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Abstract

Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic
distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head
movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in
an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer’s head causes a
variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if
the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not
of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of
a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing
of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a
veridical recovery of surface slant.
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Introduction

The optic flow is an important source of information for the

perception of the three-dimensional (3D) structure of the

environment [1–8]. Our previous research shows that, in passive

vision, perceived local surface slant (i.e., the angle between a planar

surface and the fronto-parallel plane) is well predicted by a model

based on the maximum-likelihood interpretation of the velocity

gradient of the optic flow [9]. We also showed that perceived

surface slant during ego-motion can be accounted for in a similar

manner, with a negligible contribution of extra-retinal signals

[10,11]. Our previous modeling work predicts the perceptual

responses from the instantaneous local properties of the optic flow.

However, within natural viewing conditions, the velocity gradients

vary over time, both when the distal surface is stationary and when

it moves within an allocentric frame of reference. It is therefore

necessary to understand whether the time variation of the velocity

gradients affects the perceptual interpretation of surface slant. In

passive vision, we found that perceived slant is indeed influenced

by the temporal variation of the velocity gradients [12–15]. The

purpose of the present study is to determine whether this is also the

case in active vision.

To this goal, we measured perceived surface slant in different

viewing conditions. In one condition, we simulated a static distal

planar surface; depending on the direction of head motion, the

velocity gradients of the optic flow either increased or decreased

over time. In another condition, we simulated the rotation of a

surface in an allocentric frame of reference. In this latter case, the

surface rotation was coupled with the amount of head translation,

so as to keep the velocity gradients of the optic flow constant over

time. The novel result of the present study is that perceived surface

slant is biased by the variation of the velocity gradients induced by

the motion of the observer’s head:

N for a stationary surface in an allocentric frame of reference,

observers perceived different surface slants, depending on the

magnitude of the velocity gradients, even if the surface was

stationary in an earth-fixed reference frame – the velocity

gradients were manipulated by simply changing the direction

of head translation.

N for a surface that was continuously changing its instantaneous

slant within an allocentric frame of reference, observers always

reported the same slant magnitude, if the surface rotation was

coupled with the head’s translation so as to maintain the

velocity gradients constant.

Perceived surface slant in passive vision
Theoretical studies have shown that the second-order temporal

properties of the optic flow (i.e., accelerations) are needed to

recover veridical surface slant in passive vision [6–8,16]. However,

many psychophysical investigations have shown that human

observers do not make use of the acceleration components and,

therefore, are unable to achieve high levels of veridicality in the

perception of surface slant from the optic flow [17,18]. The

empirical research has revealed that perceived surface slant

depends almost exclusively on the first-order properties [18–25].

Four components can be distinguished in the instantaneous local

optic flow: divergence, curl, translation, and deformation [4,5,26].

In passive vision, it has been showed that perceived local surface
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slant is mainly determined by the deformation component (def)

[17–21,23–27,27].

It is important to realize that there is not a one-to-one

correspondence between def and local surface slant: def can vary

over time whereas slant can remain unchanged. Nevertheless,

empirical evidence indicate that, when def varies, so does perceived

slant. Therefore, the passively-viewed optic flow is systematically

biased by the temporal variation of def. This phenomenon has

been studied, for example, by [13]. In one experiment, they found

that the optic flow induced by a planar surface, which rotates

about the vertical axis (e.g., a rigid flag rotating about its post),

evokes different perceived slant magnitudes depending on the

direction of surface rotation. A surface rotating away from the

frontal-parallel plane, which generates an optic flow of pure

horizontal contraction, evokes a larger amount of perceived slant

than a surface rotating towards the frontal-parallel plane, which

generates an optic flow of pure horizontal expansion. In fact, in the

first case, def continuously increases over time; in the second case,

def continuously decreases over time. In another set of experiments

[14], found that perceived angular velocity of object rotation is

strongly affected by the time variation of the median of the

distribution of def values computed from local patches of the

object’s surface: If median def remains constant over time, so does

the perception of angular velocity, regardless of the distal object

rotation. Likewise, if median def varies over time, so does perceived

angular velocity.

In summary, perceived surface slant and perceived object

rotation in passive vision are strongly biased by the variation of def

over time. This does not mean that observers compute a higher-

order property, such as the def difference in successive moments in

time, for example, and then recover surface slant from this

property. Instead, the empirical data suggest that observers

compute def within a very short temporal window [12] and then

use def to recover surface slant in a heuristic manner [9,28]. If def

takes on different values at different moments in time, then

perceived surface slant will vary accordingly, regardless of surface

slant.

Perceived surface slant in active vision
More recent theoretical analyses on self-generated (not passively

observed) optic flows have shown that, in principle, a veridical

reconstruction of the 3D shape and the motion of the visual objects

can be achieved if the first-order optic flow is combined with extra-

retinal signals resulting from observers self-motion [29–42]. An

optimal combination of extra-retinal signals and velocity informa-

tion, however, does not necessarily provide the best model for

human active vision [10,11]. Also in active vision, in fact, dramatic

distortions of perceived 3D shape have been found as a

consequence of the amount of object rotation and of the head

translation velocity, for example [10,11]. To account for these

systematic distortions, we proposed that, also in active vision,

perceived surface slant is mainly determined by def, whereas extra-

retinal information resulting from ego-motion is disregarded

[9,10,17–21,23–27,27,43]. Our model does not provide a veridical

interpretation of the optic flow, because def is ambiguous (see

Supporting Information S1), but it has been found to be an

effective description of perceived surface slant, in both active and

passive vision [9–11].

In the present study, we develop our previous work by

investigating whether the variations of def associated with the

head movements affects perceived surface slant also within a small

temporal window. To address this question, we asked whether a

stationary planar surface in an earth-fixed reference frame will be

perceived veridically (i.e., with a constant orientation) when the

observer moves his head. Observers were instructed to move their

head while fixating on a point on a stationary surface oriented with

400 slant and zero tilt (Figure 1a). As indicated in Figure 1b, the

lateral translation of the observers head from position A (eccentric

to left) to position B (eccentric to the right) produces an optic flow

of horizontal expansion. The def component of the optic flow

corresponds to the rate of this expansion and it can be

approximated by the rate of change of the visual angle subtended

by the surface (bi). In the specific case represented in Figure 1b,

the rate of change is larger in A than in B (b2{b1wb4{b3). This

means that, as the observer moves his head rightward, def

continuously decreases. The same variation of def, but with an

opposite temporal ordering, is generated by inverting the direction

of the head movement: In this case, def is smaller in A than in B

(b2{b1vb4{b3). This second case gives rise to an optic flow of

horizontal compression with a continuously increasing def (see

Figure 1c). Note that def takes on different magnitudes at the end of

the two head translations (from A to B or from B to A), even if the

distal surface remains stationary in an allocentric frame of

reference. If def influences the perceptual interpretation of the

optic flow also in active vision, then perceived slant should take on

different values depending on whether the observer’s head moves

rightward or leftward. The current experiments set out to test this

hypothesis.

Experimental design and predictions
In Experiment 1, we simulated a planar surface that was

stationary or that rotated with respect to an earth-fixed reference

frame. In each trial, the observer translated his/her head either

rightward or leftward. Observers judged the slant of the simulated

surface immediately after the disappearance of the optic flow

generated by their own movement. By combining the simulation

of stationary or rotating surfaces with two head-translation

directions, we defined the four experimental conditions that are

represented in Figure 2a. The top panels illustrate the case in

which the simulated surface is stationary. The bottom panels

illustrate the case in which the surface rotates.

Figure 2b shows how instantaneous def varies in time in the four

conditions of Figure 2a. For a stationary surface, a rightward head

translation produces the temporal variation of def indicated by the

light red solid line (see Figure S1 for details). A leftward head

translation produces the temporal variation of def indicated by the

dark red dashed line. As indicated by the light red circle, the value

of def at the end of a rightward head translation (‘‘final def’’) is

smaller than the value of def at the end of a leftward head

translation (dark red circle). The two directions of head translation

thus define two conditions: a small (rightward) or a large (leftward)

final def.

In the case of the rotating surface, we updated in real time the

angular rotation velocity of the surface as a function of head

position, so as to maintain def constant during the stimulus

presentation. This was achieved by rotating the surface in the

counter-clockwise direction around the vertical axis during a

rightward head’s translation or by rotating the surface in the

clockwise direction during a leftward head’s translation. The

simulated slant of the rotating surfaces, s, was coupled to the

angular speed of the observers head translation, T, and to the

visual direction, a, by the equation:

s~ tan{ 1
cdef

T

� �
{a ð1Þ

Such a coupling (obtained by inverting the Eq.S1 for s –

Supporting Information S1) produced an optic flow with a

Head Translation Direction Affects Perceived Slant
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Figure 1. Optic flow variations generated by the relative movement between an observer and a static surface. (a) Schematic
representation of the stimuli. A random dot planar surface centered on the image screen (blue transparent plane), was simulated with a slant s~40 0

and 0 0 tilt. Tilt is the angle between the x-axis of the image plane and the projection into the image plane of the normal to the surface (grey cylinder).
The observer oscillated her head from a position shifted to the left (A) to a position shifted to the right (B) of the planes center. The dashed lines
represent the visual directions when the head is in A and B; Da is the variation of the visual direction. The sketches in (b) and (c) shows four successive
birds-eye views of the planar surface in (a), with the colors (blue and red) coding for the temporal ordering of the views (initial segment and final
segment, respectively). The sketch in (b) illustrates a rightward translation; the sketch in (c) illustrates a leftward translation. The cyan continuous line
represents the image screen. The black arrow depicts the direction of head translation. The dashed line in (b) represent the visual direction and its
normal through the center of the plane. The def component of the optic flow is approximated by the rate of change of the visual angle subtended by
the surface. The instantaneous def is visualized by the difference between two subsequent visual angles (b2–b1 , in blue; b4–b3 , in red). The
instantaneous optic flow is depicted below each views segment. The arrows represent the velocity vectors of the optic flow. (b) A rightward head
shift induces an optic flow of horizontal expansion with a continuously decreasing def. Note indeed that the difference between the two blue
subsequent visual angles is larger than the difference between the two red subsequent visual angles. (c) A leftward head shift induces an optic flow
of horizontal compression with a continuously increasing def. Note indeed that the difference between the two blue subsequent visual angles is
smaller than the difference between the two red subsequent visual angles.
doi:10.1371/journal.pone.0033911.g001
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constant value of def corresponding to cdef . The def magnitudes

produced by this manipulation are indicated in Figure 2b by the

dark and light blue lines. In all four conditions, the average

amount of def (def ) was the same.

Figure 2c shows how the simulated surface slant varies in time

with respect to an earth-fixed reference frame in the four

conditions of Figure 2a. The light (rightward head translation)

and dark (leftward head translation) red lines indicate that the

simulated surface slant is kept fixed with respect to an allocentric

reference frame in the two conditions illustrated in the top row of

Figure 2a. The light and dark blue lines show how slant varies

during a leftward (‘‘small final slant’’) or rightward (‘‘large final

slant’’) head translation, respectively. The viewing geometry of

these two conditions is illustrated in the bottom row of Figure 2a.

What should we expect about the perception of surface slant in the four

conditions of Figure 2a? First, let us consider the case of a stationary

surface in an allocentric reference frame (Figure 2a, top row). If

perceived slant is determined by the values that def takes on at the

end of the stimulus presentation (‘‘final def’’), rather than by def , then

observers should report a larger surface slant when they perform a

leftward rather than a rightward head translation. The ‘‘final def’’, in

fact, is larger in the first case than in the second one. This prediction

is indicated by the light and dark red circles in Figure 2b.

Now, let us consider a surface that, while rotating with respect

to an allocentric reference frame, generates an optic flow with a

constant def (Figure 2a, bottom row, Figure 2b, light and dark blue

lines). Again, if perceived slant depends on def, observers should

perceive the same slant for rightward or leftward head translations

even if the simulates surface slant, in the two cases, is very different

at the end of the stimulus presentation (‘‘large final slant’’ versus

‘‘small final slant’’) – see the light and dark blue circles in Figure 2c.

These predictions can be contrasted with those deriving from a

model that optimally integrates visual and extra-retinal informa-

tion (e.g., [31]). Such a model always predicts a veridical

interpretation of the optic flow, unless there is some systematic

error in the measurement of the egomotion or def information.

Figure 2. Experimental conditions. (a) Bird’s eye view of the viewing geometry of the stimulus presentation. Top row: simulation of a planar
surface that is stationary in an allocentric frame of reference. Bottom row: simulation of a planar surface that rotates in an allocentric frame of
reference. Left column: the translation of the head in the direction of the black arrow and the rotation of the surface in the direction indicated by the
curved arrow have the effect of (i) decreasing the intensity of def while slant remains constant (top: ‘‘Small Final def’’), and (ii) decreasing the slant
magnitude in an allocentric frame of reference while def remains constant (bottom: ‘‘Small Final slant’’). Right column: the head translation in the
direction of the black arrow and the rotation of the surface in the direction indicated by the curved arrow have the effect of (i) increasing the intensity
of def while slant remains constant (top: ‘‘Large Final def’’), and (ii) increasing the slant magnitude in an allocentric frame of reference while def
remains constant (bottom: ‘‘Large Final slant’’). The red and blue colors code whether, in an allocentric frame of reference, the planar surface was
simulated to be stationary or rotating. Light and dark colors code, respectively, the decrease and the increase of the appropriate stimulus property
(def or slant) during the stimulus presentation. (b) The temporal variation of def in the four experimental conditions represented in the Panel (a), from
the onset to the end of the stimulus presentation. Note that, for an immobile surface in an allocentric frame of reference (Panel a, top row), def varies
continuously during the translation of the observer (red lines). Note also that the intensity of the instantaneous surface rotations was computed on-
line, during the head translation, so as to generate an optic flow with a constant def in both the conditions represented in the bottom row of Panel
(a). This constant def value is represented by the blue lines in Panel (b). (c) The temporal variation of the simulated slant magnitudes in an allocentric
frame of reference for the four experimental conditions of Panel (a). In the Panels (b) and (c), filled circles indicate the magnitude of def (left panel) or
slant (right panel) at the end of the stimulus presentation (i.e., the final def or final slant, respectively).
doi:10.1371/journal.pone.0033911.g002
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Figure 2 describes a subset of the conditions that were actually

tested in the present study. In two experiments, we generated the

optic flows described in Figure 2 for two different simulated slant

magnitudes (40 0 and 60 0). Within our experimental setting, the

movement of the observer with respect to a surface with 40 0 slant

generated an average def of 0.4 rad/s +:02; the movement of the

observer with respect to a surface with 60 0 slant generated an

average def of 0.8 rad/s +:04. The left panel of Figure 3 shows the

‘‘final def’’ in each experimental condition and illustrates the

qualitative predictions of the model proposed by [10]. The right

panel of Figure 3 shows the amount of simulated surface slant at

the end of the stimulus presentation and illustrates the qualitative

predictions of a model which optimally integrates the optic flow

with the extra-retinal signals resulting from egomotion.

Let us consider the left panel of Figure 3. According to [10], the

perceived slant of a stationary surface should be affected both by

the direction of the head’s translation (‘‘large final def’’ versus

‘‘small final def’’) and by average def (top row). Moreover, the effect

of the direction of the head’s translation should be larger for

def = 0.8 rad/s than for def = 0.4 rad/s. Instead, the perceived

slant of a rotating surface should be affected by average def, but not

by the direction of the head’s translation (bottom row).

According to a veridical interpretation of the optic flow, which

optimally combines retinal information with extra-retinal infor-

mation resulting from head motion (Figure 3, right panel) the

perceived slant of a stationary surface should be affected by the

amount of average surface slant (slant), but not by the direction of

the head’s translation (top row). Instead, the perceived slant of a

rotating surface should be affected both by the direction of the

head’s translation (‘‘large final slant’’ versus ‘‘small final slant’’)

and by slant (bottom row).

In Experiment 2, the simulated planar surfaces were defined by

motion and by disparity information. According to an inverse

geometry approach, when disparity information, version, and

vergence signals are added to motion information, the accuracy of

the perceptual estimates should increase [44]. Theoretical analyses

have shown, in fact, that a correct estimate of surface slant can be

recovered from congruent motion and disparity information [45],

or from a combination of horizontal disparities, version, and

vergence signals [46–50] – but see [43,51,52]. The model of [10] is

agnostic with respect to what should happen to perceived slant

when other cues are added to the optic flow. To account for depth

cue integration, in our previous research we proposed the

Instrinsic Constraint (IC) model [53–56]. According to IC,

perceived slant, depth, or curvature increase when more cues

are added to the stimulus display [57]. This does not mean,

however, that the veridicality of the 3D interpretation necessarily

increases as well.

To summarize, the hypothesis that perceived slant depends on

the instantaneous optic flow, with no contribution of extra-retinal

signals in active vision, leads us to expect that (1) observers will

perceive a variable surface slant when they move their head with respect to a

stationary surface (Fig. 2a, top panels), and (2) observers will perceive a

constant surface slant when they move their head with respect to a surface that,

while rotating in an allocentric frame of reference, generates a constant def

(Fig. 2a, bottom panels). These predictions can be contrasted with

Figure 3. def (left panel) and slant (right panel) values at the end of the stimulus presentation. The four cells of each panel reproduce the
four experimental conditions represented by the Panel (a) of Figure 2. In the experimental condition represented by each of these cells, the simulated
slant took on the values of 40 0 or 60 0 and generated an optic flow having an (average) def component equal to 0.4 rad/s or 0.8 rad/s. Left. def
magnitudes at the end of the stimulus presentation as a function of head translation direction (i.e., for the small and large final def conditions) for two
def (i.e., 0.4 rad/s or 0.8 rad/s). The color coding is consistent with Figure 2. Right. Instantaneous slant in an allocentric frame of reference at the end
of the stimulus presentation as a function of head translation direction (i.e., for the small and large final slant conditions) for two slant (i.e., 400 and
600). The values shown in the figure have been calculated by considering the stimulus properties of the actual experiments. The left panel illustrates
the qualitative predictions of the hypothesis that perceived slant depends on def. The right panel illustrates the qualitative predictions of the
hypothesis that perceived slant is an unbiased estimate of distal slant.
doi:10.1371/journal.pone.0033911.g003
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those based on a model which optimally integrates visual and non-

visual information.

Results

Experiment 1
Observers estimated the perceived slant of monocularly-viewed

virtual planar surfaces by using a 3D stereo probe. The average

amount of perceived surface slant in our experimental conditions

is shown in Figure 4.

The results of Experiment 1 are consistent with the predictions

of [10]: The interpretation of the self-generated optic flow was

determined by def, not by simulated slant. Indeed, the slant

judgments resemble the pattern of ‘‘final def’’ values that are shown

in the left panel of Figure 3, not the pattern of ‘‘final slant’’ values

that are shown in the right panel of Figure 3. Linear Mixed Effect

models with partecipants as random effects, and ‘‘final def’’ and the

direction of head translation as fixed effects, were used to analyze

the slant judgments separately for stationary or rotating planar

surfaces in an allocentric frame of reference. We evaluate

significance by computing the deviance statistic (minus 2 times

the log-likelihood; change in deviance is distributed as chi-square,

with degrees of freedom equal to the number of parameters

deleted from the model) and with the help of 10,000 samples from

the posterior distributions of the coefficients using Markov chain

Monte Carlo sampling. From these samples, we obtained the 95%

Highest Posterior Density confidence intervals, and the corre-

sponding two-tailed p-values [58,59].

For a surface that was stationary in an allocentric frame of reference, we

found an effects of ‘‘final def’’, t627 = 8.45, p = .001. Overall, the

slant estimates were 31% larger in the ‘‘large final def’’ condition

than in the ‘‘small final def’’ condition. We also found an effect of

def , t627 = 11.19, p = .001. The slant estimates were 17.5% larger

when def was equal to 0.8 rad/s rather than 0.4 rad/s. The

Figure 4. Results of Experiment 1: motion-only information. (a) Average perceived slant in the experimental conditions described in Figure 3.
Also the color coding is consistent with that used in Figure 3. (b) Average difference between the responses in the ‘‘large’’ (s’L) and ‘‘small’’ (s’S)
conditions, for both static (left) and rotating (right) planar surfaces, and for def = 0.4 rad/s and def = 0.8 rad/s. Zero indicates no effect of the ‘‘large’’/
‘‘small’’ manipulation. The dots represent the mean values of the individual observers. In both (a) and (b), vertical bars indicate +1 S.E. of the mean.
Note that these results are consistent with the qualitative predictions of the left panel of Figure 3.
doi:10.1371/journal.pone.0033911.g004
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interaction was also significant, t627 = 5.53, p = .001: The differ-

ence in the average slant judgments obtained with a leftward or

rightward translation was about 17% larger when def = 0.8 rad/s

rather than 0.4 rad/s. These results indicate that observers

perceive an horizontally-tilted surface as having different slants if

they perform a rightward or a leftward head translation. The

magnitudes of perceived slant judgments are consistent with the

magnitudes of ‘‘final def.’’

For a surface that rotated in an allocentric frame of reference, we found

an effect of def , t634 = 9.50, p = .001 (Fig. 4a, bottom panels), but

not of ‘‘final slant’’ t634 = 1.64, p = .1. The interaction term was

not significant, t634 = 1.95, p = .06. These results indicate that a

surface, which rotates within an allocentric frame of reference, can

be perceived as having the same slant in the different moments of

the rotation if def remains constant (Fig. 4a, bottom panels, Fig. 3,

blue bars).

In summary, the results of Experiment 1 follow the same

qualitative trend that has been found in passive vision. They

indicate that slant judgements strongly depend on def and provide

no evidence that extra-retinal signals from head movement

contributes to the perceptual response beyond what def can

explain.

Experiment 2
In Experiment 2, the stimuli and procedure were the same as in

Experiment 1, but viewing was binocular. The optical information

comprised both optic flow and binocular disparity; extra-optical

information included vestibular and proprioceptive information

about head movements, version and vergence signals. Despite the

richer stimulus information, the results of Experiment 2 are similar

to those of Experiment 1 (see Figure 5).

For a surface that was stationary in an allocentric frame of reference,

perceived slant was larger when ‘‘final def’’ was larger (Figure 5a,

top panels), t586 = 4.52, p = .001. A stationary surface was thus

perceived as having different slants, depending on whether the

observer translated his/her head leftward or rightward. Perceived

slant was also affected by def , t586 = 17.33, p = .001: the larger def
the larger the amount of perceived slant.

Figure 5. Results of Experiment 2: motion+disparity information. (a) Average perceived slant in the experimental conditions described in
Figure 3. (b) Average difference between the responses in the ‘‘large’’ (s’L) and ‘‘small’’ (s’S) conditions, for both static (left) and rotating (right) planar
surfaces, and for def = 0.4 rad/s and def = 0.8 rad/s. The dots represent the mean values of the individual observers. In both (a) and (b), vertical bars
indicate +1 S.E. of the mean.
doi:10.1371/journal.pone.0033911.g005

Head Translation Direction Affects Perceived Slant
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For a surface that rotated in an allocentric frame of reference so as to

generate a constant def, perceived slant was not affected by ‘‘final

slant’’, t560 = 1.1, p = .27 (Figure 5a, bottom panels). Perceived

slant was affected by def t560 = 18.42, p = .001. In conclusion, also

in Experiment 2 the judgments of surface slant were biased by def
and by ‘‘final def’’, even though the simulated surfaces were

rendered with consistent stereo and motion cues.

Comparison of Experiments 1 and 2
A measure of bias induced by def on perceived slant can be

provided by the difference between the slant judgments in the

‘‘large final def’’ condition (leftward head translation) and in the

‘‘small final def’’ condition (rightward head translation). The size of

this bias decreases when binocular disparity is added to the optic

flow: Note that the bars shown in the left panel of Figure 5b are

smaller than those in the left panel of Figure 4b. In Experiment 1,

the average bias was equal to 9.70 (SD = 7.980). In Experiment 2,

this bias decreased by 7.80, t607~14:71, p~0:001, but it was still

significantly larger than zero: On average, it was equal to 1.80,

t607~2:078, p~0:038. By looking at the Figures 4b and 5b, it is

also clear that, by adding binocular disparity to the optic flow, the

amount of perceived slant increased. On average, perceived

surface slant was 5.60 larger in Experiment 2 than in Experiment 1

for static surfaces, t1216~10:75, p~0:001, and 2.50 larger in

Experiment 2 than in Experiment 1 for rotating surfaces,

t1197~5:01, p~0:001.

Discussion

In the present investigation, we asked whether and to what

degree the variation of def over time, which is caused by the

movement of the observer’s head, biases the perception of surface

slant. For stationary surfaces in an allocentric frame of reference,

the model proposed by [31] predicts no effect of def on perceived

surface slant. The model proposed by [10], instead, predicts that

perceived surface slant will take on different values, if def takes on

different values, regardless of the distal surface slant. Our results

support this second hypothesis. We found that (1) observers

perceived different surface slants, depending on the magnitude of

def at the end of the head’s translation, even if the distal surface

remained immobile in an allocentric frame of reference, and (2)

observers perceived a constant amount of surface slant, when def

was kept constant, even if the distal surface changed continuously

its slant over time in an allocentric frame of reference.

Many researchers have suggested that the self-generated optic

flow is advantageous for robust and veridical 3D perception over

the passively-viewed optic flow. The ambiguities in the perception

of tilt that are present in passive vision, for example, can be

resolved when the optic flow is generated by the movement of the

observer [32,35,36]. These results have been taken to mean that,

for disambiguating the optic flow, the human visual system takes

into account the extra-retinal ego-motion signals, in an analysis

that is consistent with an inverse-optics approach ([31–36,41,60–

62], but see [9,22,63,64]). The results of the present work, together

with our previous studies, do not support this view [10,11]: Also

when extra-retinal information resulting from ego-motion is

available, the perception of surface slant is strongly biased by def.

To reconcile our results with those in the literature, it is

necessary to distinguish between two distinct problems: the

recovery of surface tilt from the optic flow and the recovery of

surface slant. The recovery of surface tilt requires the computation

of affine relationships between object points [43,65,66], whereas

the recovery of surface slant requires the knowledge of Euclidean

3D properties [37]. In general, if the extra-retinal information

resulting from ego-motion is not available, surface slant remains

underdetermined, but surface tilt can be recovered up to a 1800

reflection. To determine the orientation of a surface is necessary to

specify both tilt and slant, but most investigations supporting the

role of extra-retinal information in the perceptual interpretation of

the optic flow have focused on the perception of tilt. The

contribution of the present study is to show that the variation of def

over time, which is caused by the movement of the observer’s

head, can systematically bias the perceptual recovery of surface

slant, even for surfaces that are stationary in an allocentric frame

of reference (Experiment 1). We also found that the biases induced

by the variation of def over time persist, in a reduced form, also

when binocular disparity is added to the stimulus displays

(Experiment 2).

The systematic distortions of perceived surface slant that we

describe in the present study resemble those that we had

previously found in passive vision [12–15]. In the present study,

we did not replayed to the passive observer the optic flows that had

been generated by the motion of the observer’s head (e.g., [11]), so

we cannot determine whether the presence of extra-retinal

information reduces the magnitude of the def-induced biases.

However, we found that these biases were strongly reduced when

binocular disparity was added to the stimulus displays. If we

consider the case of a stationary surface in an allocentric frame of

reference, the biases in perceived surface slant can be quantified by

the difference between the average slant judgments obtained in a

rightward and a leftward head translation. As indicated in

Figures 5b and 4b, the def-induced bias is 77% smaller when

binocular disparity is added to the optic flow. According to [45],

the simultaneous presence of the disparity and motion cues

provides an additional constraint that can be used for a veridical

reconstruction of 3D slant. Moreover, binocular viewing provides

non-visual information (like vergence and version) that, in

principle, can be used to improve the interpretation of the optic

flow [46–50]. While it is reasonable to expect that the accuracy of

slant estimation increases when adding disparity information, it is

surprising that the richer stimulus information of Experiment 2

does not eliminate the biases in perceived surface slant completely.

Another consideration concerns the fact that the amount of

perceived slant increased by 14% when binocular disparity was

added to the actively-generated optic flow. This result can be

interpreted in two ways. (1) It is consistent with the IC model,

which hypothesizes that stimuli with a larger number of depth cues

support a larger amount of perceived slant. According to IC,

perceived surface slant is estimated in an heuristical manner as a

monotonic function of the combination of the image signals that

maximizes the accuracy of the recovered affine structure [53–56].

Therefore, the magnitude of perceived slant is expected to increase

if the number of depth cues increases [57]. (2) It is consistent with

the hypothesis that the perceptual solution improves (i.e., becomes

more veridical) as more information is added to the stimulus

displays [44,67,68]: The larger amount of perceived slant in

Experiment 2 provides a better approximation of the veridical

solution than the amount of slant perceived in Experiment 1. It

remains a problem of future research to determine whether the

increase of the perceived slant magnitudes found in Experiment 2

is better explained by a probabilistic model (such as the IC model),

which does not necessarily converge toward the veridical solution,

or by an ‘‘inverse optics’’ model, which optimally combines retinal

and extra-retinal information.

Conclusions
The results of the present study suggest that the perceptual

recovery of surface slant from the optic flow is affected by
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systematic biases, in both active and passive vision. These

systematic biases are well explained by the model proposed by

[9–11]. Interestingly, these biases persist, even though in a reduced

form, also under realistic conditions in which the observer moves

at a normal speed past a surface while binocularly fixating one of

its points, when sufficient information is available for an unbiased

estimate of surface slant [31].

Materials and Methods

Participants
Seventeen undergraduate students of the University of Trento

participated in the experiments: nine in Experiment 1 and eight in

Experiment 2. All of them were naı̈ve to the purpose of the

experiment. All subjects had normal or corrected-to-normal vision.

They were paid for their participation. All experiments were

undertaken with the understanding and written consent of each

subject, with the approval of the Comitato Etico per la Sperimentazione

con lEssere Umano of the University of Trento, and in compliance

with national legislation and the Code of Ethical Principles for

Medical Research Involving Human Subjects of the World

Medical Association (Declaration of Helsinki).

Apparatus
The participants head motions were recovered in real-time by

an Optotrak 3020 Certus system. A Dell Precision T3400 525W

(using an Intel Core 2 Extreme 5252W, QX9650, 3.00 GHz,

1333 MHz FSB,12 MB L2 Cache) controlled the stimulus display

and sampled the tracker (using a standard PCI card). Three

sensors on the back of the observers head were used to calculate

the x, y, z coordinates of the observers viewpoint in order to

update in real time the geometrical projection of a Random-Dot

planar Surface (RDS). The positions of RDS forming our stimuli

were updated on a ViewSonic 9613, 19W CRT monitor. The

monitor was set at a resolution of 1024|768 pixels (0.24-mm

diagonal dot pitch) and was driven by an nVidia Quadro FX 4600

with 768 Mb. The refresh rate of the monitor was 120 Hz.

The stimuli were viewed through a high-quality front-silvered

mirror (400|300 mm) placed at eye-height in front of the

observers central viewing position and slanted 45 0 away from the

monitor and the observers inter-ocular axis. As shown in Figure 6,

the screen distance from the center of the mirror was 210 mm,

while, on average, the distance from the pupil to the center of the

mirror was 360 mm. This arrangement produced an average

viewing distance (i.e., distance between the pupil and the center of

the display as reflected by the mirror) of 570 mm.

A custom Visual C++ program supported by OpenGL libraries

and Optotrak API routines was used for stimulus presentation and

response recording. The same program controlled the slant of the

RDS, depending on observers translation velocity, according to

Eq. 1.

Displays were viewed through liquid-crystal-diode (LCD)

shutter glasses synchronized to the monitor (FE-1 Goggles,

Cambridge Research System). Shutter glasses were used to control

monocular and binocular presentation of our displays. As a

consequence of the use of the shutter glasses, the actual refresh rate

was 60 Hz.

Displays
The displays were random arrangements of (1|1 mm) 300

antialiased red dots. The motion of these dots simulated the optical

velocity field generated by a planar surface slanted around the

vertical with 0 0 tilt and centered on the image screen. Each trial

included a sequential presentation of two stimuli: a test stimulus,

shown during observers head translation, and a probe stimulus.

The probe was always viewed binocularly from a static central

position with the cyclopean line of sight centered and aligned to

the screen center.

Non-motion cues, such as texture or outline foreshortening,

were removed from the test display, but not from the probe

display. To do so we determined the dots distribution using a back-

projection technique [69]. Dots were randomly distributed in the

projected image, not on the simulated surface. This was achieved

by imposing z0~tan(s)x0 , with x0 and y0 randomly selected in

the range between +25 mm from the screen center. The stimulus

onset asynchrony between the test and the probe displays was

sufficiently large to avoid any backward masking effect (500 msec).

The probe display was a stationary random-dot planar surface

defined by binocular disparity information, texture gradients, and

outline foreshortening. An appropriate key-press allowed partic-

ipants to adjust the simulated slant of the probe surface whereas

the tilt was kept constant at 0 0.

For each stimulus frame, the dots of the test and the probe

surfaces were projected onto the screen by using a generalized

perspective pinhole model with the observer’s eyes position

(measured with almost no latency) used as center of projections.

In both the probe and test displays, the motion of the dots that was

induced by the relative motion between the simulated surface and

the observer generated an approximately linear optic flow with

horizontal velocity vectors (see Figure 1).

The test stimulus was visible while the observer moved his/her

head. The onset of the test stimulus occurred when the right eye

crossed a position 60 mm eccentric to the left (A) or to the right (B)

of the center of the screen (i.e., when the right eye was on the

plane orthogonal to the screen vertical midline), after the observer

reversed his direction of motion, which occurred somewhat after

the right eye was in A or B. The test stimulus was displayed either

after the eye crossed the position A, during a rightward head

translation (horizontal expansion of the optic flow), or vice-versa,

after the eye crossed the position B during a leftward head

translation (horizontal compression of the optic flow). At the

average velocity of 240+80 mm/s, the test stimulus was visible on

Figure 6. Viewing apparatus and setting. A bird-eye view of the
viewing apparatus and of the experimental setting, including the
mirror, the CRT screen, the observer. The simulated slanted plane is
represented by the red dots. Dashed lines show the light path, from the
CRT to the lumen of the eye, for a standard observer at rest. Distance
units are expressed in mm.
doi:10.1371/journal.pone.0033911.g006
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the screen for about 0.5 sec. The test stimulus was deleted when

the right eye crossed the eccentric position (A) or (B) opposite to

that of stimulus onset.

In the case of the stationary surfaces, we simulated a static planar

surface centered on the image screen with a slant of either 40 0 or

60 0. The viewing distance was 570 mm. The lateral head shift was

equal to about 120 mm and the consequent variation of the visual

direction produced an optical angle of about 130. When the surface

was simulated to be static in an allocentric reference frame, during

the head translation, the relative slant of the surface with respect to

the observers optical axis varied between: 33.50 (position A) and

46.50 (position B), for the 400 slanted surface, and between 53.50 and

66.50, for the 600 slanted surface. As a consequence, the width of the

projected image varied from 45 mm to 55 mm, for the 40 0 slanted

surface, and from 39 mm to 61 mm, for the 60 0 slanted surface.

The average def for the 40 0 and the 60 0 slanted surfaces was equal to

0.4+0.02 rad/s and 0.8+0.04 rad/s, respectively (see Figure S1,

panel c, for the average def values produced by a representative

subject performing a rightward head translation).

In the case of the rotating distal surfaces, we simulated the

projection of a planar surface centered on the image screen. Such

planar surfaces was simulated as rotating during the head

translation, so as to generate a constant value of def of either

0.4 rad/s or 0.8 rad/s. The real-time update of the simulated

surface slant, as a function of the observersposition and velocity,

produced a variation of the simulated slant of about 15 0. The

average slant of the surfaces generating a def of 0.4 rad/s or

0.8 rad/s was equal to 40 0+1:3 0 or 60 0 + 1:1 0, respectively. The

variation of the simulated slant varied the width of the projected

image from 45 mm (when in A) to 59 mm (when in B) in the case

of def equal to 0.4 rad/s, and from 40 mm to 72 mm, in the case of

def equal to 0.8 rad/s.

In Experiment 2, the test displays were viewed binocularly and

thus included a disparity slant cue that was the difference between

left-and right-eye projections of corresponding surface points,

calculated separately for each observers inter-ocular distance. In

this condition, the stimulus was defined by the same random dot

textures described above.

Procedure
Participants were tested individually in complete darkness, so

that only the stimuli were visible during the experiment. In

particular, the monitor’s frame and the mirror were not visible. To

allow for natural head movements, during the experiment the

head was not restrained. Prior to the experiment, each participant

was trained to perform back-and-forth lateral head translations at

the required velocity of 240+80 mm/s when crossing the center

of the screen. Participants were also instructed to minimize head

rotations as well as movements in the vertical and depth direction.

At the beginning of each trial, a fixation mark was shown in the

center of the screen and participants were required to align their

right eye with the fixation mark (Figure 7). If the head position was

not within 5 cm of an ‘‘ideal’’ starting position located at 570 mm

from the monitor screen, then the fixation mark was painted in

green, thus signaling a misplacement of the head. When the

participant’s head was correctly positioned, the fixation mark

turned red and the participant moved her head rightward. The

direction of head motion reversed when a beep signaled a head

shift of 60 mm relative to the center of the screen. The acoustic

signals also provided a feedback about the speed of the head

translation: a high-pitch sound signalled a speed that was too fast,

a low-pitch sound signalled a speed that was too slow. During the

first oscillation cycles, the stimulus display was not shown. The test

surface was displayed after three and half head oscillation cycles in

the horizontal plane at the required velocity and at the required

head orientation (i.e., yaw, pitch, and roll were controlled in real

time and were required to be within the +3 0 range). The test

stimulus remained visible for an entire oscillation cycle (about

0.5 s). After the test display disappeared, the probe stimulus was

shown. The time separating the test stimulus and the probe

stimulus was 0.5 s. The participants’ task was to adjust the

simulated slant of the probe stimulus, so as to match the perceived

slants of the test and of the probe surfaces. During the execution of

this task, the participants did not move their head.

For both Experiments 1 and 2, the experimental session lasted for

about 90 min and comprised two blocks of 80 trials each. In each

block the simulated surfaces were either stationary or rotating. The

ordering of the two blocks was counter-balanced across participants.

Each block consisted of 20 random sequences of the four

experimental conditions: 2 average magnitudes of def (0.4 rad/s

and 0.8 rad/s, corresponding to an average surface slant of 40 0 and

60 0 respectively) |2 head translation directions (rightward and

leftward). Before each block of trials, participants received a brief

training to familiarize them with the task and the stimuli.

Figure 7. Schematic representation of the temporal sequence of stimulus events. The figure illustrates the situation corresponding to the
simulation of a static surface which induces a decreasing def when combined with a rightward head translation.
doi:10.1371/journal.pone.0033911.g007
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Supporting Information

Supporting Information S1 Instantaneous def and its relation-

ship with lateral head translation.

(PDF)

Figure S1 Co-variation between def and lateral head
position. In our experiments, observers performed a sinusoidal

lateral head translation while fixating a 0 0 tilted planar surface.

Panel (a) shows the variation of the head angular velocity during

the oscillatory head translation. Panel (b) shows the variation of the

relative slant of the surface. The relative slant sza is the angle

between the surface and the orthogonal to the viewing direction.

Panel (c) shows the variation of def during the oscillatory head

translation. The curves shown in the figure have been computed

by assuming the actual viewing parameters used in the

experiments (viewing distance of 570 mm, head position range

between +120 mm, average translation velocity of 240 mm/s). A

top view of the head positions is shown below the x{axis. The

cyan dashed lines indicate the viewing direction and its orthogonal

dimension. The average (normalized) values of a representative

subject are indicated by the red insets from the onset to the offset

of the stimulus.

(EPS)
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