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A B S T R A C T   

Hirschsprung’s disease (HSCR) is a congenital disorder characterized by the absence of ganglion cells in the 
colon, leading to various intestinal complications. The etiology of HSCR stems from complex genetic and 
environmental interactions, of which the intricate roles of non-coding RNAs (ncRNAs) are a key area of research. 
However, the roles of ncRNAs in the pathogenesis of HSCR have not been fully elucidated. In order to understand 
the variety of symptoms caused by HSCR and develop new therapeutic approaches, it is essential to understand 
the underlying biological genetic basis of HSCR. This review presents a comprehensive overview of the current 
understanding regarding the involvement of ncRNAs in HSCR, including microRNAs (miRNAs), long noncoding 
RNAs (lncRNAs), and circular RNAs (circRNAs). Additionally, it provides a summary of the molecular mecha
nisms through which ncRNAs regulate the expression of genes related to the proliferation, migration, and dif
ferentiation of intestinal neural crest cells, thereby contributing to the advancement of HSCR research.   

1. Introduction 

1.1. Hirschsprung’s disease 

Hirschsprung’s disease (HSCR), also known as aganglionosis, is a 
congenital disorder stemming from a failed migration of intestinal 
neural crest cells (NCCs) to the distal intestine during the 5th to 12th 
weeks of embryogenesis, leading to an absence of ganglion cells in the 
intermuscular and submucosal plexus [1]. The incidence is approxi
mately 1/5000, with most cases being sporadic and only 5%–20% being 
familial. Patients primarily present with delayed meconium expulsion 
and constipation. Serious complications, such as bowel perforation, 
hemorrhage and possibly lethal colitis, may occur if the disease is not 
promptly managed [2]. 

As a genetic and environmentally related disease [3]. Over 20 genes 
have been linked to HSCR’s onset, with the RET/GFRA1/GDNF and 
ECE1/END3/ENDRB signaling cascades being predominantly involved 
[4,5]. Other associated genes include transcription factors like SOX10, 
PHOX2B, ZFHX1B; the cell adhesion molecule L1CAM; signaling pro
teins like SEMA3A, SEMA3C, SEMA3D; neurotrophic elements such as 
NRTN, ARTN, PSPN, NTF3 (with NTRK as its ligand); Hedgehog signals 
like GLI1, SHH, IHH; and neuregulins like NRG1, NRG3 [6–8]. Though 
these genes significantly influence HSCR’s development, they don’t fully 
clarify the enteric nervous system’s (ENS) aberrant development. A 

schematic representation of these genes is provided in Fig. 1. 
Epigenetics regulates gene expression without involving changes in 

gene sequence. Studies have shown that various epigenetic modifica
tions such as histone modification, RNA methylation, DNA methylation, 
and non-coding RNAs (ncRNAs), modulate the expression of genes 
associated with the pathogenesis of HSCR [9]. NcRNAs are a class of 
RNA molecules that are not engaged in protein encoding, and act as a 
key post-transcriptional regulator that can affect the expression of 
downstream mRNA, and thus participates in a variety of biological 
processes, including cell growth, apoptosis, differentiation, and immune 
responses [10,11]. Currently, ncRNAs have been found to be implicated 
in several neurological disorders such as Alzheimer’s disease, Parkin
son’s disease, Amyotrophic lateral sclerosis, Peripheral nerve injury, and 
Neuroblastoma [12–14]. Many studies have also found that ncRNAs can 
regulate the expression of genes related to NCCs migration, proliferation 
and differentiation [15–17]. In this review, we summarize the action of 
ncRNAs in the pathogenesis of HSCR and deepen our understanding of 
the pathogenesis of HSCR. 

1.2. Non-coding RNA 

Non-coding RNAs represent a vast class of transcripts generated post 
DNA transcription. Beyond transfer RNAs (tRNAs) and ribosomal RNAs 
(rRNAs), this group also encompasses regulatory ncRNAs, which may 
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undergo specific epigenetic modifications [18]. Regulatory ncRNAs are 
categorized by their nucleotide (nt) length into small non-coding RNAs 
(length <200 nt) and long non-coding RNAs (length >200 nt). Among 
small non-coding RNAs, we find several types: microRNAs (miRNAs), 
which mature through the actions of enzymes like DGCR8, DICER, and 
DROSHA and typically span 22-24 nt; Small interfering RNAs (siRNAs), 
double-stranded entities that specifically target messenger RNAs 
(mRNAs) and measure around 20-24 nt; and piwi-interacting RNAs 
(piRNAs), originating from single-stranded mini-gene precursors, which 
guide PIWI proteins to influence target mRNAs expression, with lengths 

generally between 24-31 nt. Long non-coding RNAs (lncRNAs) can be 
further classified based on their genomic positioning in relation to 
protein-coding genes. The categories include promoter-associated tran
scripts, sense, intronic, bidirectional, antisense, 3′-UTR associated 
transcripts, and intergenic types. Additionally, circRNAs are unique 
because they lack both a 5′ cap and a 3′ poly(A) tail, forming a circular 
structure [19–21]. NcRNAs play pivotal roles in a host of physiological 
functions, including gene regulation, chromatin remodeling, epigenetic 
modifications, RNA splicing, translation, and protein transportation 
[22]. The action mechanisms are varied. For instance, miRNAs typically 

Fig. 1. Various intracellular signaling molecules and pathways involved in HSCR. Including receptors like RET, ENDRB; signaling proteins such as AKT, ERK; and 
transcription factors like SOX10, PHOX2B. Neurotrophic factors such as GDNF, ARTN, PSPN, and NTF3 interact with corresponding receptors GFRα1-4 and NTRK. 
Additionally, pathways like the NOTCH signaling pathway, Sonic Hedgehog (SHH) pathway, as well as other molecules (such as SEMA3C and SEMA3D), play 
significant roles in enteric neurons. 
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regulate downstream mRNAs in two principal ways: one method is by 
binding to the ORF region of mRNAs, forming a double-stranded 
structure leading to mRNA degradation; another method is by binding 
to the 3′-untranslated region (3′-UTR) of mRNAs, inhibiting 
post-transcriptional translation of mRNAs [23]. LncRNAs exert control 
over gene expression through multiple tiers. On the epigenetic front, 
lncRNAs aid in directing chromatin remodeling complexes to particular 
sites, leading to the subsequent silencing of linked genes. In the realm of 
transcriptional control, the expression of certain lncRNAs can disrupt 
that of nearby genes. They can also obstruct gene expression by blocking 
promoter regions. Moreover, lncRNAs can bind with RNA-binding pro
teins, steering them towards gene promoter zones to adjust gene 
expression. These lncRNAs further modulate transcription factor activ
ities, and by influencing basic transcription factors, they oversee gene 
expression. In terms of post-transcriptional control, lncRNAs impact 
gene expression by pairing with mRNAs after transcription [20]. 

Shifting focus to circRNAs, the primary mechanisms of circRNAs func
tion include: serving as competitive endogenous RNA; modulating se
lective splicing or translation; regulating the expression of parent genes; 
and performing biological functions through protein interactions [24]. 
Subsequently, this article primarily focuses on the regulatory ncRNAs 
linked to HSCR, zooming in on the recent developments concerning 
miRNAs, lncRNAs, and circRNAs. The formation process and related 
biological functions of ncRNAs are shown in Fig. 2. 

2. Non-coding RNA classes associated with HSCR 

2.1. MiRNA 

MicroRNAs are a subset of small non-coding RNAs 22–24 nucleotides 
in length. They act as key post-transcriptional regulators, leading to 
mRNAs degradation or translation inhibition by binding to the 3′-UTR of 

Fig. 2. The formation process and related biological functions of ncRNAs. DNA transcription results in primary microRNA (pri-miRNA), long non-coding RNA 
(lncRNA), and precursor messenger RNA (pre-mRNA). Pri-miRNA is cleaved by Drosha enzyme to form precursor miRNA (pre-miRNA), which is transported by 
Exportin-5. Dicer enzyme processes pre-miRNA into mature miRNA, promoting the loading of RNA-induced silencing complex (RISC) for targeted mRNA silencing. In 
the nucleus, lncRNA binds to gene promoter regions, promoting transcription. In the cytoplasm, lncRNA can bind with miRNA and mRNA to exert its function. 
Eventually degraded into monoribonucleotides. Pre-mRNA undergoes splicing, resulting in coding regions (exons) shown in purple to form circRNA. It regulates 
downstream gene expression by binding with miRNA or Ribonucleoprotein particles (RBPs). 
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its target mRNAs [25]. Research indicates that miRNAs and mRNAs have 
a multi-target relationship, forming a complex regulatory network, 
participating in the coordination of various biological processes, and 
playing an important role in the pathogenesis of HSCR [26]. 

Initially, miRNA-centered HSCR studies originated from the analysis 
of diseased tissue samples. Gene microarray technology is one of the 
most effective means of seeking breakthroughs. Li et al. [27] used 
microarray technology to detect differential miRNA expression between 
the diseased and normal intestinal tubes of HSCR, and identified 168 
differentially expressed miRNAs (104 up-regulated and 64 
down-regulated), seven miRNAs related to HSCR were further identi
fied, with their target genes involving mechanisms like the RET 
signaling pathway in HSCR pathogenesis. Qian et al. identified 
miR-141-3p and miR-30a-3p as key miRNAs in HSCR, they target the 
mitogen-activated protein kinase signaling pathway in the development 
of HSCR [28]. In addition, many miRNAs with aberrant expression 
patterns in HSCR have been discovered. For example, miR-200a/141 
and miR-92a have been found to regulate the migration and prolifera
tion of intestinal NCCs by targeting genes related to the PI3K/PTE
N/AKT pathway [29,30]. Wang et al. [31,32] have shown that 
miR-195-5p and miR-483-5p, target GFRA4, a member of the GNDF 
ligand family, and suppressing its expression can inhibit cell invasion 
and proliferation, as well as induce cell cycle arrest, apoptosis, and block 
differentiation. Additionally, miRNAs are involved in regulating the 
balance between enteric neurons and glial cell populations. Mi et al. 
[33] found that miR-124 and its target gene SOX9 were highly expressed 
in the diseased intestinal tubes, with the expression of SOX9 being 
closely tied to the development of glial cells. Similarly, miRNAs have 
also been confirmed to affect intestinal biological functions by influ
encing Cajal interstitial cells. Yang et al. [34] observed that extracellular 
signal-regulated kinase 1/2 can be activated when the colon of HSCR 
patients is in a dilated state, leading to the overexpression of miR-34c 
and the downregulation of the target gene SCF, thereby inhibiting the 
function of Cajal interstitial cells. Recently, Xu et al. [35] found that 
miR-424 can affect cell migration and proliferation by suppressing 
RICTOR expression, a finding confirmed in human neuroblastoma cells 
and embryonic intestinal explant culture models. They also discovered 
through single-cell transcriptomic data analysis that RICTOR is highly 
expressed in human and mouse intestinal neural cells, further suggesting 
that miR-424-mediated RICTOR regulation might be involved in the 
formation of HSCR. However, this study also has limitations in terms of 
small sample size, insufficient functional validation, lack of clinical 
relevance analyses and in vivo animal experiments, which are common 
in miRNA-related studies (such as miR-206 [36], miR-141 [37], and 
miR-195 [38]). Therefore, employing animal models to more compre
hensively reveal the specific mechanisms of miRNA in the formation of 
HSCR from temporal and spatial aspects, and validating these findings 
with larger clinical samples to further explore its diagnostic and po
tential therapeutic value, remains a direction for future research. The 
specific research regarding miRNAs in HSCR is shown in Table 1. 

Due to the challenges in obtaining tissue specimens and the differ
ences in miRNAs expression within them, detection through serum or 
body fluid specimens becomes necessary. To tackle this challenge, there 
has been a shift in the research paradigm away from tissue-centric 
studies towards utilizing a minimally invasive medium: blood. Tang 
et al. [53] gathered serum samples from 95 individuals with HSCR and 
104 controls, and analyzed the expression levels of serum miRNAs using 
TaqMan Low-Density Array and Reverse Transcription Quantitative PCR 
techniques. Their results showed that five miRNAs (miR-25, miR-92a, 
miR-133a, miR-218-1 and miR-483-5p) were significantly elevated in 
HSCR patients, presenting a stark difference when compared to the 
controls. Importantly, miR-92a, miR-218-1, and miR-483-5p have been 
associated with the migration and proliferation of enteric neural crest 
cells (ENCCs) by influencing HSCR-related pathogenic genes and path
ways [30,32,39]. Subsequently, using Risk Score and Receiver Oper
ating Characteristic (ROC) curve analyses, the Area Under the Curve 

(AUC) for these five serum miRNA features in the training set and two 
validation sets were 0.895, 0.893, and 0.925 respectively, demon
strating the accuracy of these 5 miRNA profiles as diagnostic features for 
HSCR was 82.6%, significantly higher than the 70% of the most 
commonly used barium enema method for diagnosing HSCR. Hong et al. 
[54] highlighted that miR-192-5p, miR-200a-3p, and miR-200b-3p were 
not only specifically upregulated in HSCR lesion tissues but also man
ifested higher concentrations in plasma, silencing the expression of these 
miRNAs effectively reduced cell viability and migration. These insights 
reinforce the immense potential of serum miRNA markers in diagnosing 
HSCR. While these studies provide an experimental basis for HSCR 
diagnosis, high-quality, large-scale prospective cohort studies, and the 
development of simpler and quicker methods for more precise early 
detection was still an important direction in the future. 

Table 1 
The expression and function of miRNAs in HSCR.  

MiRNA Expression Function Mechanism Ref 

miR- 
199a- 
3p 

↑ Inhibits migration and 
proliferation 

Downregulates 
mTOR 

[15] 

miR- 
200a/ 
141 

↓ Inhibits proliferation and 
migration 

Upregulates PTEN [29] 

miR-92a ↑ Inhibits viability and 
migration but enhances 
cell apoptosis. 

Regulates the 
KLF4/PI3K/AKT 
pathway 

[30] 

miR- 
195- 
5p 

↑ Inhibits proliferation、 
invasion and cell cycle 
arrest, and accelerated 
apoptosis 

Downregulates 
GFRA4 

[31] 

miR- 
483- 
5p 

↑ Inhibits migration and 
proliferation 

Downregulates 
GFRA4 

[32] 

miR-424 ↑ Inhibits proliferation Downregulates 
RICTOR 

[35] 

miR-141 ↓ Inhibits proliferation and 
migration 

Upregulates CD47 
and CUL3 

[37] 

miR-195 ↑ Inhibits proliferation and 
migration 

Downregulates 
DIEXF 

[38] 

miR- 
218-1 

↑ Inhibits proliferation and 
migration 

Upregulates RET 
and PLAG1 

[39] 

miR-206 ↓ Inhibits proliferation and 
migration 

Upregulates SDPR [40] 

miR- 
192/ 
215 

↓ Inhibits migration and 
proliferation 

Upregulates NID1 [41] 

miR-215 ↓ Inhibits migration and 
proliferation 

Upregulates 
SIGLEC-8 

[42] 

miR-939 ↑ Inhibits migration and 
proliferation 

Downregulates 
LRSAM1 

[43] 

miR- 
369- 
3p 

↑ Inhibits migration and 
proliferation 

Downregulates 
SOX4 

[44] 

miR- 
483- 
3p 

↓ Inhibits migration and 
proliferation 

Upregulates FHL1 [45] 

miR- 
431- 
5p 

↑ Inhibits migration and 
proliferation 

Downregulates 
LRSAM1 

[46] 

miR-214 ↑ Inhibits migration and 
proliferation 

Downregulates 
PLAGL2 

[47] 

miR- 
4516 

↑ Inhibits cell migration Upregulates 
MAPK10 

[48] 

miR- 
140- 
5p 

↓ Inhibits migration and 
proliferation 

Upregulates EGR2 [49] 

miR- 
142- 
3p 

↓ Inhibits migration、 
proliferation and 
differentiation 

Downregulates 
STAU1 

[50] 

Let-7a 
miR- 
24-1 

↑ Reduces proliferation 
and migration 

Downregulates 
RAC1 and RAC2 

[51] 

miR-144 ↓ Inhibits migration and 
proliferation 

Upregulates TFAP4 [52]  
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In addition to serum miRNAs, Lv et al. [55] studied the differential 
expression of plasma exosomal miRNAs in HSCR, revealing an upregu
lation of miRNAs such as miR-494-3p, miR-668-3p, miR-323a-3p, 
miR-605-3p, and miR-5701. Notably, miR-668-3p and miR-323a-3p 
emerged as the most effective and promising biomarker combination 
for early HSCR screening. Another study by Daiyue et al. [15] found that 
plasma exosomal miR-199-3p exhibited differential expression in HSCR 
patients and that modulating its expression influenced cell migration 
and proliferation. All these findings underscore the potential of miRNAs 
as diagnostic biomarkers for HSCR, offering prospects for early diagnosis 
or risk assessment. However, clinical research on these metrics has yet to 
be conducted. 

Regarding genetic polymorphisms, single nucleotide polymorphism 
primarily refers to the DNA sequence polymorphism caused by single 
nucleotide variations at the genomic level, functional genetic poly
morphisms of ncRNAs might be gene modifications related to human 
diseases [24]. Recent studies have uncovered potential links between 
miRNAs gene polymorphisms and HSCR susceptibility. A case-control 
study by Zhong et al., encompassing 1381 HSCR cases and 1457 con
trols, identified a significant association between the miR-938 
rs2505901 T > C polymorphism and HSCR risk in Chinese children 
[56]. Likewise, research by Wu et al. [57] emphasized the connection of 
the miR-4318 rs8096901 polymorphism to HSCR risk in southern Chi
nese children, especially evident in short-segment HSCR cases. Subse
quent research identified polymorphisms like pre-miR-146a rs2910164, 
miR-618 rs2682818 C > A, and miR-492 rs2289030 G > C as pivotal 
markers associated with HSCR susceptibility [58–60]. These revelations 
amplify the significance of miRNAs in understanding HSCR’s genesis 
and progression. However, the presence of genetic polymorphism does 
not invariably lead to functional impairment; further investigation 
through cellular and animal experiments remains essential. 

2.2. LncRNA 

Long non-coding RNAs, which are RNA molecules exceeding 200 
nucleotides in length and lack the capability to code proteins, play a 
vital role in gene expression regulation. This includes chromatin modi
fication, transcription, and post-transcriptional processing [61]. 
LncRNAs can regulate gene expression in cis (affecting nearby genes) or 
trans (affecting genes located elsewhere in the genome). Those lncRNAs 
impact the development of ENCCs and contribute to the onset of HSCR 
deserve special attention [62]. 

There is growing evidence suggesting that genetic variant within 
lncRNAs influence HSCR susceptibility. For instance, Zheng et al. [63] 
observed a correlation between the lncRNA HOTTIP SNP rs3807598 C 
> G and HSCR risk. Xie et al. [64] further demonstrated that lncRNA 
HOTTIP can suppress NCCs migration and proliferation by modulating 
HOXA13 expression. Changes were observed in the expression of some 
pathogenic miRNAs in HSCR were induced by lncRNAs, the down
regulation of miR-31/miR-31* in the narrowed segment of HSCR is 
caused by its host gene MIR31HG (also known as Loc554202), leading to 
elevated expression of ITIH5 and PIK3CG, and a decreased capacity for 
cell proliferation and migration [65]. Additionally, lncRNAs can func
tion as competing endogenous RNAs (ceRNAs), interacting with miRNAs 
to alter the expression of downstream target genes. For instance, lncRNA 
AFAP1-AS acts as a ceRNA by enhancing miR-181a expression through 
competitively binding, which in turn eventually block the ENCCs 
migration and invasion [66]. Further exploring this relationship, Pan 
et al. [67] discovered that in HSCR patients’ diseased intestinal sections, 
the reduced expression of lncRNA AFAP1-AS1 leads to decreased pro
liferation, migration, and invasive capacities of enteric neural crest stem 
cells (ENCSCs). hey also found that lncRNA AFAP1-AS1 can interact 
with miR-195 through the ceRNA mechanism, specifically regulating the 
expression of its target gene E2F3, thereby affecting the activity of 
ENCSCs. This study verified the role of lncRNA AFAP1-AS1 in HSCR at 
the in vitro cellular level, but its potential as a diagnostic or therapeutic 

target for HSCR still needs validation in vivo and clinical samples. 
Alterations in lncRNAs expression may also contribute to HSCR by 

influencing other cell biological functions. For instance, dysregulation of 
lncRNA FAL1 and lncRNA LOC101926975 leads to cell cycle arrest at 
the G0/G1 phase [68,69], downregulation of lncRNA LINC00346 pro
motes cell apoptosis [16], and LncRNA HA117 may possess 
anti-differentiation functions [70,71]. Other lncRNAs, including 
MIR143HG, MEG3, LOC100507600, DRAIC, RMST, and ZFAS1 have 
also been detected to be aberrantly expressed in HSCR [72–77]. How
ever, current research still has limitations, particularly in the lack of the 
ideal cell model ENCCs, which is the best model for exploring the 
pathogenesis of HSCR. In the future, we need more methods to elucidate 
the functions of lncRNAs in HSCR. The specific molecular mechanisms of 
lncRNA in HSCR are listed in Table 2. 

Although some differentially expressed lncRNAs in HSCR have been 
identified, there are still many yet to be discovered. To this end, Shen 
et al. [79] utilized microarray technology to analyze lncRNAs in HSCR 
diseased tissues, and detected 2078 differentially expressed 
lncRNA—1088 up-regulated and 990 down-regulated (fold change 
≥2.0, p < 0.05). Building on this foundation, Niu et al. [80] revealed key 
lncRNAs (LINC00619, LINC00924, LINC00261, and DRAIC) and mRNAs 

Table 2 
The expression and function of lncRNAs in HSCR.  

LncRNA Expression Function Mechanism Ref 

LINC00346 ↑ Inhibits migration 
and proliferation 
and promotes 
apoptosis 

Downregulates 
miR-148a-3p and 
upregulates 
DNMT1 

[16] 

HOTTIP ↓ Inhibits 
proliferation and 
migration 

Downregulates 
HOXA13 

[64] 

MIR31HG ↓ Inhibits proliferation 
and migration 

Regulates miR- 
31/31*-ITIH5/ 
PIK3CG pathway 

[65] 

AFAP1-AS ↓ Suppresses 
proliferation, 
migration, and 
induces the loss of 
cell stress filament 
integrity 

Upregulates miR- 
181a and 
downregulates 
RAP1B 

[66] 

AFAP1-AS1 ↓ Inhibits ENCSC 
proliferation, 
differentiation, 
invasion and 
migration 

Regulates miR- 
195/E2F3 axis 

[67] 

FAL1 ↓ Inhibits 
migration、 
proliferation and 
affects cell cycle 

Upregulates miR- 
637 and 
downregulates 
AKT1 

[68] 

LOC101926975 ↓ Suppresses 
proliferation and 
induces G0/G1 
arrest 

Upregulates FGF1 [69] 

MEG3 ↓ Inhibits migration 
and proliferation 

Regulates miR- 
770-5p/SRGAP1 
pathway 

[73] 

LOC100507600 ↓ Inhibits migration 
and proliferation 

Upregulates miR- 
128-1-3p and 
downregulates 
BMI1 

[74] 

DRAIC ↑ Inhibits migration 
and proliferation 

Affects the miR- 
34a-5p/ITGA6 
signal axis 

[75] 

RMST ↓ Inhibits migration 
and proliferation 

Regulates SOX2/ 
miR-1251/ 
AHNAK axis 

[76] 

ZFAS1 ↑ Inhibits 
proliferation 

Regulates p53、 
FoxO signal 
pathways 

[77] 

HN12 ↑ Inhibits recipient 
cell apoptosis 

Maintains the 
function of 
mitochondria 

[78]  
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(CYCSs, CCND1, BDKRB, ITGA6, and TNNC1) in the development of 
HSCR utilizing weighted gene co-expression network analysis. While 
these genes hold potential as novel clinical biomarkers for HSCR risk 
assessment, risk score analysis has yet to be employed to appraise the 
diagnostic relevance of these key lncRNAs and mRNAs in the clinical 
biomarker context for HSCR. Beyond measuring lncRNA expression in 
intestinal tissues from HSCR patients, Borrego et al. [81] pioneered the 
use of enteric precursor cells (EPCs) from both HSCR patients and con
trols to analyze related lncRNAs. This novel approach led to the dis
covery of three differentially expressed lncRNAs: SOCS2-AS, MEG3, and 
NEAT1. In addition, Du et al. [78] found that apoptotic neuronal cells 
release HN12 via exosomes to mitigate apoptosis in neighboring 
non-apoptotic cells, thus affecting the process of HSCR. These findings 
collectively emphasize the profound influence of lncRNAs on the 
development of the ENS and the onset of HSCR. In contrast, miRNAs 
have been widely investigated in disease observational studies as a po
tential diagnostic marker, but there is less research related to lncRNAs. 
Therefore, future research endeavors should focus on exploring and 
analyzing the potential utility of this approach as a non-invasive diag
nostic molecular biomarker for HSCR diagnosis. 

2.3. CircRNA 

Circular RNAs, a unique class of ncRNAs, are distinguished by their 
covalently closed loop structure, which confer greater stability 
compared to linear RNA. Predominantly localized in the cytoplasm, 
circRNAs primarily act as “molecular sponges” for miRNAs and interact 
with RNA-binding proteins (RBPs) [82]. 

Recent studies have highlighted dysregulated circRNA expression in 
HSCR. Huang et al. [83] utilized microarray technology to analyze 
diseased intestinal tissues. Subsequent RT-PCR validation confirmed 
altered expression levels of five specific circRNAs: circRNA-092493, 
circRNA-101965, circRNA-103118, circRNA-103279, and 
circRNA-104214, each with AUC values ranging from 0.72 to 0.95, 
indicating that they have potential implications in HSCR pathogenesis. 
Another study by Wen et al. [84] revealed that circRNA-CCDC66 was 
down-regulated in the colon tissue of HSCR patients, and it could inhibit 
the proliferation and migration of ENCCs via the miR-488-3p/DCX axis. 
A significant down-regulation of circRNA-ITCH was also found in HSCR 
patients, which impacts miR-146b-5p, indirectly regulating the expres
sion of RET gene that is crucial in the pathogenesis of HSCR [17]. Chen 
et al. [85] found that circ-MTCL1 was downregulated in the diseased 
segments of HSCR, engaging in a molecular sponge effect with 
miR-145-5p, indirectly modulating SMAD3 expression and suppressing 
neural cell migration and proliferation. However, circRNAs can also 
function through other pathways, such as encoding peptides or binding 
with RBPs, and whether they are also related to affecting the activity of 
neural cells still needs further study. Additionally, circRNA-PRKCI and 
circRNA-ZNF609 have been proven to regulate the expression of 
downstream target genes through the circRNAs-miRNAs-mRNAs 
network, and participate in the occurrence of HSCR [86,87]. The mo
lecular regulatory mechanisms of circRNAs in HSCR are shown in 
Table 3. 

The unique stability of circRNAs and their tissue-specific expression 
suggest their potential as biomarkers for HSCR. However, despite some 
progress in this area, relevant studies on the functions and mechanisms 

of circRNAs in HSCR are still rare. Future research directions will focus 
on discovering and validating pathogenic circRNAs through omics 
sequencing, animal experiments, and multi-center studies, with an aim 
to explore their potential as therapeutic targets and diagnostic markers. 
Meanwhile, studying the interactions between circRNAs and other 
ncRNAs could help us gain insights into the overall landscape of ncRNAs 
in HSCR. 

2.4. Proteins or peptides encoded by ncRNAs in HSCR 

NcRNAs are typically a class of RNA molecules not known to encode 
proteins. However, recent studies have found that some ncRNAs in the 
genome have open reading frames (ORFs), which are capable of trans
lating into biologically active proteins or peptides [88]. NcRNAs, 
including primary miRNAs (pri-miRNAs), lncRNAs, and circRNAs, are 
now known to contain small open reading frames (sORFs), which can 
regulate gene expression during development by encoding proteins or 
peptides, thereby affecting the occurrence and progression of diseases 
[89–91]. 

Studies have revealed that pri-miRNAs can be processed into mature 
miRNAs that inhibit target gene expression and can also encode a class 
of proteins or peptides known as miPEPs. For example, 187-aa ORFs 
have been identified in the primary transcripts of miR-200a, confirming 
that it can encode miPEP-200a in cancer cells and significantly down
regulate the expression of vimentin, thereby inhibiting the migration of 
prostate cancer cells [92]. Pei et al. [93] found that lncRNA AFAP1-AS1 
can encode a conserved small peptide, ATMLP, which is related to 
mitochondria function. Its overexpression is notably linked with unfa
vorable outcomes in non-small cell lung cancer patients. Moreover, 
more studies have found that circRNAs are similar to mRNAs, can be 
translated into proteins. For example, circPPP1R12A encoding 
circPPP1R12A-73aa can activate the Hippo-YAP signaling pathway, 
thus fostering colon cancer’s proliferation and metastasis [94]. These 
studies emphasize the role of proteins encoded by ncRNAs in tumor 
diseases and provide insights into HSCR research. 

In HSCR, both miRNA-200a and lncRNA AFAP1-AS1 have been 
proven to be related to the occurrence of HSCR [29,67]. However, 
comprehensive research on the function of proteins or peptides encoded 
by miRNA-200a and lncRNA AFAP1-AS1 in HSCR is still scarce. This gap 
in knowledge leads to the question: Do proteins or peptides encoded by 
ncRNAs, such as miPEP-200a and circPPP1R12A-73aa, directly or 
indirectly influence classic signaling pathways, such as Hippo-YAP, 
thereby inhibiting the migration and settlement of intestinal neural 
crest cells in the hindgut and consequently contributing to the devel
opment of HSCR? Investigating the involvement of ncRNAs encoded 
proteins or peptides in the development of HSCR will help further 
elucidate the pathogenesis of HSCR, and these ncRNAs encoded peptides 
or proteins may potentially become therapeutic targets and diagnostic 
markers for HSCR. 

2.5. ncRNA-mediated epigenetic changes in HSCR 

The intricate regulatory interplay of epigenetics is pivotal in eluci
dating numerous congenital diseases, including HSCR. Within the realm 
of epigenetic modification, ncRNAs not only directly regulate genes but 
also interact with DNA methylation, RNA methylation, and histone 

Table 3 
The expression and function of circRNAs in HSCR.  

CircRNA Expression Function Mechanism Ref 

Circ-ITCH ↓ Inhibits proliferation and migration Upregulates miR-146-5p and downregulates RET [17] 
Circ-CCDC66 ↓ Inhibits proliferation and migration Upregulates miR-488-3p and downregulates DCX [84] 
Circ-MTCL1 ↓ Inhibits proliferation and migration Upregulates miR-145-5p and downregulates SMAD3 [85] 
Circ-PRKCI ↓ Inhibits proliferation and migration Upregulates miR-1324 and downregulates PLCB1 [86] 
Circ-ZNF609 ↓ Inhibits proliferation and migration Upregulates miR-150-5p and downregulates AKT3 [87]  
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modification processes, offering supplemental regulatory avenues for 
understanding HSCR. 

2.5.1. DNA methylation and ncRNAs 
DNA methylation predominantly occurs at cytosine bases situated 

within CpG dinucleotides and often results in gene expression silencing. 
Integral to this process are the maintenance methyltransferases: 
DNMT1, DNMT3A, and DNMT3B. Extensive research underscores the 
pivotal roles these methyltransferases assume in both intestinal and 
ENCCs development [95–97]. Villalba-Benito et al. [98] observed a 
reduction in the overall level of DNA methylation in EPCs derived from 
HSCR patients. Furthermore, aberrant DNA methylation patterns were 
found in certain key genes associated with ENS development, such as 
RET, GFRA4, EDNRB, SOX10, PHOX2B, and NRG1 [99–102]. Intrigu
ingly, Villalba-Benito et al. [98] discerned that specific ncRNAs related 
to HSCR, such as MEG3, AFAP1-AS, IPW, NR2F1-AS1, and miR-195, 
exhibited aberrant DNA methylation patterns in differential methyl
ation region (DMR) analysis. Notably, the aberrant expression of MEG3, 
AFAP1-AS and miR-195 has been shown to inhibit the migration and 
proliferation of ENCCs [38,66,73]. In another study, Tang et al. [37] 
found that the downregulation of miR-141 in colon tissues of HSCR 
patients was attributed to the hypermethylation of CpG islands in the 
promoter region of the gene, further highlighting the significant influ
ence of DNA methylation on ncRNA regulation. Additionally, ncRNAs 
can target DNMTs for regulation. Li et al. [16] discovered that 
LINC00346 can serve as an ceRNA, regulating the expression of DNMT1 
at the post-transcriptional level and reducing DNMT1 protein synthesis; 
DNMT1 is closely related to the occurrence of HSCR. 

In summary, there is a complex regulatory network between ncRNA 
and DNMTs. The methylation status of ncRNA gene promoter is regu
lated by DNMTs, and ncRNAs can also regulate the expression of 
DNMTs. This intricate interaction may be a key part of the pathogenesis 
of HSCR. 

2.5.2. m6A methylation and ncRNAs 
N6-methyladenosine (m6A) methylation stands as a predominant 

internal modification in eukaryotic mRNA. Functionally, this methyl
ation governs aspects such as mRNA splicing, translation, and stability, 
while also influencing miRNA processing and maturation. This molec
ular modification is catalyzed by METTL3, METTL14 and WTAP, 
whereas m6A removal is performed by the demethylases FTO and 
ALKBH5. The recognition of m6A involves RNA-binding proteins, such 
as YTHDF1, YTHDF2, and YTHDF3 [103]. Delving into transcriptomic 
insights, it’s discerned that the absence of METTL3 or METTL14 impacts 
the expression of transcripts pivotal for neurogenesis, the cell cycle, and 
neuronal development [104]. Huang et al. [105] found that the 
expression of METTL3 was downregulated in HSCR and could inhibit the 
migration and proliferation of ENCCs by regulating the translation level 
of YAP. Recent findings underscore the decline of overall m6A levels in 
HSCR lesion tissues, highlighting a crucial link between m6A and HSCR 
[106]. In addition, m6A modification can also mediate pri-miRNAs 
processing and promote miRNAs maturation. Zhang et al. [107] found 
that METTL3 could accelerate the maturation of miR-150 by regulating 
the m6A methylation of pri-miR-150, exacerbating the progression of 
neuropathic pain. Conversely, miRNAs can also be involved in disease 
by regulating m6A methylation-related genes. Wei et al. [108] showed 
that in non-small cell lung cancer, miR-600 could affect the migration 
invasion of tumor cells by regulating the expression of METTL3. These 
series of studies emphasize the mutual regulatory relationship between 
ncRNAs and m6A. However, m6A is still understudied in HSCR. We need 
to further explore whether the decreased m6A methylation levels in 
HSCR lesion segments are related to ncRNAs, and whether the variation 
of m6A affects the generation of related ncRNAs. 

2.5.3. Histone modification and ncRNAs 
Histones, which are the fundamental chromatin protein components, 

interact with DNA to shape the nucleosome structure. Nucleosomesare 
are composed of eight histone molecules: H2A, H2B, H3, and H4, 
collectively forming the nucleosome’s octameric structure [109]. It’s 
pivotal to understand the role that modifications of these histones, 
including methylation, acetylation, deacetylation, and phosphorylation, 
play in steering the transcriptional activity of DNA [110]. The dynamics 
of histone modifications can either promote or restrain the transcription 
of specific gene regions [9]. Recent studies have shown that histone 
methylation and acetylation are intricately tied to the development of 
NCCs. Zhu et al. [111] demonstrated how the HOXB5 protein complex 
can alter the methylation status of the RET gene, thus impacting its 
expression. Notably, any deviation in RET expression could pave the 
way for HSCR. 

In related studies, a reduction in the expression of the histone reg
ulatory factor MeCP2, which is associated with HSCR, has been 
observed. Zhou et al. [112] documented that curbing the expression of 
MeCP2 stunted the proliferative capacity of cells. Drawing from this, it 
was hypothesized that miR-34b could influence its expression by 
latching onto the 3′-UTR of MeCP2. However, a consistency was 
observed as miR-34b expression remained largely unchanged between 
the case and control groups. Furthermore, the enzyme histone methyl
transferase, known as Zeste homolog 2 (EZH2), has been proven to mute 
the expression of PAX3, ZIC1, and SOX10 related to ENCCs development 
through H3K27 trimethylation modification [113]. In other diseases, 
EZH2 has been observed to regulate H3K27 trimethylation of miRNA 
[114], while miRNA can in turn modulate the expression of EZH2 [115]. 
This interplay underscores the intricate dance between ncRNA and 
histone modifications. Exploring this reciprocal regulatory mechanism 
not only enriches our comprehension of HSCR’s pathogenesis but also 
uncovers promising avenues for novel diagnostic and therapeutic mo
dalities centered on ncRNA orchestration. 

3. High-throughput sequencing technologies and ncRNAs 

With the advent of high-throughput sequencing technology and 
bioinformatics, the study of ncRNAs has undergone a transformation. 
Utilizing both microarrays and next-generation sequencing, researchers 
have identified numerous differentially expressed miRNAs, lncRNAs, 
and circRNAs in HSCR tissues, thereby laying the foundation for 
comprehensive mechanistic and functional explorations [27,81,83]. 
RNA sequencing, illustrating these technological advances, enables a 
more rigorous analysis of the transcriptome. This approach enriches our 
understanding of the transcriptomic landscape and reveals differentially 
expressed ncRNAs specific to HSCR tissues. Simultaneously, the 
deployment of bioinformatics tools for dissecting differential gene 
expression, pathway enrichment, and mapping out miRNAs-mRNAs, 
lncRNAs-miRNAs, and circRNAs-miRNAs interaction networks pro
vides a clearer picture of pivotal ncRNAs and the precise pathways they 
influence [116,117]. The specific molecular mechanism is illustrated in 
Fig. 3. 

Furthermore, the innovative single-cell RNA sequencing (scRNA- 
Seq) not only demystifies the cellular diversity of HSCR and its associ
ated complications [118,119], but also offers unparalleled insights into 
varying ncRNAs expression patterns across distinct cell types within the 
affected tissues. This detailed analysis will enhance our understanding 
of ncRNAs’ role in HSCR and shed light on its pathogenesis. 

4. Discussion 

This review comprehensively introduces the differential expression 
patterns of ncRNAs in HSCR and their biological significance. We 
reviewed the recent regulatory roles of miRNAs, lncRNAs, and circRNAs 
in the development of the Enteric Nervous System (ENS) and the path
ogenesis of HSCR, highlighting their interactions with epigenetic 
mechanisms such as DNA methylation, RNA methylation, and histone 
modifications. Given the diversity and complexity of ncRNAs’ 
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regulatory mechanisms, our current understanding of their functions in 
HSCR is incomplete. To address this gap, it’s essential to devise ncRNAs- 
based intervention strategies that delve into ncRNAs’ interactions with 
target genes and related pathways in HSCR. Currently, research on 
ncRNAs in HSCR is primarily limited to the molecular and cellular level, 
with a lack of validation in animal models. Therefore, using intestinal 
neural crest cells and animals as experimental models is crucial. More
over, the distinct expression patterns of ncRNAs in HSCR tissues reveal 
their potential as diagnostic and prognostic biomarkers. Some studies 
suggest that analyzing the expression levels of ncRNAs from tissues, 
plasma, or exosomes can effectively diagnose or assess the risk of HSCR. 
However, the challenge remains that there is currently a lack of multi
center, large-scale clinical samples to validate the reliability and accu
racy of ncRNAs as molecular diagnostic markers. This is also an 
important direction in the clinical translation of ncRNAs research. In 
recent years, studies have also found that ncRNAs can encode biologi
cally active proteins or peptides, which are closely related to the 
occurrence of some diseases. However, research related to proteins and 

peptides encoded by ncRNAs in HSCR is still in its infancy, mainly 
focusing on the regulatory effects of ncRNAs towards mRNAs. Looking 
forward, we should explore whether the proteins or peptides encoded by 
ncRNAs are related to the occurrence of HSCR. At the same time, by 
utilizing advanced technologies, such as spatial transcriptomics or 
scRNA-Seq, we can gain a deeper understanding of the roles of ncRNAs 
in HSCR, revealing the molecular complexity of ncRNAs regulation. This 
approach will help us establish a more comprehensive model to explain 
the importance of ncRNAs in the pathogenesis of HSCR. 
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