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Abstract
Neurological effects of COVID-19 and long-COVID-19 as well as neuroinvasion by SARS-CoV-2 still pose
several questions and are of both clinical and scientific relevance. We described the cellular and
molecular effects of the human brain microvascular endothelial cells (HBMECs) in vitro infection by
SARS-CoV-2 to understand the underlying mechanisms of viral transmigration through the Blood-Brain
Barrier. Despite the low to non- productive viral replication, SARS-CoV-2-infected cultures displayed
increased apoptotic cell death and tight junction protein expression and immunolocalization.
Transcriptomic profiling of infected cultures revealed endothelial activation via NF-κB non-canonical
pathway, including RELB overexpression, and mitochondrial dysfunction. Additionally, SARS-CoV-2 led to
altered secretion of key angiogenic factors and to significant changes in mitochondrial dynamics, with
increased mitofusin-2 expression and increased mitochondrial networks. Endothelial activation and
remodeling can further contribute to neuroinflammatory processes and lead to further BBB permeability
in COVID-19.

Introduction
Coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome-related
coronavirus 2 (SARS-CoV-2) remains at major health threat globally. The U.S. continues to lead the world
with a total of 47.9 million COVID-19 cases and 773,887 deaths at the end of November 2021 (WHO).
Even though vaccines, which mostly prevent serious illness and death, have been widely available in the
U.S. and many countries, only 59% of the overall population are fully vaccinated. This is below the
estimated 85–90% threshold assumed to be needed to stop the spread of SARS-CoV-2 and make the
virus endemic. Globally, COVID-19 cases continue rising, and new variants and subvariants (e.g. omicron
BA.1, BA.2 [BA.2.12, BA.2.12.1]) were recently identified in different countries, spreading globally (WHO,
2022).

SARS-CoV-2 is a member of the family of β-coronaviruses, similar to two other highly pathogenic
coronaviruses: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory
syndrome coronavirus (MERS‐CoV). Initial SARS-CoV-2 infection cases investigated led to the isolation of
the virus in human respiratory epithelial cells (CDC; Zhu et al., 2020) and its genome sequencing
deposited (GISAID accession IDs: EPI_ISL_402119, 402120 and 402121). SARS-CoV-2 is an enveloped,
positive-sense, and single-stranded RNA virus. Its genome encodes non-structural proteins (such as 3-
chymotrypsin-like protease, papain-like protease, helicase, and RNA-dependent RNA polymerase; all key
enzymes in the viral life cycle), structural proteins (spike [S] protein, membrane [M] protein, envelope [E]
protein and nucleocapsid [N] protein) and accessory proteins.

It is now known that SARS-CoV-2 infects human cells through the ligation of the S1 subunit of the S
protein with host cell receptors, especially the angiotensin-2 converting enzyme (ACE2), that serves as an
entry receptor to the virus, representing its main route of entry into the host cell (Wang et al., 2020).
Pulmonary, cardiac and intestinal epithelia and endothelial cells express high levels of ACE-2 (CDC,
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2020). Upon S1-ACE2 interaction, a transmembrane serine protease 2 (TMPRSS2) is required for priming
of the S protein and viral entry into the cell (Coronaviridae Study Group of International Committee on
Taxonomy of Viruses, 2020; Zhu et al., 2020; Ni et al., 2019). Along with ACE2 and TMPRSS2, several
other proteins have been suggested to participate in SARS-CoV-2 entry into human cells, such as ADAM
metallopeptidase domain 17 (ADAM17) (Torices et al, 2021; Hoffmann et al., 2020), dipeptidyl peptidase
4 (DPP4) (Zhou et al., 2020; Shulla et al., 2011), angiotensin II receptor type 2 (AGTR2) (Zipeto et al.,
2020; Schreiber et al., 2020), basigin (BSG, also called extracellular matrix metalloproteinase inducer
[EMMPRIN] or cluster of differentiation 147 [CD147]) (Solerte et al., 2020; Bassendine et al, 2020),
aminopeptidase N (ANPEP) (Cui et al., 2020) and cathepsin B/L (de Souza et al. 2020; Wang et al., 2020).

Among the symptoms most commonly observed in COVID-19 patients, alterations of neural functions are
frequently detected, from mild cases with loss of taste and smell, dizziness and headaches, to more
extreme cases with occurrence of acute cerebrovascular disease, including episodes of vascular
encephalic accidents, loss of consciousness, ataxia and epilepsy (Qiao et al., 2020). The Central Nervous
System (CNS)-related symptoms are also prominent for so called chronic or long-COVID. The CNS is a
well-documented target of β-coronavirus infections, such as SARS-CoV-2, and to date several studies
detected SARS-CoV-2 in the brain and the cerebrospinal fluid of COVID-19 patients (Qi et al., 2020;
Padmanabhan et al., 2020; Istlfl et al., 2020; Ellul et al., 2020). Distinct routes of SARS-CoV-2 entry into
the brain have been proposed, such as the olfactory nerve (Mao et al., 2020; Solomon et al., 2020;
Virhammar et al., 2020), the choroid plexus and the blood-brain barrier (BBB) (Baig et al., 2020). However,
the contribution of the BBB may be particularly important due to presence of the virus in the bloodstream
allowing the passage of viral particles through the wall of brain capillaries to brain parenchyma. While
the mechanisms of SARS-CoV-2 neuroinvasion are not fully understood, it has been suggested that
infection of BBB capillaries-composing cells is critical to trigger CNS impairment (Li et al., 2020a; Li et al.,
2020b). Several essential characteristics that ensure BBB function are supplied by endothelial cells that
express specific types of tight junction proteins (Briguglio et al., 2020; Alam et al., 2020; Achar et al.,
2020).

Several reports have correlated the infection outcome with vascular dysfunction, establishing vascular
inflammation and cytokine storms promoted by immune responses as critical factors contributing to
worsening of the clinical condition and even death. Endothelial dysfunction may have important
consequences, which include ischemia, altered angiogenesis and coagulation, inflammation, and tissue
edema. Therefore, COVID-19-related endothelitis could explain the systemic microcirculatory dysfunction
observed in patients, including chronic form of this disease. It was recently demonstrated that the
treatment of human brain microvascular endothelial cells with recombinant S1 protein resulted in
endothelial permeability and altered the levels of pro-inflammatory cytokines (Buzhdygan et al., 2020).
However, little is known about the involvement of brain microvasculature in brain infection by SARS-CoV-
2, which may result in endothelial activation and hyper-inflammatory responses. Even less is known if
damages to the BBB could be propagated to neural tissue, and therefore be the triggering mechanism of
neural abnormalities that promote neurological symptoms observed in COVID-19 patients.
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In the present work we describe cellular and molecular effects of HBMEC infection by SARS-CoV-2 in
order to gain insight into possible routes by which the virus affects the BBB and invades the brain
parenchyma. Transcriptomic analyses revealed activation of noncanonical NF-κB signaling pathway and
changes in mitochondrial quality control, which combined could induce endothelial activation and
promote increased neuroinflammation in Neuro-COVID-19.

Methods

1. Cell culture
Human brain endothelial cells (HBMECs) were a gift from Prof. Dennis Grab (Department of Pathology,
Johns Hopkins School of Medicine). Cells were immortalized using a SV40-LT plasmid (Stins et al., 2001)
and were maintained in 199 medium with 10% fetal bovine serum (FBS) and 1% antibiotics
(penicillin/streptomycin, ThermoFisher) up to passage 38. Vero E6 cells (African green monkey kidney
epithelial cells) were used as gold standard for viral isolation and propagation and were used in a few
experiments as a positive control for efficient SARS-CoV-2 infection. Vero E6 cells culture medium
consisted of Dulbecco’s Modified Eagle Medium (DMEM) formulated with D-glucose (4.5 g/l) and L-
Glutamine (3.9 mM) supplemented with 100× penicillin-streptomycin solution (to final 100 U/ml and 100
µg/ml, respectively) and with inactivated FBS (USDA-qualified region FBS) at 10%. Both cell and viral
cultures were incubated at 37°C and 5% CO2.

2. SARS-CoV-2 isolate
All the procedures associated to the viral culture and further infection assays were performed in biosafety
level 3 laboratory, in accordance with the WHO guidelines (WHO, 2021). The SARS-CoV-2 isolate used in
this study was previously obtained from a respiratory sample collected from a COVID-19 patient
diagnosed in March 2020, in Brazil, as part of the Brazilian Ministry of Health surveillance system. Viral
isolation and genetic characterization were previously described (Matos et al, 2022). All procedures
involving patient samples were approved by the Committee of Ethics in Human Research of the Oswaldo
Cruz Institute (registration number CAAE 68118417.6.0000.5248).

3. SARS-CoV-2 infection
Cells were cultured to obtain confluent monolayers. After that, cells were washed once with PBS and
SARS-CoV-2 inoculums corresponding to indicated multiplicities of infection (MOI) were incubated for
one hour. After infection, inoculums were removed from cells and replaced by their appropriate
supplemented medium with TPCK treated trypsin at 1 µg/mL.

4. Viral quantification
We evaluated SARS-CoV-2 replication of infected cells over time by measuring the number of viral RNA
copies in their culture media over time. Viral RNA was extracted from 140 µL of cell-free culture media
using QIAamp Viral RNA mini kit (Qiagen, Germany), according to manufacturer’s instructions. Reverse
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transcription and SARS-CoV-2 gene amplification were performed in one-step reactions with a
quantitative real time PCR kit developed by Biomanguinhos Institute (Fiocruz, Brazil), in an ABI 7500
thermocycler (Applied Biosystems, USA). As a quantification standard, we used a SARS-CoV-2 plasmid
control containing the reference sequence of viral envelope (E) gene, with a known number of copies (IDT,
USA). Therefore, a concentration curve was prepared by performing serial dilutions of the plasmid.

5. RNA libraries and sequencing
For RNAseq analysis, three independent replicates were prepared for each treatment groups: Mock, MOI
0.01- and MOI 0.1-infected cultures, at 6 and 24 hpi. Total RNA was isolated using the miRNeasy micro kit
(Qiagen) according to the manufacturer's instructions. The RNA was quantified by O.D. measurement
before being assessed for quality by chip-based capillary electrophoresis using Agilent 2100 Bioanalyzer
RNA 6000 Pico assays (Agilent Technologies; Part # 5067 − 1513).

Libraries were prepared from 150 nanograms (ng) of DNA-free total RNA using the Universal Plus mRNA-
Seq Library Prep Kit (NuGEN Technologies, Inc.; Part # 0508 − 96). The quality and size distribution of the
amplified libraries were determined by chip-based capillary electrophoresis on Agilent 2100 Bioanalyzer
High Sensitivity DNA assays (Agilent Technologies; Part # 5067 − 4626). Libraries were quantified using
the Takara Library Quantification Kit (Part # 638324). The libraries were pooled at equimolar
concentrations and diluted prior to loading onto a P3 flow-cell (Illumina; Part # 20027800) with the P3
300 Cycle reagent kit (Illumina; Part # 20038732) on the NextSeq2000 instrument.

6. RNA-seq data analysis
Reads R1 and R2 were trimmed 12 nucleotides (nt) to remove low quality sequences. Bases with a quality
score of less than Q20 were trimmed off the right end of each R1 and R2. Illumina adapter sequences
were trimmed from the 3'-end of both R1 and R2 reads. Read pairs in which mate in the pair was less than
30nt after trimming were discarded. These quality-filtered reads were then used for alignment.

Sequence alignment was performed using HISAT2 (https://doi.org/10.1038%2Fnmeth.3317) version
2.0.5 with the following settings:

hisat2 --end-to-end -N 1 -L 20 -i S,1,0.5 -D 25 -R 5 --pen-noncansplice 12 --mp 6,3 --sp 3,0 --time --reorder --
known-splicesite-infile [SPLICESITES] --novel-splicesite-outfile splicesites.novel.txt --novel-splicesite-infile
splicesites.novel.txt -q –x [hsa38 HISAT2 INDEX] -1 [FASTQ1] -2 [FASTQ2] -S [SAMOUT]. The read
summarization program featureCounts
(https://academic.oup.com/bioinformatics/article/30/7/923/232889) version 1.5.1 was used for exon-
and gene-level counting. An Ensembl human version 83 GTF file (downloaded from Ensembl Biomart on
January 22, 2016) was used for determination of exon boundaries and the exon-gene relationship during
counting. The summarization level used for exon and gene counting was the feature and the meta-
feature, respectively. featureCounts is available in the Subread package at
http://subread.sourceforge.net/ (https://academic.oup.com/nar/article/47/8/e47/5345150?login=true).
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To determine differential gene expression and due the low coefficient of biological variation, paired
comparisons were performed between the untreated control and MOIs 0.01 and 0.1 treated HBMEC cells
at 6 and 24 hrs timepoints, using an additive linear model with untreated group as the blocking factor.
Differential gene expression analysis was performed using EdgeR R package
(https://academic.oup.com/bioinformatics/article/26/1/139/182458).

The top differentially expressed genes have consistent UC vs MOIpt1 changes for the three replicates at
5% FDR, and absolute log2 fold change of 0.6 were considered cut-offs to generate the DEG list.
Computed z-scores of significant genes are represented in the heatmap. Heatmap was plotted using
complexheatmap R package. (https://academic.oup.com/bioinformatics/article/32/18/2847/1743594).

7. Downstream RNA-seq analysis
We used a list of genes differentially expressed between MOI 0.1 SARS-CoV-2-infected and uninfected
HBMEC cells. The pathway enrichment and interaction networks analysis were performed using
clusterProfiler and gprofiler2 R packages
(https://www.sciencedirect.com/science/article/pii/S2666675821000667,
https://f1000research.com/articles/9-709/v2). Overlapping gene sets from reactome pathway terms,
were visualized as a chord plot using the GOplot R
(https://academic.oup.com/bioinformatics/article/31/17/2912/184136).

8. RT-qPCR
Cells were grown in 60 mm2 dishes and total RNA was extracted with Trizol reagent (Thermo Fisher),
according to the manufacturer’s instructions. One microgram of total RNA was reversely transcribed into
cDNA using SuperScript III system (Thermo Fisher) and 0.5 µl of cDNA was used per RT-qPCR reaction
with Power SYBR Green (Thermo Fisher) master mix. Reactions were read in 7500 StepOne Plus from the
Oswaldo Cruz Institute. Primer sequences for Drp1, Fis1, ZO-1, claudin-5, HIF-1α, Mfn2, MFF and
TOMM20 are provided in Table S1. For E gene and Spike1 RT-qPCR, we used the protocols described in
Corman et al., 2020 and Won et al., 2020, respectively. For the remaining genes, 100 ng of total RNA was
used for Taqman reactions using primer probes from Thermo Fisher: Hs00242739_m1 (LTB),
Hs00174128_m1 (TNF), Hs00232399_m1 (RELB), Hs00357891_s1 (JUNB), Hs00759776_s1 (FOSL1),
Hs00765730_m1 (NFKB1), Hs00174103_m1 (CXCL8), Hs00601975_m1 (CXCL2), Hs00236937_m1
(CXCL1), Hs00173615_m1 (PTX3), Hs00174961_m1 (EDN1), Hs00299953_m1 (SERPINE2) and
Hs01028889_g1 (NFKB2). GAPDH (Hs02786624_g1) was used for sample normalization. Gene
expression variations were assessed by the 2ΔΔCt method, with Ct as the cycle number at threshold.
Desired PCR result specificity was determined based on melting curve evaluation.

9. Western blotting
HBMECs were cultivated in 60 mm2 dishes and at desired times were washed with PBS and lysed in the
presence of 1x Laemmli Buffer (0.0625M Tris, 0.07M SDS, 10% glycerol, 5% β-mercapto-ethanol and
bromophenol blue). Protein concentration was measured with BCA Protein Assay Kit according to the
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manufacturer's instructions (Thermo Fisher Scientific, Carlsbad, CA, USA). Then, 30 µg of protein were
loaded onto 4–20% gradient acrylamide gels (Bio-Rad Laboratories, Hercules, CA, USA). Membranes were
blocked with bovine serum album (BSA) 5% in TBS-0.05% Tween20 and incubated overnight at 4°C with
the primary antibodies at 1:1,000 dilution in TBST (Table S2). Next day, blots were washed with TBS-
0.05% Tween20, incubated for 1 hour at room temperature with secondary antibodies (Lincoln, NE, USA)
and analyzed using the Licor CLX imaging system and the Image Studio 4.0 software (LI-COR).

10. Immunofluorescence
Cells were grown on 13-mm round glass coverslips and fixed at desired times with 4% paraformaldehyde
in PBS for 10 min at 20oC, permeabilized with 0.5% Triton x-100 (Sigma Aldrich), blocked with 3% bovine
serum albumin (BSA, Sigma Aldrich) and incubated overnight with primary antibodies at 4 oC. Cells were
washed with PBS and incubated with fluorescently labeled secondary antibodies for 1 h at 37 oC. For
nuclear visualization, cells were incubated with DAPI (4′,6-diamidino-2-phenylindole) and mounted in a
solution of glycerol and DABCO (1,4-diazabicyclo[2.2.2]octane) in PBS. The list of primary and secondary
antibodies used in this study are detailed in Table S2.

11. Quantitative analysis of mitochondrial network
morphology
Mitochondrial network morphology was analyzed using the Mitochondrial Network Analysis Tool (MiNA)
for the Fiji distribution of ImageJ (Valente et al. 2017). Images were cropped into individual cells. To
enhance contrast and sharped mitochondrial images, several pre-processing tools were applied to each
image prior to MiNA analysis. First, an unsharp mask (sigma = 3) was used to sharpen images by
subtracting a blurred version of the image (i.e. unsharp mask) from the image. The unsharp mask is
created by Gaussian blurring the original image and multiplying the blurred image by the mask weight
(0.8). Second, a median filter (radius = 1) was applied to each image. The median filter functions by
replacing each pixel with the neighborhood median, where the neighborhood size is determined by the
radius. Following pre-processing, images underwent thresholding using the Otsu thresholding to produce
a binary image (Otsu, 1979). The mitochondrial footprint is calculated as the total number of
mitochondria-signal positive pixels from the binarized image. A morphological skeleton is then produced
from the binarized image using the Skeletonize 2D/3D plug-in (Arganda-Carreras et al. 2010; Lee et al.
1994). This method employs iterative thinning to create a skeleton of mitochondrial structures, one pixel
wide. Length measurements of the mitochondrial structures are then measured using the Analyze
Skeleton plug-in, resulting in two additional parameters: mean branch length and mean summed branch
length. Mitochondrial form branching networks, in which branches intersect at a node. Mean branch
length is calculated as the mean length of mitochondrial structure between two nodes. Mean summed
branch length is calculated by determining the sum of branch lengths within an independent network
structure and dividing by the total number of independent networks within a cell.

12. Angiogenesis-related proteins secretome
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For generation of HBMEC Conditioned Medium (CM), cells were plated on 6-well plates and after infection
were maintained in a total volume of 1 ml per well. Conditioned culture media were collected at 24 hours
post infection (hpi) and centrifuged for 5 min at 10,000 rpm at 4 oC and stored at -80 oC until use.
Secretion of angiogenesis-related protein levels was detected using a Proteome Profiler™ Human
Angiogenesis Antibody Array kit (R&D Systems) according to manufacturer’s instructions. Membranes
were incubated with pools of two independent experiments (e.g.: Mock #1 + Mock #2, MOI 0.01 #1 + MOI
0.01 #2, etc.) for each experimental condition, in a total of 3 membranes for 6 biological replicas. Spots
were detected with chemoluminescence and X-ray films were exposed for 1, 5, 10 and 15 minutes to
detect differentially expressed proteins. Densitometric analysis was performed with UN-SCAN-IT gel
analysis software and relative intensity values for each spot of the 1-minute exposed film was analyzed
with GraphPad Prism software version 9.0.1.

13. Transmission electron microscopy
Cells were grown on 35 mm petri dishes and infected or treated as described above. At desired time,
cultures were washed in PBS, fixed with 2.5% glutaraldehyde diluted in 0.1 M cacodylate buffer with 3.5%
sucrose and CaCl2 for 1 h at 20 ºC, followed by washes in cacodylate buffer and post-fixation with 1%
osmium tetroxide with potassium ferricyanide for one hour at 4 ºC in the dark. Cells were dehydrated in
crescent acetone gradient and embedded in Epon resin at 60oC for 72 h. Ultrathin sections were obtained
with Leica ultramicrotome and collected in 300-mesh copper grids, stained with uranyl acetate and lead
citrate and visualized at Hitachi Transmission Electron Microscope at Centro Nacional de Bioimagem
(CENABIO-UFRJ).

14. Statistical analyses
For RT-qPCR and western blotting, a minimum of 5 independent cell culture preparations were used and
analyzed with Two-Way ANOVA with Bonferroni post-test in GraphPad Prism Software v9.3.1.
Morphometrical analysis of ZO-1 immunostaining were performed with ImageJ software for fluorescence
intensity and Tight Junction Organization Rate (TiJOR) using the TiJOR macro for ImageJ, which in an
index of localization of tight junction proteins in membrane-membrane contact region of adjacent cells
as described by (Terryn et al. 2013).

Results

1. Characterization of HBMEC infection by SARS-CoV-2
In order to characterize the profile of host cell infectivity by SARS-CoV-2, HBMEC and Vero E6 cells were
infected in the presence or not of serine endoprotease TPCK trypsin (1 µg/ml), which was shown to
increase infectivity in Calu-3 cells, a permissive cell line for the efficient replication of SARS-CoV-2 (Jiang
et al., 2021). Cultures were infected at different multiplicities of infection (MOIs) of 0.01, 0.1, 1 and 2 and
supernatants were collected at 6-, 24-, 48- and 72-hours post-infection (hpi) and analyzed by RT-qPCR for
quantification of viral E gene (Fig. 1A). We found that HBMECs showed no increase in viral replication or
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release in the supernatant over time, whereas Vero E6 cells had time-dependent release of SARS-CoV-2 in
the supernatant, as expected (Fig. 1A). TPCK trypsin treatment did not affect the cell infectivity rates;
however, for consistency, all subsequent assays were performed in the presence of TPCK. In the same
context, HBMECs infected with different MOIs did not show any increase in the expression of SARS-CoV-2
Spike1 and E genes at 6 and 24 hpi (Fig. 1B). We showed recently that HBMEC cells express, to some
extent, several of SARS-CoV-2 receptors at both RNA and protein levels (Torices et al., 2021). Therefore,
we evaluated the possible effect of infection on the expression of ACE2 and TMPRSS2 in HBMEC cells
and found that infection with the MOI 0.1 induced a 40% decrease in ACE2 mRNA expression (p < 0.05),
which did not result in ACE2 protein level alterations (Fig. 1C). However, TMPRSS2 showed a 1.77-fold
increase in protein levels in MOI 0.1-infected cultures at 24 hpi (p = 0.078). Despite the apparent non-
productive infection of HBMEC, SARS-CoV-2 was able to induce apoptosis of HBMECs, as detected by
cleaved caspase-3 immunostaining (Fig. 1D) at 24 hpi. MOIs 0.01 and 0.1 resulted in 2.27 and 4.1% of
caspase-3-positive cells, respectively, whereas non-infected dishes showed a physiological rate of 0.7% of
stained cells. Apoptotic stimulus was also observed in Vero E6 cells 24 hpi with MOI 0.1 (Fig. 1D).
Positive control with 0.5 and 2.0 µg Staurosporine for 2 hours led to 1.9 and 9% of caspase-3 positive
HBMECs, respectively (not shown).

2. SARS-CoV-2 affects tight junction genes expression in
BBB-forming cells
The barrier property of BMECs is mostly conferred by the expression and function of tight junction
proteins, such as ZO-1 and claudin-5 (Takata et al., 2021). HBMEC and Vero E6 cells were infected as
described above and analyzed at 6 and 24 hpi. ZO-1 immunoreactivity was drastically altered in infected
Vero cultures (Fig. 2A) and showed discontinuous staining in cell-cell contacts, as compared to
uninfected controls. SARS-CoV-2 viral particles were clearly detected in Vero cells as revealed by Spike1
immunoreactivity. Conversely, infected HBMEC cultures did not present as significant differences in
distribution of ZO-1 along cells membranes at 24 hpi (Fig. 2A). To better evaluate ZO-1 organization in TJ
we performed densitometric (ZO-1 fluorescence intensity) and tight junction organization rate (TiJOR)
(Terryn et al. 2013) analyses. We observed that ZO-1 presented a significant 1.29-fold increase in TiJOR
index with MOI 0.1 at 6 hpi, concomitantly with a 1.3-fold increase in fluorescence signal, and such
effects were lost 24 hpi. In parallel, MOI 0.01 affected ZO-1 fluorescence signal at 24 hpi by 1.19-fold
(Fig. 2B). ZO-1 and claudin-5 mRNA expression remained unaltered throughout the infection (Fig. 2C), but
their protein levels were significantly increased by 2.0- and 1.17-fold by the MOI 0.1 at 24 hpi, respectively
(Fig. 2D).

3. SARS-CoV-2 infection promotes endothelial activation and hyper-inflammatory response in vitro

We determined the transcriptional profile of HBMECs after SARS-CoV-2 infection by RNA-Seq after 6 and
24 hpi. At 6 hpi, biological replicas had high variability across experiments, as determined by the square
root of the common dispersion and visualized by principal component analysis (not shown). Infection
with both MOIs 0.01 and 0.1 led to minimal effect on HBMEC’s transcriptome, with few significantly
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differentially expressed genes (DEGs) and no pathways enrichment found (Supplementary material).
However, at 24 hpi we observed significant impact on host cell transcriptome: exposure to SARS-CoV-2
MOI 0.1 led to up-regulation of 23 and down-regulation of 4 genes. Volcano plot and heatmap on Fig. 3
(A-B, respectively) depict the transcriptomic profile of HBMECs infected with the MOI 0.1 at 24 hpi. Data
obtained from RNA-Seq was consistent with an endothelial activation, with high expression levels of
cytokines (IL-6, IL-8, TNF) and chemokines (CXCL1, -2, -8 and CCL20) encoding genes (Fig. 3).
Accordingly, functional enrichment analysis revealed that main genes found related to “Cytokine
signaling in immune system”, “TNF signaling” and “TNFR1-induced NFkappaB signaling pathway”,
among other Reactome terms (Fig. 3C). In fact, TNF was the most up-regulated gene, with 104-fold
increase, followed by TNF-c (Lymphotoxin beta, LTB), with 32.8-fold change (Fig. 3, Table 1). Interestingly,
LTB is a known inducer of noncanonical NFκB inflammatory pathway (Mockenhaupt et al., 2021) and
was found to be up-regulated both at 6 and 24 hpi in SARS-CoV-2 infected HBMEC by RT-qPCR (Fig. 3E).
Although our RNA-Seq data revealed an increase in NFκB2 (p100/p52) and NFκBIA (IκBα), we performed
RT-qPCRs with additional biological samples for NF-κB1 (p105/p50) and NF-κB2 and observed that, due
to biological variability, such genes remained unaltered in infected cultures (Fig. 3D). However, RELB, the
main activator of noncanonical NF-κB signaling pathway (Mockenhaupt et al., 2021), was shown to be
up-regulated by confirmatory RT-qPCR at 24 hpi (Fig. 4). We also further confirmed by RT-qPCR the up-
regulation of inflammation-related genes, including LTB, TNF, IL-6, CXCL1, CXCL2 and CXCL8 (Fig. 3E).
Pentraxin3 (PTX3) is a glycoprotein involved in the innate immune response and has a relevant role in
FGF2-dependent angiogenesis (reviewed in Presta et al., 2018). We found that PTX3 to be 19.6-fold
increased in SARS-CoV-2 infected HBMECs (Figs. 3A and 4). Apart from the inflammatory transcriptomic
response, KEGG pathways related to ribosomal structure/function and mitochondrial biology were found
to be altered by SARS-CoV-2-infected HBMECs at 24 hpi (Fig. 3D).
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Table 1
Differentially expressed genes in MOI 0.1-infected HBMEC cultures at 24 hpi.

Gene name Symbol Fold-
change
(log)

P value FDR

Uncategorized
gene

RP11-
298I3.3

-2.19 0.00001795234598 0.04214061886

ankyrin repeat
domain 36C

ANKRD36C -1.42 0.000000005528613831 0.00002495701339

upstream
transcription
factor family
member 3

USF3 -0.76 0.00002036226065 0.04595918861

SMG1 nonsense
mediated mRNA
decay associated
PI3K related
kinase

SMG1 -0.75 0.000002651386726 0.007779698933

nuclear factor
kappa B subunit 2

NFKB2 0.64 0.00002117775188 0.04602945153

E74 like ETS
transcription
factor 3

ELF3 0.82 0.00001027948854 0.02601045479

ephrin A1 EFNA1 0.82 0.0000001766175517 0.0006096837885

Epstein-Barr virus
induced 3

EBI3 0.87 0.000005771957935 0.01612959902

intercellular
adhesion
molecule 1

ICAM1 0.97 0 0.0000005593411357

complement C3 C3 1.01 0.000000004506547278 0.00002203851837

NFKB inhibitor
alpha

NFKBIA 1.05 0 0.00000008288304584

C-C motif
chemokine ligand
2

CCL2 1.14 0.000000002315586268 0.00001235344223

baculoviral IAP
repeat containing
3

BIRC3 1.27 0.00000002052506134 0.00007528079373

zinc finger CCCH-
type containing
12A

ZC3H12A 1.29 0 0.0000003145723235
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Gene name Symbol Fold-
change
(log)

P value FDR

RELB proto-
oncogene, NF-kB
subunit

RELB 1.30 0 0.00000008288304584

Uncharacterized
protein

AC010646.3 1.31 0.0000103901062 0.02601045479

interleukin 6 IL6 1.36 0 0.00000002581261588

TNF alpha
induced protein 3

TNFAIP3 1.38 0.00000001761165902 0.00006890150651

TNF alpha
induced protein 2

TNFAIP2 1.42 0.000001921435199 0.005934605433

C-X-C motif
chemokine ligand
2

CXCL2 1.79 0 0

TNF superfamily
member 18

TNFSF18 1.95 0.0000106374977 0.02601045479

C-X-C motif
chemokine ligand
1

CXCL1 2.24 0 0

C-X-C motif
chemokine ligand
3

CXCL3 2.32 0.0000000001312489102 0.0000007702211048

C-C motif
chemokine ligand
20

CCL20 3.50 0.000000007991169552 0.00003349669957

pentraxin 3 PTX3 4.30 0 0

lymphotoxin beta LTB 5.04 0 0

4. Angiogenic profiling of SARS-CoV-2-infected HBMEC
cells
Dysfunctional angiogenesis is a common phenomenon observed in neuroinflammatory states and can
be a result of BBB damage (Estato et al., 2018). We analyzed the profile of angiogenesis-related secreted
proteins by HBMECs during infection with SARS-CoV-2 and observed that out of 55 spotted targets, 15
had most significantly detectable signals (Fig. 4A-B, Table 2). Highest signals were observed for uPA,
serpin-E1 (PAI-1), IL-8, thrombospondin-1, VEGF, TIMP-1, endothelin-1 (ET-1), PTX3, angiogenin and
amphiregulin, with at least 5,000 pixels each. SARS-CoV-2-infected cultures (MOI 0.1) had most
pronounced increase in secretion of PTX-3 and TIMP-1 as compared to Mock cultures, with 113 and
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112% levels, respectively. Accordingly, PTX-3 was also one of the most up-regulated genes as determined
by RNA-Seq (Fig. 3). We further assessed the expression levels of PTX3 by RT-qPCR and found it to be
increased in HBMEC cultures after 6 and 24 hpi with the MOI 0.1, whereas VEGF, Serpin-E2 and ET-1
showed no significant changes at the transcriptional level (Fig. 4C). Insulin-like growth factor (IGF)
binding protein-3 (IGFBP-3), a member of the IGFBP family was shown to be 166 and 125% more
abundant in the HBMEC conditioned media in MOI 0.01 and 0.1-infected dishes, respectively. We
performed scratch-wound healing migration assays in infected HBMECs, however no effect in cellular
migration was noticed in infected cultures as compared to Mock-infected (not shown). Interestingly,
hypoxia-inducible factor-1 alpha (HIF-1α) was also increased by SARS-CoV-2 at both MOIs at 24 hpi
(Fig. 4C).
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Table 2
Differentially secreted angiogenic proteins in SARS-CoV-2-infected HBMECs.

Analyte name (alternate
nomenclature)

Gene
ID

Foreground pixel intensity (fold change relative to
Mock)

Mock MOI 0.01 MOI 0.1

Activin-A 3624 55.5 32.5 (0.6) 88.5 (1.63)

ADAMTS-1 9510 25.5 12.5 (0.52) 45.5 (1.88)

Angiogenin (ANG) 283 6427 7818 (1.21) 6553 (1.01)

Angiopoietin-1 (Ang-1) 284 147 86 (0.59) 155 (1.07)

Angiopoietin-2 (Ang-2) 285 39.5 12 (0.32) 79.5 (2.08)

Angiostatin/ Plasminigen 5340 144.5 10 (0.07) 74 (0.52)

Amphiregulin (AR) 374 5797 6744 (1.16) 5064.5 (0.87)

Artemin 9048 144.5 143 (0.99) 64 (0.46)

Coagulation Factor III (TF) 2152 818 887 (1.08) 622 (0.76)

CXCL16 58191 3387.5 3976.5 (1.17) 2521.5 (0.74)

DPPIV (CD26) 1803 72.5 1.5 (0.03) 203 (2.83)

EGF 1950 16.5 18 (1.15) 40.5 (2.60)

EG-VEGF (PK1) 84432 188.5 164 (0.88) 257 (1.38)

Endoglin (CD105) 2022 17.5 17.5 (1.05) 74.5 (4.40)

Endostatin/ Collagen XVIII 80781 3827 4747.5 (1.24) 3931.5 (1.02)

Endothelin-1 (ET-1) 1906 9087.5 9213 (1.01) 9007.5 (0.99)

FGF acidic (FGF-1) 2246 475 69.5 (0.15) 472.5 (1)

FGF basic (FGF2) 2247 16.5 5 (0.36) 4.5 (0.42)

FGF-4 2249 0.5 -1 36.5 (78.0)

FGF-7 (KGF) 2252 77.5 15.5 (0.21) 180 (2.34)

GDNF 2668 101 82 (0.82) 105 (1.06)

GM-CSF 1437 419.5 275 (0.65) 241.5 (0.58)

HB-EGF 1839 71 32.5 (0.47) 134 (1.92)

HGF 3082 10.5 11 (1.14) 25.5 (2.66)

Analytes in bold had at least 3,000 pixels and were considered as valid signal, as shown in Fig. 4.
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Analyte name (alternate
nomenclature)

Gene
ID

Foreground pixel intensity (fold change relative to
Mock)

Mock MOI 0.01 MOI 0.1

IGFBP-1 3484 4841.5 4901 (1.01) 4684.5 (0.96)

IGFBP-2 3485 118 22.5 (0.19) 154.5 (1.33)

IGFBP-3 3486 3203 5335.5 (1.66) 3991 (1.24)

IL-1β (IL-1F2) 3553 512 470.5 (0.92) 695.5 (1.36).

IL-8 (CXCL8) 3576 10875.5 10484.5 (0.96) 10744 (0.98)

LAP (TGF B1) 7040 292.5 219.5 (0.75) 102 (0.35)

Leptin 3952 1 44 (45.0) 43.5 (46.0)

MCP-1 (CCL2) 6347 4549 7624 (1.67) 4759 (1.04)

MIP-1A (CCL3) 6348 123 103 (0.84) 149 (1.23)

MMP-8 4317 418 510.5 (1.22) 841.5 (2.01)

MMP-9 4318 298.5 106.5 (0.36) 206 (0.69)

NRG1-B1 (HRG1-β1) 3084 256 107.5 (0.42) 320 (1.25)

Pentraxin-3 (TSG-14) 5806 7509.5 7263.5 (0.96) 8523 (1.13)

PD-ECGF 1890 441 310 (0.70) 600 (1.36)

PDGF-AA 5154 1411.5 2129.5 (1.50) 1736.5 (1.23)

PDGF-AB/ PDGF-BB 5155 923.5 878 (0.95) 1161 (1.25)

Persephin 5623 565.5 375.5 (0.66) 490.5 (0.87)

Platelet Factor 4 (CXCL4) 5196 261.5 150.5 (0.58) 283.5 (1.09)

PIGF 5228 50.5 14 (0.29) 90 (1.83)

Prolactin 5617 7 49 (7.14) 57 (8.5)

Serpin B5 (Maspin) 5268 604 578 (0.95) 694 (1.15)

Serpin-E1 (PAI-1) 5054 10979.5 10955.5 (0.99) 11590.5 (1.05)

Serpin-F1 (PEDF) 5176 422.5 327.5 (0.77) 476 (1.13)

TIMP-1 7076 9548 9156 (0.95) 10696 (1.12)

TIMP-4 7079 446.5 292.5 (0.65) 656.5 (1.47)

Analytes in bold had at least 3,000 pixels and were considered as valid signal, as shown in Fig. 4.
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Analyte name (alternate
nomenclature)

Gene
ID

Foreground pixel intensity (fold change relative to
Mock)

Mock MOI 0.01 MOI 0.1

Thrombospondin-1 (TSP-1) 7057 9842 9012 (0.91) 9727.5 (0.98)

Thrombospondin-2 (TSP-2) 7058 688 929 (1.35) 837 (1.22)

uPA 5328 12865 13396.5 (1.04) 14065 (1.09)

Vasohibin 22846 253 172 (0.68) 268 (1.06)

VEGF 7422 9700.5 9954 (10.2) 10559.5 (1.08)

VEGF-C 7424 0.5 0 37 (79.0)

Analytes in bold had at least 3,000 pixels and were considered as valid signal, as shown in Fig. 4.

5. Mitochondrial plasticity is affected by SARS-CoV-2
infection
Because mitochondria play a role in cellular homeostasis and pathology, we sought to investigate the
effects of SARS-CoV-2 infection on mitochondrial plasticity in HBMECs. Cells were immunostained for
mitochondrial import receptor subunit TOMM20 (Fig. 5A). Our first observation was that infection at MOI
0.01 and 0.1 induced a denser mitochondrial network profile, when compared to Mock condition (Fig. 5A-
C). MiNA analysis of mitochondrial network organization (Valente et al., 2017), revealed that
mitochondrial footprint (Fig. 5C), which measures the mitochondria signal in a 2-dimensional image of a
cell, was found to be significantly increased in HBMECs infected with the MOI 0.1 at 6 hpi and with both
MOIs at 24 hpi. We next measured mean mitochondrial branch length mean, which is the average length
of mitochondrial structures that are either independent or connected to networks (Fig. 5C). We observed a
slight, yet significant, increase in cells infected with MOI 0.01 at 6 hpi and with MOI 0.1 at 24 hpi, with a 7
and 3% increase, respectively. Furthermore, MiNA analysis revealed that SARS-CoV-2 induced an overall
increase in mitochondrial networks, with significant increase in summed branch length mean values at 6
(34 and 33% increase for MOIs 0.01 and 0.1, respectively) and 24 hpi (38 and 45% increase for MOIs 0.01
and 0.1, respectively). Mitochondrial morphological analyses were further assessed by TEM (Fig. 5B) and
we found that infected HBMECs displayed larger, swollen mitochondria, with reduced cristae and to some
extent associated to multivesicular bodies. Moreover, MOI 0.1-infected cultures displayed 356
mitochondria/mm2, while Mock-infected cultures had 266 mitochondria/mm2 (p < 0.05), which
corresponded to a 33% increase (Fig. 5D).

Since changes in mitochondrial networks could be influenced by abnormal fission or fusion events
(Giacomello et al., 2020), we evaluated expression of markers of such processes. TOMM20, used to
determine mitochondrial networks by confocal microscopy and MiNA analysis (Fig. 5A and C), had a 4-
fold increase in its mRNA level (p > 0.05) in MOI 0.01-infected cells. However, no changes were detected in
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TOMM20 protein levels by western blotting (Fig. 5E). We then assessed the expression of mitochondrial
fission-related genes. Fis1 and Drp1 mRNA were significantly increased by 4-fold and 3-fold, respectively
at 24 hpi in HBMECs infected with the MOI 0.01, which did not translate to changes in Fis1 and Drp1
protein content (Fig. 5E). Drp1 phosphorylation at serine 616 (Drpi1S616) residue, which is responsible for
directing to mitochondrial fission (Han et al., 2020), was not altered in SARS-CoV-2-infected cultures.
Mitochondrial Fission Factor (MFF) showed a 0.16-fold reduction induced by MOI 0.1 at 24 hpi, that also
did not reflect into altered protein expression. However, Mitofusin-2 (Mfn2) mRNA levels showed a 4-fold
increase by MOI 0.01 at 24 hpi (p = 0.02), while Mfn2 protein levels were increased by 1.5-fold in MOI 0.1-
infected cultures as compared to Mock (Fig. 5E).

Discussion
Neurological consequences of COVID-19 still pose a relevant puzzle to medical and scientific community.
Since its first cases, CNS invasion has been described (Paterson et al., 2020; Sanchez et al., 2021) but the
routes and mechanisms by which SARS-CoV-2 gains entry to brain parenchyma remain allusive (Brann et
al., 2020). In the present study we have investigated the molecular indices of Neuro-COVID-19 as they are
related to brain endothelial cells forming the BBB. Despite our previous observation that primary HBMECs
express several receptors for the virus (Torices et al., 2021), we found little to no indication of productive
viral replication in the supernatants of HBMECs which is in accordance with previous reports that
described that several endothelial cell types are not permissive for SARS-CoV-2 productive infection
(McCracken et al., 2021; Nascimento Conde et al., 2021). Krasemann et al., (2022) observed infection of
iPS-derived HBMECs but only at MOIs 10 and 100, which are unlikely to have pathological significance.

Exposure to SARS-CoV-2 led to augmentation of ACE2 and TMPRSS2 expression, which is consistent
with our previous observations, in which HBMECs were exposed to the S1 subunit of Spike protein
(Torices et al., 2021). Despite the apparent lack of productive infection, SARS-CoV-2 induced apoptotic
death of HBMECs in similar levels as compared to Vero epithelial cells and to elsewhere described in the
literature (Heuberger et al., 2021). In fact, HBMECs have been shown to undergo apoptotic cell death in
response to viral infections, including Dengue (Meuren et al., 2021) and Zika (Leda et al., 2019; Mladinich
et al., 2021) viruses, followed or not by changes in BBB permeability. These results suggest that
interaction of host cells with viral surface proteins may be sufficient to trigger cellular apoptosis induction
even in the absence of productive infection.

Tight junction proteins have a crucial role on maintaining BBB integrity and its selective paracellular
permeability (reviewed by Takata et al., 2021). In our study, SARS-CoV-2-infected Vero E6 cells showed a
marked disorganization of paracellular tight junctions, as shown by ZO-1 immunostaining. Previous
studies described that treatment of HBMECs in 2D or 3D cultures with the S1 subunit Spike1 protein led
to mislocalization of ZO-1, concomitantly with cytokine secretion (Buzhdygan et al., 2020; DeOre et al.,
2021). Not only ZO-1 (Hao et al., 2020), but also β-catenin, cadherin-5 and occludin junctional proteins
have recently been shown to be affected by SARS-CoV-2 proteins in HUVECs (Rauti et al., 2021). ZO-1
possesses a PDZ domain, which is responsible for binding and interaction with other proteins (Saras &
Heldin, 1996; Giepmans & Moolenaar, 1998). Interestingly, ACE2 possesses a PDZ-binding domain
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(Dasgupta & Bandyopadhyay, 2021; Caillet-Saguy & Wolff, 2021), and it has been suggested that
epitopes of viral proteins, such as 1–60: M1Lys60 and 241–300: Ala240-Glu300 could directly bind to
ZO-1 and VCAM-1 PDZ domains, thus suggesting a possible alternative route of CNS entry. We found ZO-
1 and claudin-5 protein levels to be increased after 24 h of infection in HBMECs and this increase is
consistent with what our group recently demonstrated with S1 treatment (Torices et al., 2021). Whether
ZO-1 increase can be directly related to BBB permeability may vary among experimental models and
infectious agents. We have described that the Honduras isolate of Zika virus selectively up-regulates ZO-1
expression in vitro, while BBB permeability was increased in vivo (Leda et al., 2019). In fact, proper BBB
functioning relies on the combined expression and localization of ZO-1, -2 and − 3, claudin-5 and occludin
(Feng et al., 2018). Direct infection with higher MOIs of SARS-CoV-2 or treatment with plasma from
COVID-19 patients failed to induce significant increases in permeability in BMECs in vitro (Constant et al.,
2021). Conversely, using the K18 mouse model and hamster infection, Zhang et al. (2021) showed that
SARS-CoV-2 effectively infects and replicates in HBMECs, but leads to no change in BBB permeability and
TJ proteins. Interestingly, a massive inoculation of iPS-derived HBMECs (MOIs 10 and 100), showed
active viral replication, whereas MOIs 0.1 and 1 described infectivity near to 0.6% cells, which is similar to
what we observed herein (Krasemann et al., 2022).

Following the initial characterization of infectivity profile in HBMECs, we sought to characterize the
transcriptomic landscape of SARS-CoV-2 infection in BBB-forming cells. We performed RNA-Seq analyses
of SARS-CoV-2-infected cultures at 6 and 24 hpi, with MOIs 0.1 and 0.01. Due to the minimal change in
the overall host cell transcriptome with most of the experimental conditions used in this study, we
focused our subsequent analyses to the MOI 0.1 infection at 24 hpi. The majority of the significantly up-
regulated genes corresponded to known endothelial activation pathways, including CXCL1, -2, -3 and
CCL20, PTX3, ICAM1 and TNF. Interestingly, the overexpression of the LTB-TNF-RELB ensemble by SARS-
CoV-2, provided evidence that activation of the non-canonical NF-κB pathway activation may be taking
place. NF-κB is a family of transcription factors that can be activated by several ligands and activates the
expression of proinflammatory cytokines and chemokines (Sun et al., 2012). Interestingly, the main
protease of SARS-CoV-2 (Mpro) cleaves a member of the NF-κB family, NEMO, which in turn leads to
HBMEC cell death in vitro and in vivo (Wenzel et al., 2021). RELB can form heterodimers with p50/p105,
p52/p100 and p65 (Shih et al., 2012; reviewed by Mockenhaupt et al., 2021), but can also bind to sirtuin1
to direct epigenetic silencing of inflammatory gene expression (Chen et al., 2009; Liu et al., 2011). In fact,
among KEGG pathways enriched in our datasets, we found ribosomal structure and function as possible
candidates for epigenetic regulation induced by SARS-CoV-2. These observations suggest that host
epigenetic factors may be key for the outcome of COVID-19 and/or long COVID-19. Indeed, the promoters
of the genes involved in inflammation, including NF-κB, can be demethylated, thereby resulting in an
increased expression of interferons (IFNs), possibly leading to “cytokine storm” (Coit et al., 2016). The
expression of IL-6, another important player in the so-called cytokine storm occurring in the most severe
COVID-19 patients, was also significantly increased in infected HBMEC and it is known to be modulated
by methylation of its promoter. It was also observed that oxidative stress induced by viral infections,
including SARS-CoV-2 infection, can inhibit the maintenance of DNA methyltransferase DNMT1, thereby
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aggravating the DNA methylation defects (Li et al., 2014; Perl, 2013; Sawalha et al., 2020). Our
preliminary results (not shown) indicate that SARS-CoV-2 infection of HBMEC results in a decrease in
DNA methylation, supporting a recent study of genome-wide DNA methylation analysis in peripheral
blood of COVID-19 infected individuals, which identified marked epigenetic signatures, such as
hypermethylation of IFN-related genes and hypomethylation of inflammatory genes (Corely et al., 2020).
Such observations further suggest the involvement of epigenetic regulatory mechanisms in COVID-19
(Mantovani A & Netea, 2020).

As stated above, PTX3 was one of the main hits found in the transcriptomic analyses. Pentraxins are a
superfamily of multifunctional proteins with conserved phylogeny (Daigo et al., 2014), divided into 2
groups based on their primary structure: short and long pentraxin, where c-reactive protein and PTX are
examples of short and long pentraxins, respectively. PTX3 is expressed in several neural cell types
(Muffley et al., 2012; Shindo et al., 2016; Freezer et al., 2017; Siqueira et al., 2018; Wesley et al., 2022) and
in endothelial cells can be upregulated by inflammatory stress such as cytokine stimulation (Breviario et
al., 1992). We performed a profiling of angiogenesis-related panel in the supernatants of SARS-CoV-2-
infected HBMEC and confirmed that PTX3 was increased by infection. PTX3 is known to be produced in
high amounts by blood vessels in vascular inflammatory conditions (Fazzini et al., 2001) and inhibits
FGF2-dependent angiogenesis (Rusnati et al., 2004; Presta et al., 2018). Pathological vascularization and
angiogenesis have been described as a unique comorbidity associated with SARS-CoV-2 infection in the
pulmonary endothelium (Meini et al., 2020), including microvascular distortion and increased
intussusceptive angiogenesis (Ackerman et al., 2020; Mentzer et al., 2022). Moreover, VEGF as well as
other angiogenic-related analytes were found to be increased in COVID-19 patients (including PTX3),
which correlated with disease severity (Maldonado et al., 2022). Accordingly, VEGF levels were 8%
increased in the supernatants of infected HBMECs, even though vegf transcripts remained unaltered. It is
well-known that inflammation, especially IL-6-dependent, can stimulate defective angiogenesis
(Gopinathan et al., 2015) and our data further contributes to the notion that following SARS-CoV-2
infection there is an intense brain endothelial activation which leads to defective angiogenic signaling
and possibly endothelial permeability. Additionally, we found HIF-1α to be greatly increased after 24 hpi.
HIF-1α is a major angiogenesis inductor and is known to be up-regulated by distinct viral infections
(reviewed by Reyes et al., 2020). HIF-1α is activated and translocated to the nucleus upon hypoxic
conditions (Ke & Costa, 2006) and it has been shown that COVID-19 patients present massive hypoxia
due to vasoconstriction and coagulopathy (Afsar et al., 2020). Interestingly, ACE2 expression is decreased
in pulmonary smooth muscle cells upon HIF-1α accumulation (Zhang et al., 2020), whereas hypoxia
leads to a biphasic modulation of both ACE2 and TMPRSS2 expression on brain microvascular
endothelial cells (hCMEC/D3), with an initial increase at 6 h and a decrease at 48 h of hypoxic stimulus
cells (Imperio et al., 2021). These observations are in accordance with our present data, that ACE2 is
decreased while HIF-1α is increased at 24 hpi. Although VEGF is one of the most described downstream
targets of HIF-1α activation, apoptotic cell death and IFN-stimulated gene expression are additional
targets of HIF-1α activation (Reyes et al., 2020), which can also be dependent on NF-κB signaling
pathway (Walmsley et al., 2005). Our data indicates that HIF-1α up-regulation can be a part of a SARS-
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CoV-2-induced endothelial activation, along with cytokine/chemokine stimulation and NF-κB non-
canonical activation.

Our final series of experiments focused on mitochondrial morphology and dynamics in HBMECs
following SARS-CoV-2 infection. It is well known that mitochondria are gatekeepers of BBB endothelium
physiology and correspond to higher cytoplasmic volume as compared to non-cerebrovascular
endothelial cells (Oldendorf et al., 1977; reviewed by Parodi-Rullan et al., 2021). Moreover, mitochondrial
function is important for BBB maintenance and integrity (Doll et al., 2015). We first employed a
morphological/morphometrical approach to determine the mitochondrial contents and cellular
distribution. Herein we demonstrated that direct exposure to SARS-CoV-2 led to a remodeling of
mitochondrial networks. By using the MiNA plugin, we verified that infected HBMECs had increased
mitochondrial footprint, as an estimation of overall TOMM20 pixel signal. Recent reports have also
shown an effect of SARS-CoV-2 and COVID-19 on mitochondrial biology: monocytes isolated from
COVID-19 patients display reduced mitochondrial membrane potential and SARS-CoV-2 viral load was
positively correlated with generation of ROS (Romão et al., 2022). Importantly, endothelial cells exposed
to SARS-CoV-2 Spike1 protein showed decreased tubular and increased fragmented mitochondrial
networks in vitro, which was accompanied by a decrease in oxygen consumption rate and increase
extracellular acidification rate (Lei et al., 2021). Confirming observation was recently described by
Domizio et al. (2022), in which pulmonary endothelial cells in a lung-on-a-chip infection model displayed
increased mitochondrial networks. Similarly, we demonstrated that mitochondrial networks were
increased, as determined by summed branch length analyses, which indicates that SARS-CoV-2-infected
HBMECs had longer mitochondrial ramifications. Changes in endothelial mito-morphology are well
described in several models of inflammatory diseases and/or aging (Burns et al., 1979; Jendrach et al.,
2005; Forrester et al., 2020) and are correlated with abnormalities in mitochondrial quality control system,
which in turn can lead to increased ROS production. Mitochondrial quality control encompasses
biogenesis, fission, fusion and mitophagy processes, which are essential for its biology and function. We
analyzed markers of fusion and fission processes in SARS-CoV-2-infected cultures and determined that
while MOI 0.01 led to an increase in fission-related gene expression (Fis1 and Drp1), this effect was not
observed in protein levels or phosphorylation. However, mitofusin2 protein contents were found to be
increased in MOI 0.1-infected cultures, which could explain the increased values in branch lengths.
Moreover, we found mitochondria associated to some extent to multivesicular bodies, which has also
been described as another pathway for mitochondrial quality control (Sugiura et al., 2014; Picca et al.,
2020). Interestingly, several reports have linked NF-κB mediated inflammation with mitochondrial
responses (Nakahira et al., 2011; Zhou et al., 2016; Zhong et al., 2016; Liu et al., 2018), which could
indicate that in fact mitochondrial remodeling observed in infected HBMECs could be due to (or lead to)
SARS-CoV-2-induced inflammatory response.

Conclusions
Despite no active replication or signs of massive infection, SARS-CoV-2 affects expression of ACE2 and
TMPRSS2 in brain endothelial cells and leads to a proinflammatory activation, possibly mediated by NF-
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κB non-canonical pathway activation. These events would result in mitochondrial and tight junction
remodeling and endothelial apoptosis. Taken together our data point to a relevant role of SARS-CoV-2
infection on BBB-forming endothelial cells, which could reflect important aspects of clinical observations
of neurological and cerebral vascular manifestations of COVID-19.
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Figure 1

Characterization of infectivity profile of HBMECs by SARS-CoV-2. (A) HBMECs were infected with
different MOIs of SARS-CoV-2 (variant D614G) and viral production and release to supernatant was
analyzed by RT-qPCR for Envelope (E) gene from 0 to 72 hours post infection (hpi). As compared to Vero
cells, HBMECs showed a non-productive infection. (B) At desired time points (6 and 24 hpi) total RNA
from cultures and expression of Spike1 and E genes were analyzed by RT-qPCR. Infection with MOI 0.1
showed an increase in expression of these two transcripts at 24 hpi (p>0.05). (C) Evaluation of SARS-
CoV-2 receptors expression in infected HBMECs. ACE2 mRNA had a significant decrease at 24 hpi with
the MOI 0.1, which did not translate to protein levels (right panel). TMPRSS2 had a slight increase in
protein content at 24 hpi. (D) SARS-CoV-2 induces apoptotic cell death in Vero and HBME cells at 24 hpi
as measured by cleaved caspase-3 immunostaining. *: p<0.05; ****: p<0.0001, Two-Way ANOVA with
Bonferroni post-test of at least five independent experiments.

Figure 2

Effects of SARS-CoV-2 on tight junctional proteins in Vero and HBMECs. A: Cells were stained for tight
junction adaptor protein ZO-1 (red) and SARS-CoV-2 Spike1 (in green). ZO-1 was affected in infected
cultures at 24 hpi as shown in higher magnification in the insets. B: Morphometrical analyses of ZO-1
fluorescence intensity and TiJOR (D) showed increased ZO-1 signal and TiJOR index at 6 hpi with the
MOI 0.01. TJ proteins ZO-1 and Claudin-5 mRNA levels remained unaffected by infection (C), but were
increased at 24 hpi by MOI 0.1 (D). *: p<0.05 One-way ANOVA with Bonferroni post-test (in D) or Two-Way
ANOVA with Bonferroni post-test (in B and C); ****: p<0.0001, Two-Way ANOVA with Bonferroni post-test.
Each point in C and D correspond to independent cultures and in B correspond to microscopic field from
four independent cultures. Representative blots in D from three independent experiments.
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Figure 3

Transcriptomic profiling of SARS-CoV-2 infection on BBB-forming cells. HBMECs were infected with MOIs
0.01 and 0.1 and analyzed by RNA-Seq. (A) Volcano plot depicting the overall profile of differentially
expressed genes in cultures infected with MOI 0.1 at 24 hpi, with up-regulated genes shown in purple and
down-regulated in green. (B) Heatmap diagram depicting expression levels of the most significantly
altered genes by MOI 0.1 (3 right columns) as compared to uninfected controls (3 left columns). (C)
Cnetplot visualization of functional enrichment results with up-regulated genes, depicting the functional
correlation of genes with the most significant GO terms. (D) Enrichment functional analysis of GO terms
most affected by SARS-CoV-2 in HBMECs indicate inflammatory endothelial activation, as well as
mitochondrial dysfunction and ribosomal-related gene expression. (E) RT-qPCR validation of most
significantly altered genes detected in the RNA-Seq indicate activation of non-canonical NF-kB pathway,
with massive increase in TNF-α, lymphotoxin B (LTB, or TNF-C) and downstream target genes such as IL-
6, CXCL1, -2 and -8. NFKB1 (p105/p50) and NFKB2 (p100/p52) as well as JUNB did not show alteration
in infected cultures. *: p<0.05; **: p<0.01; ****: p<0.0001, Two-Way ANOVA with Bonferroni post-test of at
least 5 independent experiments. MOI: multiplicity of infection; GO: gene ontology.
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Figure 4

Production of angiogenic-related molecules is modulated by SARS-CoV-2 in HBMECs. (A) Conditioned
medium from Mock and SARS-CoV-2-infected HBMEC cultures (both with MOI 0.01 and 0.1) were
analyzed with Proteome Profiler Human Angiogenic Antibody Array and detected by chemoluminescence,
each protein detected in duplicated spots. (B) Densitometric analysis of membranes in A revealed the
analytes with strongest signal and which were affected by infection. (C) RT-qPCR analysis of
angiogenesis-related genes in HBMECs revealed that PTX3 and HIF-1α were increased in infected
cultures. *: p<0.05; **: p<0.01, Two-Way ANOVA with Bonferroni post-test of at least five independent
experiments.

Figure 5

SARS-CoV-2-induced mitochondrial remodeling in HBMECs. Mitochondrial networks were detected by
TOMM20 immunostaining (A) and TEM (B). MiNA analysis of TOMM20 revealed that SARS-CoV-2
induced an increase in mitochondrial footprint, branch length mean and summed branch length (C).
Mitochondrial density was calculated by TEM images (D), which also revealed increased fusion and
association to multivesicular bodies (B). E: RT-qPCR (upper panel) and western blotting (lower panel)
analyses revealed that despite fission-related genes (Fis1, Drp1 and MFF) were up-regulated in MOI 0.01-
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infected cultures, only Mfn2 protein levels were increased in MOI 0.1-infected cultures. TOMM20 protein
levels also remained unaltered. *: p<0.05; **: p<0.01; ***:p<0.001; ****: p<0.0001, Two-way ANOVA with
Bonferroni post-test. Each dot in graphs represents one cell (in C), one mitochondrion (in D) or one
independent experiment (in E). Bottom right panels depict blots from E. Scale bars: 50 µm for A and 500
nm for B.
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