neural representations in the MTL and other cortical regions. Faster 
learning is also linked to pattern stability in the MTL across similar 
problems, creating a substrate that facilitates near transfer, a process 
that may promote stability in the MTL over development, even as task- 
related activation in MTL wanes (Qin et al., 2014). These findings sug
gest that the MTL plays a crucial role in building common representa
tions that facilitate near transfer of newly learnt skills in children. 

4.3. Faster learners show more segregated brain circuits and network 
configuration between trained and novel problems 

Beyond training-related differences between problems in isolated 
brain regions, we found that faster learners show more segregated brain 
circuits and network configuration between trained and novel problems. 
Network analysis revealed that faster learning children exhibit more 
segregated task-related brain network configurations between trained 
and novel problems. Specifically, faster learners showed more differ
entiated connectivity patterns within a large-scale brain network 
comprised of 23 core regions involved in arithmetic problem solving, 
including the MTL and fronto-parietal cortical regions. To link these 
findings to the MTL region that plays a key role in learning and near 
transfer, as identified by representational similarity analysis, we exam
ined its task-related functional connectivity. Analysis of functional brain 
circuits revealed that faster learners showed lower MTL connectivity, for 
trained, compared to novel, problems in multiple brain regions, 
including bilateral hippocampus, supramarginal gyrus, middle temporal 
gyrus, left angular gyrus, and right supplementary motor area. Thus, 

MTL regions involved in learning and near transfer at the local circuit 
level also show functional segregation at the large-scale circuit level. 

Our findings provide new evidence for greater segregation of hip
pocampal functional circuits and large-scale network configuration in 
faster learners. We suggest that increased neural efficiency for trained 
problems among faster learners may free up neural resources and 
facilitate near transfer and that children who are slower to learn, 
although they are able to learn specific problems that they are trained 
on, may struggle with near transfer. Furthermore, in an advance over 
previous studies on learning, our findings provide new evidence linking 
two parallel processes – integration of shared neural representations and 
segregation of large-scale brain systems anchored in the MTL – with 
efficient learning and near transfer in children. While these two aspects 
of learning are distinguishable, they may not be mutually exclusive, as 
observed in the current study. Item-specific learning can be represented 
in a larger scale in distributed brain regions, whereas more general, near 
transfer process may occur at the local neural representational level. 

4.4. Broader implications, limitations, and future directions 

Previous behavioral studies have shown that young children’s basic 
arithmetic skills and their memory-based strategy use predict their later 
mathematics achievement (Butterworth and Walsh, 2011; Faulkner, 
2008; Geary, 2011; Geary et al., 2017; Jordan et al., 2009). Our study 
advances understanding of how children learn arithmetic problems and 
provides insights into developing effective arithmetic training para
digms by enhancing retrieval strategy use in young children. Moreover, 
unlike other cognitive training studies that typically examine 
group-level differences between trained and novel problems, we 
demonstrate that individual differences in learning is a critical factor 
mediating near transfer. Our study provides a template for future studies 
of learning and transfer in children with learning disabilities. As the 
current work is specific to near transfer in the mathematics domain, 
future studies may also benefit from examining a broader range of 
learning and transfer across various domains and skills, using a similar 
individual differences approach used in the current study. 

One limitation of the current study is that the sample size included in 
the analysis was modest. Limitations in sample size are common in 
neuroimaging studies of children and represent a major challenge in 
cognitive training studies where children’s learning profiles and fMRI 
data are considerably more difficult to acquire compared to studies that 
do not involve learning. Future studies using a larger sample are needed 
to address generalizability of our findings by extending the study to 
children at the low end of math abilities, including children with 
learning disabilities. Another limitation is that we acquired fMRI data 
after, but not before, training. This experimental design, similar to 
previous studies in adults (Delazer et al., 2003, 2005; Grabner et al., 
2009; Ischebeck et al., 2006), allowed us to examine training-related 
differences between different types of problems that were carefully 
matched in structure and difficulty. In the current study, there were no 
significant associations between pre-training math fluency and learning 
rate or pre-training frequency of retrieval strategy use and learning rate, 
ruling out the possibility that faster learners were better at arithmetic or 
used more retrieval strategy before training. A pre-test post-test fMRI 
task design with a control group, using an individual differences 
approach, as developed here, is needed for further clarifying the speci
ficity of training-induced brain plasticity. Such designs will also help 
resolve whether neural responses differ significantly in amplitude and 
localization of activation between before and after training, and allow 
disambiguation of activation and deactivation profiles in the MTL and 
angular gyrus (Bloechle et al., 2016; Klein et al., 2019). 

5. Conclusion 

Our study demonstrates that two key components of efficient 
learning in children are related: (1) the speed of learning and (2) the 
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“depth” of learning reflected in near transfer. We show for the first time 
that rapid learning facilitates near transfer and that cognitive training in 
young children induces two distinct brain processes that support 
learning and near transfer: overlap in neural representations at the level 
of regional circuitry that facilitates near transfer and segregation of 
large-scale brain networks that promotes more efficient processing of 
trained problems. Notably, these patterns of results are learning-rate 
dependent: faster learners draw on common representations in multi
ple brain areas to allow better performance of similar problems, while 
efficiently recruiting specialized brain networks for problems they have 
learned. These findings advance our understanding of how learning and 
near transfer are represented in the developing brain in a cognitive 
domain critical for academic success. 
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