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Abstract: Neuroblastoma is a rare disease. Rare are also the possibilities to test new therapeutic
options for neuroblastoma in clinical trials. Despite the constant need to improve therapy and
outcomes for patients with advanced neuroblastoma, clinical trials currently only allow for testing
few substances in even fewer patients. This increases the need to improve and advance preclinical
models for neuroblastoma to preselect favorable candidates for novel therapeutics. Here we propose
the use of a new patient-derived 3D slice-culture perfusion-based 3D model in combination with
rapid treatment evaluation using isothermal microcalorimetry exemplified with treatment with the
novel carbonic anhydrase IX and XII (CAIX/CAXII) inhibitor SLC-0111. Patient samples showed
a CAIX expression of 18% and a CAXII expression of 30%. Corresponding with their respective
CAIX expression patterns, the viability of SH-EP cells was significantly reduced upon treatment with
SLC-0111, while LAN1 cells were not affected. The inhibitory effect on SH-SY5Y cells was dependent
on the induction of CAIX expression under hypoxia. These findings corresponded to thermogenesis
of the cells. Patient-derived organotypic slice cultures were treated with SLC-0111, which was
highly effective despite heterogeneity of CAIX/CAXII expression. Thermogenesis, in congruence
with the findings of the histological observations, was significantly reduced in SLC-0111-treated
samples. In order to extend the evaluation time, we established a perfusion-based approach for
neuroblastoma tissue in a 3D perfusion-based bioreactor system. Using this system, excellent tissue
quality with intact tumor cells and stromal structure in neuroblastoma tumors can be maintained for
7 days. The system was successfully used for consecutive drug response monitoring with isothermal
microcalorimetry. The described approach for drug testing, relying on an advanced 3D culture system
combined with a rapid and highly sensitive metabolic assessment, can facilitate development of
personalized treatment strategies for neuroblastoma.

Keywords: carbonic anhydrase IX; carbonic anhydrase XII; SLC-0111; 3D culture; organotypic slice
culture; hypoxia; novel inhibitor; neuroblastoma; bioreactor; preclinical drug screening; isothermal
microcalorimetry for drug assessment
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1. Introduction

Neuroblastoma arises from the sympathetic nervous system and is the most com-
mon solid tumor diagnosed in the first year of life [1]. With an incidence of 1:7000 to
1:8000, neuroblastoma is the most common extracranial solid malignancy in children [2,3].
Neuroblastoma is a heterogenous malignancy with a wide spectrum of cellular subtypes
ranging from epithelial-like tissues to neuronal tissues with a wide variety of clinical man-
ifestations. Although modern treatment strategies have led to increased survival rates,
neuroblastoma still contributes to 15% of child deaths from cancer, and high-risk patients
still face poor outcomes [2,3]. Characteristically, clinical behaviors and clinical outcomes
are highly heterogeneous. The reasons why tumors spontaneously regress or progress to
multi-organ manifestation and chemoresistance is largely undetermined [4–6]. Despite
recent advances through clinical studies, almost 80% of patients with advanced disease do
not show sufficient response to treatment [7,8].

First, explanations for inter- and intra-tumor heterogeneity could be found in the
manifestation of genetic, segmental aberrations, such as loss of chromosomes 1p, 3p,
4p, 11q or gain of chromosomes 1q, 2p, 17q [3]. Furthermore, several promoter genes
including their core regulatory circuitries (CRCs) have been identified for neuroblastoma,
such as MYCN, ALK and TERT [9]. These factors can in themselves complicate effective
targeted therapy, but fail to fully explain biological and clinical heterogeneity. We are still
lacking essential understanding of neuroblastoma biology, including local progression and
metastatic spread, failure of drug response, and oftentimes severe and late manifestations
of side effects in survivors [10].

Neuroblastoma is classified as a rare disease. High-risk neuroblastoma patients are
included in the High-Risk Neuroblastoma Study 1.8 of SIOP-Europe (SIOPEN) trial. Cur-
rently, clinical trials allow testing of experimental therapies only in very high-risk patients
at very advanced stages of tumor disease. This disease being rare, tumor biopsy material
at times of diagnosis is sparse, which presents an even greater challenge for introducing
new therapeutic drugs. At the same time, a major challenge in the development of new
therapeutics is the great disparity between preclinical studies and in vivo trials [11]. Two-
dimensional (2D) cell culture models allow only limited investigation of cell-cell interaction.
Three-dimensional (3D) mono cell constructs are missing important components of the
tumor microenvironment, such as the structural tumor architecture, metabolic changes and
immune responses. Animal models are restricted by the failure to represent the specific
pediatric, immature immune microenvironments of developing children and their tumors.

Using tumor slice culture in a perfusion-based culture system could be an important
alternative as it maintains an intact tumor microenvironment by forcing the media through
the tissue [12,13] while overcoming typical limitations of static cultures, including limited
mass transport, i.e., nutrient delivery and waste removal, particularly in a central part
of the scaffold and tissue construct [12]. Formerly, perfusion-based cell cultures have
demonstrated a unique ability to generate tissue constructs displaying biological and
structural characteristics comparable with those of primary tissues [13,14]. More recently,
the perfusion bioreactor has proved helpful for a mid-term culture of human breast and
colorectal cancer tissues [15,16].

The final but most important challenge is screening of drug efficacy in representative
preclinical studies. Two-dimensional cultures can be assessed by viability or proliferation
assays and animal models by several imaging techniques; high-throughput screening (HTS)
addresses this challenge by using a patient-based cancer cell isolation approach [17,18]. The
challenge of achieving fast, precise and reproducible therapeutic screening of intact patient-
derived tissue remains unsolved. A possible solution may be found in using isothermal
microcalorimetry for rapid tumor response assessment [19].

Cancer cells are characterized by dysregulated cell proliferation, and the blood vessels
that form within solid tumors are often structurally and functionally abnormal, resulting in
severe hypoxia [20]. Adaptation of cancer cells to the hypoxic microenvironment is regu-
lated through physiological responses to hypoxia that are mediated by hypoxia-inducible
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factors, namely HIF-1α and HIF-2α. As a result of these, hypoxic cancer cells can acquire
enhanced invasive and metastatic properties in addition to resistance to chemotherapy and
radiation therapy; these together constitute the lethal cancer phenotype [20,21]. The HIF-
1α-dependent enzyme carbonic anhydrase IX (CAIX), in addition to its isoform carbonic
anhydrase XII (CAXII), amongst others, have been shown to be involved in numerous
pathological processes, including tumorgenicity, tumor cell invasion, tumor progression
and poorer survival in several other solid tumors [22,23]. We have previously shown a
poorer prognosis for CAIX-positive neuroblastoma patients in addition to the influence of
hypoxia on progression and metastases in this disease, and were successfully able to inhibit
neuroblastoma cell growth in vivo by applying the experimental CAIX inhibitors FC5-207A
and FC8-325A [24,25]. We have identified further hypoxia-associated prognostic factors for
neuroblastoma including CXCR4, PGK1 and AQP1 leading to increased metastases [26–28].
Especially, AQP1 furthers tumor cell migration and acts independently of other known
adverse factors, such as NMYC or NCAM [27,28].

In our current study we exploit the advantage of using a 3D model of intact neuroblas-
toma slice culture in combination with advanced tissue engineering techniques, such as
integration of the tumor into a perfusion-based bioreactor while maintaining its essential
structure and microenvironment. Monitoring of treatment response to the CAIX/CAXII in-
hibitor SLC-0111, which currently is in phase Ib/II clinical trials for adult solid cancers [29],
is performed with isothermal microcalorimetry of the intact tumor tissue. This allows us to
monitor responses to the experimental treatment of each patient’s specific tumor.

2. Results
2.1. Expression of CAIX and CAXII in Neuroblastoma and Adrenal Gland

Thirty-four neuroblastoma patients’ samples in addition to 16 normal adrenal gland
tissues were available on a TMA at the Institute of Pathology at the University Hospital
Basel, and revealed a positive CAIX expression of 18% (n = 6/34) in neuroblastoma samples.
All samples with healthy adrenal gland tissue were negative (n = 16) for CAIX expression.
Representative examples for CAIX staining of the TMA are shown in Figure 1A. CAXII
was positive in 30% of neuroblastoma samples on the TMA (n = 9/30). All samples with
healthy adrenal gland tissue were negative (n = 8) for CAXII expression. Representative
examples for CAXII staining of the TMA are shown in Figure 1B.

2.2. Expression of CAIX and CAXII in Neuroblastoma Cells in 2D Cultures

CAIX and CAXII expression were assessed in several neuroblastoma cell lines under
normoxic and hypoxic conditions by immunohistochemical staining (Figure 2, Supplemen-
tary Figure S1). SH-EP cells showed strong CAIX expression under normoxic conditions,
which even increased under hypoxia. In contrast to SH-EP cells, LAN1 cells did not express
CAIX under normoxic conditions and expression of CAIX could not be induced by hypoxia
treatment. In SH-SY5Y cells, which did not express CAIX under normoxia, CAIX expression
could be induced by hypoxia (Figure 2, first column). As the carbonic anhydrase inhibitor
SLC-011 has a high affinity for both CAIX and CAXII [29], CAXII immunohistochemical
staining of cells was performed to rule out a significant impact of CAXII. While SH-EP
and LAN1 cells showed a slight expression of CAXII under normoxia, which remained
unchanged after exposure to hypoxia, SH-SY5Y cells showed a slight expression under
normoxia that increased with hypoxia treatment (Supplementary Figure S1). These three
cell lines were chosen for further evaluation as they display a variety of different possible
CAIX expression patterns.
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Figure 1. (A,B) Expressions of CAIX and CAXII in neuroblastoma. CAIX expression was observed
in 18% (n = 6/34) and CAXII in 30% (n = 9/30) of neuroblastoma samples of TMA. Representative
images of positive and negative CAIX expressions are shown in the first two columns. Normal
adrenal gland tissue was negative for CAIX and CAXII in 100% of the samples (third) column.

2.3. Neuroblastoma Cell Viability and Thermogenesis under the Inhibition of CAIX and CAXII
with SLC-0111

Analysis of the inhibitory effect of SLC-0111 on neuroblastoma cells was performed
using a viability assay (Figure 2, second column). Corresponding with their respective CAIX
expression patterns, viability of SH-EP cells was significantly reduced upon treatment of
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SLC-0111 compared with the control under normoxic and hypoxic conditions. The inhibitor
did not show an inhibitory effect on LAN1 cells that did not express CAIX. The putatively
proliferative effect of SLC-011 in the absence of CAIX/CAXII expression warrants further
research. Most interestingly, the effect of CAIX inhibition in SH-SY5Y cells can be induced
with the induction of CAIX expression under hypoxia.
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Figure 2. Inhibition with SLC-0111 in 2D cultures. Inhibition of neuroblastoma cell lines SH-EP, LAN1
and SH-SY5Y with SLC0111 are depicted. First column: CAIX expression of cells under hypoxic and
normoxic conditions. Second column: cell viability after treatment relative to control (100%) under
normoxic and hypoxic conditions (ns not significant, *** p < 0.001, **** p < 0.0001). Third/fourth
columns: heat flow over time (µW/s) of treated and untreated cells under normoxia and hypoxia as
measured by microcalorimetry. Fifth column: Total heat development (µJ) during observation period
(corresponding to heat flow over time) measured by microcalorimetry. First row: SH-EP cell lines,
that express CAIX under normoxia and even more strongly under hypoxia, react to treatment with
SLC-0111 with a reduction in cell viability. At the same time, significantly reduced thermogenesis
(** p < 0.01) can be measured by microcalorimetry. Second row: LAN1 cells that do not express CAIX
to a relevant extent do not significantly react to the inhibitor in either assay. Third row: SH-SY5Y
cells react significantly to treatment with SLC-0111 with reduced viability and thermogenesis when
expressing CAIX stimulated by hypoxia (** p < 0.01). Error bars indicate one standard deviation.

Furthermore, we investigated if the inhibitory effect of SLC-0111 can be measured
by using isothermal microcalorimetry to make possible rapid treatment evaluation. As
hypothesized, heat flow per second (µW/s) recorded a decreased thermogenesis of SLC-
0111-treated cells in the presence of CAIX, namely SH-EP cells under normoxic and even
more so under hypoxic conditions, in addition to SH-SY5Y cells under hypoxic conditions
(Figure 2, third and fourth columns). This effect can be quantified when analyzing total
released heat over the observation period (µJ) (Figure 2, fifth column). Thermogenesis in
cells treated with SLC-0111 is significantly reduced compared with untreated samples in
all three cases. On the other hand, cells that do not express relevant amounts of CAIX,
such as LAN1 under normoxia or hypoxia and SH-SY5Y under normoxia, show slight
differences in heat flow in addition to the total heat between treated and untreated cells, but
are not significant. These slight changes are most likely a result of slight CAIX expression
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of SH-SY5Y cells (normoxia) and slight CAXII expression in LAN1 (normoxia and hypoxia)
and SH-SY5Y (normoxia) cells.

2.4. Expression of CAIX and CAXII in Neuroblastoma Patient Samples

After confirming the inhibitory effect of SLC-0111 on neuroblastoma cells in vitro, the
next step was to transfer this treatment to patient-derived slice cultures. Neuroblastoma is a
rare disease and oftentimes a biopsy is taken only at the time of diagnosis. Mostly, tissue is
needed for diagnostic purposes. This results in a scarcity of patient tumor tissue that can be
used for research. Nevertheless, we included three consecutive neuroblastoma patients in
this study. Characteristics of patients and tumors are summarized in Table 1. Tumor tissue
was taken directly from the operating room and prepared in part for immunohistochemical
analysis (Figure 3, first column), and in part for microcalorimetric measurements (Figure 3,
second and third column). For patient 1, additional tumor material was available and
was used for culture in a 3D perfusion-based bioreactor system (Figure 4). For each
tumor sample, immunohistochemical staining was performed and showed heterogeneous
expressions of CAIX and CAXII. Sample 1 strongly expressed CAXII with only slight
expression of CAIX. Tumor tissue from patient 2 showed strong expression of CAIX in
parts of the tumor and only slight expression of CAXII. Tumor tissue from patient 3 showed
expression of CAXII with only slight expression of CAIX.

Table 1. Neuroblastoma patient characteristics.

Patient 1 Patient 2 Patient 3
Classification stage I stage III stage IV high risk

Location adrenal gland thoracical adrenal gland

Metastases negative negative ubiquitary metastases
(MIBG scintigraphy)

Histology
poorly

differentiated,
stroma-poor

poorly differentiated,
stroma-poor

undifferentiated,
stroma-poor, high mitosis

rate
NMYC Expression negative negative negative

2.5. Treatment Response Evaluation of Treatment with SLC-0111 and COJEC in the Patient Slice
Culture Model Using Microcalorimetry

Organotypic slice cultures were treated with either SLC-0111 or medium as control,
depending on the amount of available tissue treatment arms with COJEC [30] and the CAIX-
specific inhibitor FC5-207A that were included in the experiment. Rapid COJEC refers to a
protocol which is used during the induction phase, and consists of alternating sequences
of a combination of vincristine, carboplatin/cisplatin and etoposide. We have previously
demonstrated the inhibitory effect of FC5-207A on neuroblastoma cells in vitro [24]. The
response to treatment was measured by isothermal microcalorimetry by measuring the
heat flow per second (µW/s) in addition to the total released heat over the observation
period (µJ). In Figure 3, tumor sample 1 reacted with a reduction in thermogenesis in all
three treatment groups compared to culture in medium alone. However, only changes for
treatments with SLC-0111 and FC5-207A were significant. The standard chemotherapeutic
combination therapy COJEC was not as effective. For tumor sample 2, only two groups
(SLC-0111 and control) could be examined and showed a significant inhibitory effect which
resulted in reduced thermogenesis in the tissue treated with SLC-0111. Tumor sample 3
was treated with SLC-0111 and COJEC. Here, both treatments resulted in a similar and
significantly effective reductions in thermogenesis compared with the control samples.
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Figure 3. CAIX and CAXII expression of neuroblastoma and monitoring of its inhibition in the
organotypic slice culture. Expression and SLC-0111 treatment experiments are shown of three patient
tumors in each row. The first two columns show immunohistochemical stainings, and the second two
columns depict microcalorimetric measurements of heat flow over time (µW/s) and total heat (µJ). All
three tumors show expression of either CAIX or CAXII to varying extents. Treatment of tumor slice 1
was more effective using SLC-0111 and the CAIX inhibitor FC5-207A compared to COJEC (* p < 0.05;
** p < 0.01), as measured by microcalorimetry. There was only enough tumor material to attempt one
treatment for tumor slice 2. Significantly reduced thermogenesis was observed under treatment with
SLC-0111 (* p < 0.05). Tumor slice 3 was treated with SLC-0111 in addition to COJEC, which reduced
thermogenesis by a similar extent (* p < 0.05). Error bars indicate one standard deviation.

One major advantage of using isothermal microcalorimetry for evaluation of treatment
response is the fact that the effect can be evaluated using an organotypic tumor slice culture.
Another major advantage is the short time interval of 24–48 h in which the treatment
response can be prognosticated.

2.6. Increase in Evaluation Window by Tumor Slice Culturing in a Perfused Bioreactor in
Combination with Microcalorimetric Treatment Response Evaluation

The short observation time frame which is needed for evaluation by isothermal mi-
crocalorimetry is also one of the limitations of using this method. Especially when eval-
uating the effect of novel therapeutics that influence the tumor’s microenvironment, an
extended observation period would present an even greater advantage. Therefore, we
established a perfusion-based approach for neuroblastoma tissue in a 3D bioreactor system.
Using this system, we maintain an excellent tissue quality with intact tumor cells and
stromal structure in neuroblastoma tumors for up to 10 days (Huo et al., submitted). In the
current experiment, tumor tissue from sample 1 was treated in a sandwich-like assembly
and cultured under perfusion flow in a continuous cycling of medium (Figure 4). The tumor
slice was treated with SLC-0111, COJEC and medium alone. After 7 days, tumor tissue
was harvested and partially used for immunohistochemical analysis and for isothermal
microcalorimetry. While tumor structure was preserved in the medium alone samples,
CAXII expression had decreased. In the COJEC-treated group tumor structure was severely
disturbed, and treatment with SLC-0111 resulted in an almost complete depletion of tumor
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cells after 7 days. Microcalorimetry was initiated upon removal of the tumor slices from the
bioreactor. Thermogenesis mirrored the findings of the histological observations and was
significantly reduced in SLC-0111-treated samples compared to medium control, but not in
the COJEC group. Overall values for heat flow and total heat were reduced after 7 days
compared with the heat flow and total heat of fresh samples. Nevertheless, treatment
response can still be assessed after 7 days in the perfused tumor slice culture.
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deviation. 

Table 1. Neuroblastoma patient characteristics. 

 Patient 1 Patient 2 Patient 3 
Classification stage I stage III stage IV high risk 

Location adrenal gland thoracical adrenal gland 

Metastases negative negative 
ubiquitary metastases 
(MIBG scintigraphy) 

Histology poorly differentiated, 
stroma-poor 

poorly differentiated, 
stroma-poor 

undifferentiated, 
stroma-poor, high 

mitosis rate 
NMYC Expression negative negative negative 

2.5. Treatment Response Evaluation of Treatment with SLC-0111 and COJEC in the Patient 
Slice Culture Model Using Microcalorimetry 

Organotypic slice cultures were treated with either SLC-0111 or medium as control, 
depending on the amount of available tissue treatment arms with COJEC [30] and the 
CAIX-specific inhibitor FC5-207A that were included in the experiment. Rapid COJEC re-
fers to a protocol which is used during the induction phase, and consists of alternating 

Figure 4. CAXII expression and monitoring of its inhibition in a perfusion-based bioreactor system.
(A) CAXII expression of original tumor tissue (harvested immediately after resection, row 1). Tissue
7 days after culturing in the perfused bioreactor without treatment showing an intact tumor structure
(row 2). Tumor tissue treated with 100 µM SCL-0111 (row 3) and COJEC (row 4), respectively,
for 7 days in the perfused bioreactor showing different degrees of tumor structure and tumor cell
degradation. In the second column, HE staining of tumor slice after 7 days in medium, SLC-0111
and COJEC are shown. (B) Schematic view of bioreactor set up: after tumor resection, tumor slices
are placed between two collagen sponges in a sandwich-like fashion into the perfusion chamber
and cultured with a continuously cycling medium with or without treatment. (C,D) Heat flow over
time (µW/s) and total heat (µJ) (corresponding to time of heat flow observation) are significantly
reduced under treatment with SLC0111 (* p < 0.05), but not with COJEC. Error bars indicate one
standard deviation.

3. Discussion

Here we show the successful inhibition of neuroblastoma cells and patients’ tumors
using the CAIX/CAXII inhibitor SLC-0111, which is currently in phase Ib/II clinical trials.
We demonstrate the novel use of a patient slice-culture perfusion-based 3D neuroblas-
toma model in combination with isothermal microcalorimetry for rapid drug response
assessment. In the following sections we will discuss neuroblastoma reasons for targeting
hypoxia-induced tumor-specific processes, the possibilities of carbonic anhydrase-targeted
therapy, advantages of perfusion-based, refined 3D culturing systems and the potential
of microcalorimetry for individualized rapid drug response assessment. The need for
developing not only new treatment options for advanced neuroblastoma but also for im-
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proving preclinical testing strategies for potential therapeutics is obvious. Here we propose
a possible strategy exemplified for treatment with the novel inhibitor SLC-0111.

3.1. Tumor Cell Heterogeneity and the Hypoxic Microenvironment

Neuroblastoma tumors, as well as stable neuroblastoma cell lines, are prone to display
great inter- and intratumor heterogeneity. The heterogeneity is especially pronounced
in this tumor entity that arises from developing neuroblasts, which in themselves can
be found in various stages of differentiation. A classic example is the cell line SH-SY5Y
that can be differentiated from ever-changing neuroblasts into mature neurons [31]. Our
previous research has shown that even simple factors such as, e.g., cell density, can in-
fluence vital prognostic factors [28]. Moreover, hypoxia can significantly increase known
adverse factors in neuroblastoma such as NMYC, CXCR4, PGK1 and AQP1, amongst others,
leading to tumor progression and increased metastases [25–28]. Neuroblastoma cells are
characterized by changing biological behavior; a heterogeneous tumor microenvironment
with stroma-rich or stroma-poor features; the presence or absence of immunomarkers
such as GD2; adverse factors such as NMYC; or adhesion factors such as NCAM. Hypoxic
changes of the microenvironment, however, are common to most advanced tumors and
become even more prevalent in fast-growing tumors, making targeting of hypoxic factors a
sensible approach. Adaptation of cancer cells to the hypoxic microenvironment is regulated
through physiological responses to hypoxia that are mediated by hypoxia-inducible factors,
namely HIF-1α and HIF-2α. CAIX is highly upregulated in tumors under the effect of HIF-
1 [29,32,33]. HIF-1 promotes the expression of genes which regulate the carbon metabolism
cycle, resulting in a shift to anaerobic glycolysis and a better survivability of tumor cells
under hypoxia [34]. Lactate (produced by anaerobic glycolysis) in combination with the
insufficient neovascularization and high metabolic turnover of malignant tumors result in
an accumulation of H+ ions and, inevitably, to intracellular acidification [35,36]. In order to
cope with both acidic and hypoxic stress, different molecular mechanisms are established
by the tumor. Known mechanisms include isoforms of carbonic anhydrase or channels
that convert or transport either HCO3− or H+ [32]. The described imbalance in oxygen
and acid balance were known about since the early 1930s, when Nobel prize winner Otto
Warburg defined them in his Warburg hypothesis [37]. Efforts to target hypoxia-related
factors of different tumor cell attributes or tumor compartments have been made since
then [29]. Similarly to most carbonic anhydrases, CAIX catalyzes the reversible hydration
of carbon dioxide to bicarbonate (CO2 + H2O↔ HCO3− + H+). After extracellular catalysis
by carbonic anhydrase, HCO3− is transported to the intracellular space with the help of
bicarbonate transporters (NBC). Intracellular HCO3− then acts as a buffer and ensures a
normal to alkaline pH. By transporting the bicarbonate away from the extracellular space,
this mechanism also contributes to an acidic extracellular environment [32,38]. Conse-
quently, CAIX ensures an intracellular pH (pHi) that is favorable for cell viability, and also
contributes to an acidic extracellular pH (pHe) which promotes the metastatic potential of
the cancer [32,39]. Therefore, the inhibition of CAIX has been considered as an anticancer
strategy in hypoxic solid tumors [21].

3.2. Inhibition with CAIX Inhibitors

Two of the 16 known human CA isoforms, CAIX and CAXII, are predominantly found
in tumor cells and show a rather limited expression in normal cells [29]. Evidence for
the roles of the specific carbonic anhydrase isoenzymes is accumulating as more research
is published on this field. In vivo and in vitro studies have shown that CAIX supports
cell survival in an acidic environment, leading to a higher risk of disease progression and
metastasis development, and have moreover shown that CAIX can be used as a predictor of
survival [40–42]. On a molecular level, Ciccone et al. demonstrated an increase in pERK1/2
in their models which were under the effect of SLC-0111. pERK1/2 is known as a typical
cell survival marker which activates p53, leading to apoptosis of the cell [43]. Therefore,
CAIX can be considered as a potential but crucial target for new anticancer therapies. Due
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to the role of CAIX in cancer development, a stronger effect of CAIX inhibitors can be
expected in cancer cells with high invasive potential [43]. Furthermore, SLC-0111 seems to
be a selective inhibitor for CAIX and CAXII which further favors the use of this compound
as a new and selective anticancer therapy [29,44]. Other authors found a compensatory
increase in CAXII when they suppressed CAIX [40]. The first human phase 1 study to
determine a starting dose was published in 2020 and showed promising data [36]. A phase
Ib/II clinical trial is currently ongoing. However, further investigation is needed to define
the clinical usage of SLC-0111 as an anticancer treatment. Other authors have specifically
tested the use of CAIX inhibitors in combination with conventional chemotherapeutics
and received some promising results [45–47]. Overall, the existing data are auspicious
regarding the use of SLC-0111 as an anticancer treatment. In comparison to treatment
with the chemotherapeutic induction therapy COJEC, we observed a high effectiveness of
SCL-0111 in the presented tumor tissues.

3.3. Culturing Conditions

Recently, several 3D in vitro models for pre-clinical drug assessment have emerged.
There are, for example, systems using multicellular tumor spheroids (MCTSs) that can be
composed of single or multiple cell types, with or without ECM support. ECM support can
be provided, e.g., in the form of scaffolds. Tissue-derived tumor spheres (TDTSs) isolated
from patient tumor cells are used in other models, which are more often derived from
metastatic bone marrow aspirate cultured in Matrigel [48–51]. These have successfully
been applied to neuroblastoma.

A further step has been made by using patient-derived tumor organoids (PDTOs)
generated from embryonic stem cells (ECS) and expressing strong phenotypic and genetic
similarities with the original tumors [18]. This system, however, has mostly been applied
for tumors with an epithelial background and still is undeveloped for tumors without an
epithelial background, such as neuroblastoma [17].

Due to current clinical study practices, patient tumor tissue at the time of diagnosis
of neuroblastoma is scarce. If at all, a biopsy is taken which is needed for inclusion into
clinical trials. As a result of improvements in chemo- and immunotherapeutic approaches,
excision biopsies of suspected neuroblastomas are rare. At the same time, it becomes
apparent that investigation of a tumor in its natural structure is vital. Both the extracellular
matrix (ECM) and the influence of the immune environment on the cancer cells are of great
interest. Several groups are experimenting with using 3D scaffolds, mostly collagen-based
or (bio)printed structures. Our group has recently been able to establish a perfusion-based
mono-cell type 3D neuroblastoma scaffold (Huo et al., submitted).

One way to facilitate advancement from 2D to 3D culture has been through the intro-
duction of a perfusion-based bioreactor culturing system. Previous studies on tumors of
epithelial origin have yielded excellent results using organotypic slice cultures of colorectal
and breast tumors [16,52,53]. In this study we describe the use of 3D perfusion-based
organotypic slice cultures for neuroblastoma for the first time. Continuous perfusion of
the specimen that is embedded sandwich-like in a collagen scaffold increases tumor slice
access of medium components such as nutrients, improves oxygen supply and removal of
CO2, as well as delivery of the drug to cancer cells. The collagen scaffolds help stabilize
and preserve the tissue structure while not hindering substrate supply. While 2D or 3D
culturing options allow drug response assessment by using conventional assays such as
cell proliferation or viability assays, drug response assessment of organotypic slice cultures
has been limited to histological evaluation, RNA or protein analysis.

3.4. Isothermal Microcalorimetry for Treatment Response Assessment

Individualized therapeutic approaches need to be evaluated in the entire intact tumor
structure of each child’s individual tumor, not in a single cell type culture or in 2D models
or in 3D models. Thus, new systems have to be evaluated to assess drug response. We have
previously demonstrated the effectiveness of evaluating novel therapeutic approaches in
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rare childhood tumors using isothermal microcalorimetry of organotypic slice cultures [19].
More recently, we have been able to link a higher metastatic potential of tumor cells to
biophysical properties, such as decreased adherence and increased thermogenesis [54].
Isothermal microcalorimetry can also be of advantage in evaluating thermogenesis of
neuroblastoma cells under stimulation with different nutrient supplies [55].

One major advantage of using isothermal microcalorimetry for evaluation of treatment
response is the fact that the effect can be evaluated using an organotypic tumor slice culture.
In our current study we show that the perfused control tissue is still viable after 7 days.
Clear differences in treatment groups can be observed and measured by microcalorimetric
evaluation. This prolonged evaluation period opens the possibilities of evaluating more
complex treatment regimens of applying immune-modifying treatments, for which longer
time periods are necessary.

Inversely, another major advantage is the short time interval of 24–48 h, after which
the treatment response can be prognosticated.

The use of tumor treatment in the perfusion-based bioreactor followed by microcalori-
metric evaluation allows longer evaluation periods followed by rapid response assessment.
In this way our experimental setup allows maximum use of scarce neuroblastoma tissue
and evaluation of patient-tailored treatment protocols.

4. Materials and Methods
4.1. Tissue Microarray (TMA)

Tissue samples were fixed in 4% buffered formalin, paraffin-embedded and used for
TMA construction as previously described [56]. Briefly, hematoxylin-eosin-stained sections
were made from selected primary tumor blocks (donor blocks) to define representative
tumor regions. Tissue cylinders (0.6 mm in diameter) were then punched from that region
of the donor block using a home-made semi-automated tissue arrayer. Sections of 3 µm
were made by use of the Paraffin Sectioning Aid System (Instrumentics, Hackensack, NJ,
USA). For the analysis, only patients whose tissue was present on the TMA were included
(Figure 1). All patient samples were analyzed by the Department of Pathology of the
University Hospital Basel. The analysis was limited to primary neuroblastoma samples of
34 patients for CAIX staining and 30 patients for CAXII staining; additionally, 16 samples
for CAIX staining and 8 patients for CAXII staining with healthy adrenal glands were
used. Only for these samples the sample quality was sufficient. Information on staging
and outcome were not available for any patient. The use of the TMA and corresponding
patient information were approved by the appropriate ethics committee (Ethikkommission
Nordwest- und Zentralschweiz EKNZ 2015-263).

4.2. Patient Tumor Samples

Patient-derived tumor samples were taken from the resected specimen immediately
after surgery and used for either cryo-conservation, treatment experiments in static in vitro
culture, perfusion bioreactor experiments or isothermal microcalorimetry. Written consent
was obtained prior to the operation and use of human tissue was conducted in accordance
with ethics approval (EKNZ 2015-263).

4.3. Cell Culture

Neuroblastoma SH-SY5Y (ECACC/Sigma-Aldrich, Munich, Germany), SH-EP and
LAN1 cells (ECACC, kindly provided by A. Muhlethaler, CHUV) were cultivated in RPMI
and DMEM media containing 10% FCS. If possible, aliquots of early passages (4–6) after
purchase were used for all experiments. All cells were cultured in a humidified atmosphere
at 37 ◦C either in air with 5% CO2 under normoxic conditions, or with 5% CO2/1–5% O2
balanced with N2 under hypoxic conditions. The CAIX/CAXII inhibitor SLC-0111 [36,45],
4-[(4-fluorophenyl) carbamoyl] amino-benzene sulfonamide, was kindly provided by C.
Supuran, and was added to the medium to a final concentration of 100 µM for all treatment
experiments. CAIX inhibitor FC5-207A [24] was used at final concentrations of 500 µM.
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4.4. Immunohistochemical Staining

TMA was stained by the Department of Pathology of the University Hospital Basel
according to the validated protocol using the appropriate CAIX antibody (Ventana Clone
EP161 Rabbit, Roche diagnostics, Rotkreuz, Switzerland). The CAXII staining was per-
formed using the primary antibody CA12 Rabbit PolyAb (Catalog No. 15180-1-AP, Protein-
tech Europe, Manchester, UK) at a dilution of 1:300. The scoring was performed according
to a modification of the scaling system used for clinical scoring of molecular markers, com-
bining a score for area and intensity by two independent blinded examiners, a pathologist
(EB), an IHC experienced surgeon (SJG) and a scientist (ZH).

For immunohistochemical staining, 5 × 104 cells per chamber were seeded in chamber
slides (Thermofisher/Sigma Aldrich, Munich, Germany). The cells were incubated for 24 h
either under normoxic or hypoxic conditions (5% CO2, 1% O2 in balance with N2 at 37 ◦C,
respectively). After 24 h cells were fixated with 4% PFA followed by immunohistochemical
staining using the HRP-AEC-System from R&D Systems (Minneapolis, MN, USA). For
patient tumor samples, tissues were cryo- or paraffin-embedded after treatment in the
perfusion bioreactor slice culture and cut to a thickness of 5 µm. The CAIX staining
was performed using the primary antibody M75 (BioScience Slovakia, Bratislava, Slovak
republic) at a dilution of 1:200. The CAXII staining was performed using the primary
antibody CA12 Rabbit PolyAb (Catalog No. 15180-1-AP, Proteintech Europe, Manchester,
UK) at a dilution of 1:300. Control sections were incubated with antibody diluent (DAKO,
Glostrup, Denmark) without primary antibody at 4 ◦C overnight and then treated as
other samples. For counterstaining, Mayer’s hematoxylin solution (Spitalpharmazie, Basel,
Switzerland) was applied. A BX43 Olympus Microscope was used for analysis and images
were recorded using Cell Sense Software at a standard magnification of 20×.

4.5. Cell Proliferation Assay

Cells were seeded in two culture dishes and primed in either normoxic or hypoxic
(5% CO2, 2% O2 in balance with N2 at 37 ◦C, respectively) conditions for 48 h. After
this period, cells were seeded at 10,000 cells/well in 96-well plates separately and settled
overnight. The inhibitor SLC-0111 was added to the cells in concentrations of 0 µM and
100 µM. Cells were further cultured under hypoxic or normoxic conditions. The MTT assay
(CellTiter 96 Aqueous One Solution Cell Proliferation Assay, Promega) was carried out in
accordance with the manufacturer’s protocol at 24 h. Absorbance was measured at 490 nm
with a Synergy Hybrid H4 Reader (BioTek, Sursee, Switzerland). Each experiment was
performed at least six times.

4.6. Isothermal Microcalorimetry

For microcalorimetric measurements a 48-channel isothermal microcalorimeter (calScreener,
Symcel AB, Stockholm, Sweden) was used as previously described [57]. Tumor cells were
seeded into vials in their respective media and incubated for 6 h to attach. Alternatively,
tissue slice culture pieces were prepared using scalpel dissection under the binocular in a
standardized manner. Tissue slices were cultured in TUM medium [58,59] at 37 ◦C. Specific
experimental inhibitors (CAIX inhibitors (SLC-0111 at 100 µM, FC5-207A at 500 µM) and
standard induction chemotherapy COJEC according to the high-risk protocol of the SIOPEN
study were applied [30,60,61] including vincristine, cisplatin and etoposide. Control samples
containing TUM medium alone were included (n = 4 per group).

The vials were then sealed and inserted in the well-plate microcalorimeter according
to manufacturers’ instructions. One position on the plate was loaded with an inert sample,
which was used as a reference. For optimal performance, multiple separate reference
vessels were included. Each reference vessel was filled with an inert sample (medium only),
which was used as a thermal reference. Following that, thermal equilibration measurements
were recorded with the thermostat set at 37 ◦C. The microcalorimeter data were sampled at
a frequency of 1 data point every 60 s over >250 h until the metabolic heat signal returned
to baseline. Data were stored by Symcel calView software and exported as a CSV file that
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could be edited in commonly used spreadsheet software. This assay was performed in
triplicate and repeated. Data were analyzed using GraphPad Prism 8.4 software. For testing
of significance, a two-sided t-test or analysis of variance followed by Dunnett’s post-hoc
test was used. p values less than 0.05 were defined as significant. The error bars in all bar
plots represent one standard deviation.

4.7. Perfusion-Based Bioreactor Culture

Four tumor sections were placed between two discs in a sandwich-like configuration
(Patent Nr. WO2015181185A1) into the perfusion bioreactor filled with medium that is
continuously pumped back and forth through the tissue sandwich. The scaffold discs
(diameter 8 mm, height 3 mm), made from a porous water-insoluble partial hydrochloric
acid salt of purified bovine corium collagen sponge, known as Ultrafoam Collagen Hemo-
stat (Avitene, Bard), were soaked in culture medium for 1 h at 37 ◦C. The sandwich was
assembled within a ring-shaped silicon holder closed on top and bottom by two ETFE
nylon meshes (Fluorotex Sefar, 09-590/47). The scaffold assembly was then placed into a
previously described perfusion bioreactor [62] (currently distributed as U-CUP Bioreactor
Cellec Biotek AG) and perfused with 8 mL of TUM medium [58,59]. SLC-0111 and COJEC
treatment reagents were added to final concentrations corresponding to the ones used
for isothermal microcalorimetry. Perfusion superficial velocity was set at 100 µm/s, as
previously described [63–65]. Treatment was renewed every 48 h during the experiment.
After 7 days of culturing tissues were removed and cryo-conserved or paraffin-embedded
for further analysis.

5. Conclusions

The need for developing and improving advanced preclinical testing strategies for
potential therapeutics pertaining to neuroblastoma is enormous. Here we propose the use of
a new patient-derived 3D slice-culture perfusion-based 3D model in combination with rapid
treatment evaluation using isothermal microcalorimetry exemplified for treatment with the
novel carbonic anhydrase inhibitor SLC-0111. This approach can facilitate individualization
and improvements in treatment strategies for each patient.
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