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Abstract: The human gut is a safe environment for several microbes that are symbiotic and important
for the wellbeing of human health. However, studies on gut microbiota in different animals
have suggested that changes in the composition and structure of these microbes may promote gut
inflammation by releasing inflammatory cytokines and lipopolysaccharides, gut-wall leakage, and may
affect systemic inflammatory and immune mechanisms that are important for the normal functioning
of the body. There are many factors that aid in the gut’s dysbiosis and neuroinflammation, including
high stress levels, lack of sleep, fatty and processed foods, and the prolonged use of antibiotics.
These neurotoxic mechanisms of dysbiosis may increase susceptibility to Alzheimer’s disease (AD)
and other neurodegenerative conditions. Therefore, studies have recently been conducted to tackle
AD-like conditions by specifically targeting gut microbes that need further elucidation. It was
suggested that gut dyshomeostasis may be regulated by using available options, including the use of
flavonoids such as anthocyanins, and restriction of the use of high-fatty-acid-containing food. In this
review, we summarize the gut microbiota, factors promoting it, and possible therapeutic interventions
especially focused on the therapeutic potential of natural dietary polyflavonoid anthocyanins.
Our study strongly suggests that gut dysbiosis and systemic inflammation are critically involved
in the development of neurodegenerative disorders, and the natural intake of these flavonoids may
provide new therapeutic opportunities for preclinical or clinical studies.

Keywords: natural polyflavonoids; gut dysbiosis; systemic inflammation; neuroinflammation;
memory impairment; Alzheimer’s disease

1. Introduction

The microbial population living in human and animal intestines is termed as the gut microbiota
(formerly called gut flora). Gut microbiota are trillions of micro-organisms, including at least 1000
different species of known bacteria with more than three million genes [1]. The interaction between
human health and the gut microbiota is well-documented [2]. The gut microbiota comprises two
phyla, Bacteroidetes and Firmicutes. At the embryonic stage, the gut microbiota appears disorganized,
while by the age of three, it starts to look similar to adult flora [3]. Several main microbiota functions
have been explored, including the synthesis of amino acids and vitamins that play a major role in the
circulation of steroid molecules (including bile acids and sex hormones), boosting the immune system
and production of different bioactive compounds [4,5].

Cells 2020, 9, 853; doi:10.3390/cells9040853 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0003-4902-4698
https://orcid.org/0000-0001-5226-4081
http://dx.doi.org/10.3390/cells9040853
http://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/9/4/853?type=check_update&version=2


Cells 2020, 9, 853 2 of 21

In this comprehensive review, we summarize the current research, highlighting the role of the gut
microbiota in the pathogenesis of neuroinflammation and AD-like pathologies. The literature search
was comprehensive, including both published and unpublished articles. We documented the search
process, kept track of the decisions that were made for each article, and screened and extracted the
conclusions. Moreover, we summarized all current research from more than 350 research and review
articles, showing the interaction between gut microbiota and neurocognitive function. In summary,
our findings suggest that gut microbiota have a significant impact on the pathogenesis of Alzheimer’s
disease, which may be significantly delayed with the administration of anthocyanin.

1.1. Normal Gut-Microbiota Functions in Human Body

Colonic bacteria can ferment complex carbohydrate-yielding short-chain fatty acids (SCFAs)
in which propionate, butyrate, and acetate are predominantly found in the gastrointestinal tract
(GI), with a ratio of 1:1:3, respectively, performing different cellular functions, such as gene
expression, chemotaxis, differentiation, and proliferation. Acetate is generated by most gut anaerobes,
whereas propionate and butyrate are produced by different classes of gut bacteria following distinct
molecular pathways. Butyrate is generated from carbohydrates via the acetoacetyl–CoA and
glycolytic pathway, whereas propionate is formed from two pathways, the succinate or propanediol
pathway [6–11].

Propionate gluconeogenesis can be stimulated by the liver, while acetate and butyrate are lipogenic.
Propionate and butyrate are histone deacetylase (HDAC) inhibitors, which epigenetically modulate
the expression of certain important genes. SCFAs confer a key role in the regulation of immunity
and inflammatory conditions. They also affect the release of cytokines, for example, by activating
the release of interleukin IL-18, that is involved in the restoration and preservation of the epithelial
structure. SCFAs were shown to regulate appetite and energy intake via various mechanisms [12–19].

GI microbes are also helpful in the synthesis of pivotal vitamins that cannot be produced by
the host organisms. Vitamin B12, which is crucial for the body, is produced by lactic acid bacteria
and is not synthesized by animals and plants. Other vitamins, such as folate that regulates the
metabolic processes of the hosts, including DNA synthesis and repair, are produced by Bifidobacteria.
A major immune shortage shown by germfree animals is the lack of CD4+ T-cell levels. This dearth
can be recovered by the administration of polysaccharide A to germfree mice from the capsule of
Bacteroides fragilis. This mechanism is conducted through pattern-recognition receptors (PRRs), such as
toll- or NOD-like receptors, which recognize molecules that are induced by intestinal microbiota.
These processes may attenuate certain inflammatory gut diseases by boosting the beneficial suppression
of pathogenic bacteria, or regulating immune cells or PRRs [20,21]. In Crohn’s disease, individuals
display mucosal dysbiosis, which may be pointed out by the reduced diversity of main microbes and
F. prausnitzii [22–29].

Studies have suggested that F. prausnitzii contains an anti-inflammatory protein that inhibits
the nuclear factor–κB (NF-κB) pathway in intestinal epithelial cells in animals. NF-κB represents
a family of inducible transcription factors, that regulate a large number of genes involved in
inflammatory processes. This family is composed of five structurally related members that
mediate the transcription of target genes by binding to a specific DNA element, the κB enhancer,
as various hetero- or homodimers [30]. Normally, NF-κB is locked in the cytoplasm by an inhibitory
protein of the IκB family. Upon activation, IκB is phosphorylated by the IκB kinase complex
(IKK), before undergoing degradation by the proteasome. Then, free NF-κB translocates to the
nucleus to turn on a large number of genes involved in proinflammatory processes at the site of
tissue damage [31]. Different studies have suggested that the gut microbiota plays a role in the
inhibition of NF-κB [32,33]. Moreover, Salmonella typhimurium and Clostridium difficile utilize sialic
acid, released by the gut microbiota, which favors their expansion in the gut [34–39]. The GI
microbiota, through its metabolites, promotes the production of different antimicrobials, which include
antimicrobial proteins (AMPs) such as cathelicidins and C-type lectins. Other mechanisms through
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which the gut microbiota can overcome pathogen growth are by promoting mucosal secretory IgA
(SIgA). Moreover, pattern-recognition-receptor–microbe-associated-molecular-pattern (PRR–MAMP)
interactions regulate several signaling tools that are crucial for promoting mucosal-barrier function
and the production of AMPs, thus adding to host defense against pathogenic microbes [3,40–43].

1.2. Dysbiosis and Its Pathogenesis Factors

Dysbiosis is a term for a microbial imbalance inside the body, such as an impaired microbiota.
There are many factors involved in dysbiosis that are given in Figure 1 [44].
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1.2.1. Congenital Factors

The microbial population can be affected by numerous factors, including mode of birth, nutrition,
antibiotic exposure, stress, age, and degree of hygiene. For example, babies born through the vagina
acquire the mother’s vaginal microbial flora, including Escherichia coli, Lactobacillus, Bifidobacterium,
and Bacteroides. Those born via Cesarean section, on the other hand, have a high risk of skin-related
bacterial invasion, including Staphylococcus species that continue throughout infancy [45–52].

1.2.2. Dietary Factors

The effects of diet on the structure of gut microbes have been evaluated during the initial phase of
colonization, as breastfed children have a greater number of Bifidobacteria spp, while formula-milk-fed
children have higher levels of Bacteroides spp. Generally, a change in diet could induce 57% of total
changes in gut microbiota, whereas congenital changes account for less than 12%, showing that diet has
a prominent role in the structuring of the gut microbiota. The Western diet, which is rich in sugar and
fat, causes dysbiosis, and affects the GI tract and the immune system [53–55]. The effects of a high-fat
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diet (HFD) on mice were also evaluated, where they were fed with a HFD for three months and showed
a decline in the growth of Bacteroidetes, while the levels of Firmicutes, Proteobacteria, and Actinobacteria
were markedly upregulated [56–61].

1.2.3. Effects of Chemical Exposure on Gut Microbiota

It was previously concluded that exposure to chemicals causes marked dysbiosis in the gut,
which includes the augmented production of the Firmicutes phylum and reduced Bacteroidetes
production. Similarly, the chronic administration of corticosterone causes gut dysbiosis. Furthermore,
recent studies have suggested that the lack of intestinal alkaline phosphatase (IAP) induces dysbiosis,
and elevates the inflammation and penetrability of the intestinal lining of newborns [62–66].

1.2.4. Effects of General Stress on Gut Microbiota

Stress is a disturbance in body homeostasis, due to different kinds of factors, such as psychological
and environmental stimuli, and physical stress, which provoke physiological and behavioral responses
to reinstate homeostasis. Stress has a variety of biological effects, such as modulation of microbes in
the GI tract. [67–74]. Here, we present recent studies associated with stress-induced changes in GI
microbiota structure and composition. Stress types include sleep deprivation, psychological stress,
circadian disturbance, environmental pathogens, environmental stress, pollutants, and diet, which were
selected for their direct effect on environmental physiology and military personnel [75–79].

1.2.5. Mental Stress and Gut Microbiota

Physiological stress may be induced by different means, including social deprivation and water
restraint. These induce a disturbance in the body that causes inflammation, modulates immunity, alters
GI function, and produces anxiety-like behaviors. From a military perspective, social defeat stress (SDS)
is the most accepted model [80–85]. Using the SDS model in a study, 2 h SDS was enough to change
mucosa-related microbes in mice, reducing Lactobacillus reuteri. When they were repeatedly exposed
for 2 h over 6 days, this caused the higher attenuation of Lactobacillus. The relationship between gut,
brain, and gut microbiota is bidirectional, where stress-triggered activation of the sympathetic nervous
system (SNS) and the hypothalamic–pituitary–adrenal (HPA) axis affects gastrointestinal (GI)-tract
microbes. Later, all these affect the central nervous system, either through the enteric nervous system,
via spinal and vagal nerves, or via blood circulation when they gain entry to the blood stream and
cross the blood–brain barrier [86–89].

1.2.6. Altitude and Temperature Effects on Normal Gut Microbiota

It is commonly reported that the consequences of high altitude (2500 m) may affect the GI
system (GIS). The symptoms that were observed because of hypobaric hypoxia are loss of appetite,
indigestion, nausea, vomiting, gas, and abdominal pain. It has been reported that low oxygen delivery
to the GI affects motility, because intestinal epithelia cells need oxygen-saturated blood for their
normal physiological functions. An increase in the number of proinflammatory Enterobacteriaceae
with increased inflammation and a decrease in the number of Bifidobacteria was found during a trip to
Himalaya. Furthermore, it has been demonstrated that soldiers working or training at 3505 m altitude
may decrease aerobic counts, while increasing beneficial and harmful micro-organisms [90–95].

A recent study showed that acute cold promotes alteration in murine gut microbiota [96–100].
Several studies indicated that the effect of cold on the human gut microbiota could be useful by
promoting cold tolerance, which needs more exploration [101–103].

1.2.7. Intestinal Infection (Enteric Pathogens) Accelerates Gut Dysbiosis and Alters
Gastrointestinal-Wall Integrity

A major type of diarrhea is called traveler’s diarrhea (TD), which commonly occurs in
military personnel and is caused by enteroaggregative and enterotoxigenic E. coli Salmonella spp,
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Shigella, and Campylobacter jejuni. These agents cause diarrheal infections through the physical
disruption of the gut barrier and immune-system disturbance, which leads to disturbing the gastric
environment [104–110]. Some medically recommended antibiotics that are used for the treatment
of infectious diarrhea and TD are azithromycin; levofloxacin enables the growth of opportunistic
pathogens [111–116].

1.2.8. Environmental Pollution and Toxins Affect Animal Health and Increase the Number of
Opportunistic Gut Microbes

Industrial chemicals and toxic industrial materials make the environment and air deleterious
and unfit for survival. It is well known that burn pits are used to hide and destroy solid waste,
particularly in military sites that carry toxic compounds, such as polycyclic aromatic hydrocarbons
(PAHs), polychlorinated compounds, and particulates. A rodent model reported that exposure of adult
mice to cadmium for 10 weeks changed gut-microbiota composition at the phylum and family levels.
This same model also proposed that an increase in Bacteroidaceae boosts serum lipopolysaccharides
(LPS). Moreover, it showed that the oral administration of B[a]P to experiment mice for 28 days resulted
in moderate gastric inflammation and microbial-community shifts that included a decline in the level
of anti-inflammatory taxa (e.g., Lactobacillus and Akkermansia), and an increase in the level of numerous
inflammatory taxa [117–120].

1.2.9. Effects of Noise on Gut Dysbiosis and Normal Microflora

When rodents were exposed to acoustic stress, intestinal tight-junction protein expression
was decreased, intestinal permeability was increased, GI motility was changed, inflammation and
intestine-tissue damage increased, and gastric-ulcer induction was observed. However, a study
demonstrated that exposure of aged mice to severe noise for 4 h/day up to 30 days changed
cecal microbiota, which was characterized by an increase in Bacteroidetes/Firmicutes ratio, associated
with decreased expression of tight-junction proteins in the colon and hippocampus, inflammation,
and Alzheimer’s-like cognitive impairments [121–129].

1.2.10. Gut Dysbiosis Induces Neuroinflammation and Alzheimer’s Disease Pathology

The lipopolysaccharides are secreted by gut bacteria during dysbiosis that exaggerate Alzheimer’s
disease pathology, via the activation of amyloidogenic signaling pathways. Studies have suggested
that bacterial-surface lipopolysaccharides bind with microglial receptors (TLR2, TLR4, and CD14)
and activate the downstream NF-κB transcription factor. The activation of NF-κB producing
proinflammatory cytokines that initiate neuroinflammatory responses. This neuroinflammatory
response and reactive microglia activate various Alzheimer’s pathways, such as beta-secretase 1
(BACE1; Figure 2) [130–136].
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Figure 2. Increased beta-secretase 1 (BACE1) enzyme activity causes senile plaque formation.
Increased BACE1 activity (when NF-κB transcription factor binds with its promoter region) causes
abnormal APP cleavage that produces a burden of amyloid beta proteins. Consequences of amyloid
beta plaques include Alzheimer’s disease development.

However, a study revealed that lipopolysaccharides, endotoxins, and pathogens disrupt the gut
and blood–brain barrier (BBB) tight junctions, and enter the brain, for example Salmonella, E. coli,
and Citrobacter produce Aβ. In the brain, misfolding amyloid proteins may be triggered by an exposure
to microbial communities. A prion-like mechanism is the same as the propagation and formation of
Aβ seeds [134,137–141]. One possibility is that epithelial cells of mucosa-associated lymphoid tissue
collect and pass it to the parasympathetic neurons of the vagus nerve and enteric nervous system, from
where they may gain entry to the CNS through retrograde axonal transport. Dysregulation of these
molecules can lead to neurotoxicity and chronic inflammation.

1.3. Daily Use of Natural Dietary Anthocyanins Increases Beneficial-Microbe Population, Prevents Leaky Gut,
and Inhibits Circulatory Inflammagen (LPS) and Proinflammatory Cytokines

Anthocyanins belong to flavonoids, are soluble in water, and are polyphenolic pigments that
give color to food. There are some fruits and vegetables that are rich in anthocyanins, such as grapes,
black plums, and blueberries, red and black rice, and black soybeans. The amount and composition of
anthocyanins in different fruits and vegetables range from 0.1% to 1% (Figure 3).
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Figure 3. Natural dietary Anthocyanin sources. Various fruits and vegetables are rich sources of natural
dietary anthocyanin.

Berries are a rich source of anthocyanins, so they may help in different functions of the body,
as highlighted previously [142,143].

Furthermore, enzymolysis, oxidation, and climatic factors like light, temperature, and pH can
change the level of anthocyanins. Acidic conditions are better for the stability of anthocyanins.
In most cases though, it is degraded at high pH. Anthocyanins are naturally present in plants as
glycosides carrying glucose, galactose, arabinose, rhamnose, and xylose [144–153]. The unstable form
of deglycosylated anthocyanins is called anthocyanidins, which are very rare in nature. The peculiar
electron distribution and presence of flavylium ion are the reasons for anthocyanidin instability. On the
basis of chemical structure, 700 anthocyanins and 27 aglycones have so far been recognized. The basic
structure of anthocyanin comprises a C-6 (A ring)-C-3 (C ring)-C-6 (B ring) carbon skeleton with different
numbers of sugars and hydroxyl groups, and varying degrees of methylation [144,146,153–157]. It was
established that tight junctions provide a paracellular barrier that only allows select molecules into the
intercellular space between epithelial cells (Figure 4).
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Figure 4. Leaky gut contributes to circulatory inflammagens and proinflammatory cytokines.
Opportunistic bacteria produce various toxins and polysaccharides that, in turn, cause intestinal-wall
inflammation that results in a leaky gut. Epithelial-cell inflammation also leads to loss of tight
junctions that provide opportunities for undigested food particles, toxins, and inflammatory cytokines
to enter bloodstream. Toxins and lipopolysaccharide (LPS)-containing blood later enter brain via
blood–brain-barrier disruption.



Cells 2020, 9, 853 8 of 21

Cellular adhesion occurs because of occluding-regulated paracellular permeability. A classic
TJ marker, ZO-1, works as an anchor and contributes to connecting occludin, claudin, and actin
cytoskeletons to increase the epithelial barrier [158–169]. An in vivo study was carried out on
rodents, where adult mice received 100 mg/kg black-rice extract per os (P.O.) for five days, in order
to induce colitis, which indicated that mice that received black-rice extract had fewer histological
lesions in their mucosa, as compared to dextran sodium sulfate-treated mice. It was suggested that
anthocyanins prevent starch digestion by inhibiting the ά-amylase enzyme. When this undigested
starch reaches the large intestine, it provides energy to probiotic bacteria, including Lactobacilli,
Bifidobacteria, and Streptococci, which later on improves health conditions [167,170–177].

1.4. Anthocyanins Mitigate Gut Dysbiosis that Induces Neuroinflammation and Alzheimer’s Pathology

It was reported that LPS can enter the bloodstream via a damaged intestinal epithelium during an
enteric-dysbiosis failure. The increase in the abundance of opportunistic pathogens could cause an
increase in serum LPS levels. LPS further activates inflammatory pathways, including TLR4/NF-κB,
which, in turn, leads to the release of proinflammatory cytokines, such as TNF-ά, IL-1β, and CO2, that
then enter the bloodstream via a leaky gut (Figure 5) [178–180].
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Figure 5. Gut dysbiosis causes epithelial inflammation. When harmful, particularly E. coli,
Gram-negative bacteria secrete lipopolysaccharides that activate the TLR4 pathway and later on
cause intestinal-wall and epithelial inflammation. This lipopolysaccharide not only activates the TLR4
signaling pathway, but also microglial and astrocyte cells in the gut, that then secrete proinflammatory
cytokines. These proinflammatory cytokines later gain entry to the bloodstream via a leaky gut.
This serum LPS then disrupts the blood–brain-barrier (BBB) and enters the brain, where it reactivates
microglia, and various inflammatory and amyloid genic pathways.
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Previous studies reported that the abnormal cleavage of the amyloid beta protein by β-secretase
results in amyloid beta plaque formation. Increased amyloid beta plaques accelerate neuronal cell death
and Alzheimer’s pathology [181–183]. Moreover, gut bacteria populating the microbiome were shown
to produce amyloids and other immunogenic mediators that contribute to the modulation of signaling
mechanisms implicated in neuroinflammation, brain Aβ deposition, and AD pathogenesis [184].
To explain how gut microbiota might contribute to AD pathogenesis, it was hypothesized that
bacteria-derived amyloids leak from the gastrointestinal tract and accumulate at system and brain
levels [185].

Here, we summarized the neuroinflammation-mediated amyloid beta burden and Alzheimer’s
pathology because, in dysbiosis, the opportunistic bacterial component (LPS) is prominently
generated inside the gut, which later gains entry to the brain via the blood and causes a
neuroinflammation-mediated amyloid beta burden (Figure 6) [186,187].
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Figure 6. Gut-microbiota-secreted polysaccharides and other toxins cause neuroinflammation and
Alzheimer’s disease development. When circulatory lipopolysaccharides enter the brain, it activates
inflammatory pathways and increases the number of reactive microglia. Increased inflammatory
cytokines and NF-κB increase APP and amyloid beta protein cleavage and accumulation, and cause
Alzheimer’s disease development.

It has been reported that LPS is the ligand of the TLR4 receptor that exists on microglia cells.
When LPS bind with TLR4, it activates the inflammatory cascade by translocating the downstream
NF-κB to the nucleus. Once NF-κB phosphorylates, it binds with proinflammatory cytokine (TNF-ά,
IL-1β, and COX2) as a result, increases the neuroinflammation (Figure 7).



Cells 2020, 9, 853 10 of 21

Cells 2020, 9, x FOR PEER REVIEW 10 of 22 

 

It has been reported that LPS is the ligand of the TLR4 receptor that exists on microglia cells. 

When LPS bind with TLR4, it activates the inflammatory cascade by translocating the downstream 

NF-κB to the nucleus. Once NF-κB phosphorylates, it binds with proinflammatory cytokine (TNF-ά, 

IL-1β, and COX2) as a result, increases the neuroinflammation (Figure 7).  

 

Figure 7. Anthocyanins prevent inflammatory and amyloid genic pathways in the central nervous 

system. When circulatory lipopolysaccharides and inflammatory cytokines gain entry to the brain, 

toll-like receptor 4 on microglia is activated, which subsequently leads to the activation of nuclear 

factor kappa B (NF-κB). After NF-κB phosphorylation and translocation to the nucleus, it goes on to 

bind with proinflammatory cytokine genes, that results in the production and release of 

proinflammatory cytokines. NF-κB also binds with the promoter region of BACE1 that produces β-

secretase enzymes. Increased BACE1 activities later result in abnormal APP cleavage. Chronic 

deposition of amyloid beta proteins in the brain causes amyloid beta plaque formation and neuronal 

cell death. Amyloid beta plaques also deregulate pre- and postsynaptic proteins, which results in 

dementia and memory impairment. 

Ali T and Khan, M.S. et al. recently reported that anthocyanins could significantly ameliorate 

the expression of proinflammatory cytokines and ROS/JNK, thus preventing neuroinflammation and 

Alzheimer’s pathology [188–198]. Moreover, a study has shown the rescuing effects of anthocyanin 

against Alzheimer’s disease pathology (APP, BACE-1, Aβ, and P-tau) and synapsis-related functions 

in Aβ1-42-injected mice [199]. The effects of anthocyanin against gut-dysbiosis-induced 

neuroinflammation are in accordance with previously conducted studies, showing that nutrients 

have a significant effect against microbiota-induced neurocognitive disorders [200]. 

2. Conclusions and Future Perspectives 
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Figure 7. Anthocyanins prevent inflammatory and amyloid genic pathways in the central nervous
system. When circulatory lipopolysaccharides and inflammatory cytokines gain entry to the brain,
toll-like receptor 4 on microglia is activated, which subsequently leads to the activation of nuclear
factor kappa B (NF-κB). After NF-κB phosphorylation and translocation to the nucleus, it goes
on to bind with proinflammatory cytokine genes, that results in the production and release of
proinflammatory cytokines. NF-κB also binds with the promoter region of BACE1 that produces
β-secretase enzymes. Increased BACE1 activities later result in abnormal APP cleavage. Chronic
deposition of amyloid beta proteins in the brain causes amyloid beta plaque formation and neuronal
cell death. Amyloid beta plaques also deregulate pre- and postsynaptic proteins, which results in
dementia and memory impairment.

Ali T and Khan, M.S. et al. recently reported that anthocyanins could significantly ameliorate
the expression of proinflammatory cytokines and ROS/JNK, thus preventing neuroinflammation
and Alzheimer’s pathology [188–198]. Moreover, a study has shown the rescuing effects of
anthocyanin against Alzheimer’s disease pathology (APP, BACE-1, Aβ, and P-tau) and synapsis-related
functions in Aβ1-42-injected mice [199]. The effects of anthocyanin against gut-dysbiosis-induced
neuroinflammation are in accordance with previously conducted studies, showing that nutrients have
a significant effect against microbiota-induced neurocognitive disorders [200].

2. Conclusions and Future Perspectives

In our study, we focused on gut dysbiosis that induces systemic toxins, inflammagen-mediated
neuroinflammation, and Alzheimer’s pathology. We summarized that gut dysbiosis not only induces
gastrointestinal disorder, particularly epithelial inflammation, tight-junction disruption, and leaky gut,
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but also contaminates the circulatory blood that results in BBB disruption, neuroinflammation-mediated
Alzheimer’s pathology, and memory dysfunction (Figure 8).
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Author Contributions: M.S.K. & M.I. are the equal contributors to this article, who wrote reviewed the manuscript.
J.S.P. and T.J.P., are co-authors who critically reviewed the manuscript. M.O.K. is a corresponding author who
reviewed, approved the manuscript and holds all the responsibilities related to this manuscript. All authors have
read and agreed to the published version of the manuscript.

Acknowledgments: This research was supported by the Brain Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT (2016M3C7A1904391).

Conflicts of Interest: The authors declare no conflict of interest.

Consent for publication: Not applicable.

References

1. Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [CrossRef]
[PubMed]

2. Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An
integrative view. Cell 2012, 148, 1258–1270. [CrossRef]

3. Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of
the normal gut microbiota. World J. Gastroenterol. 2015, 21, 8787–8803. [CrossRef]

4. Von Martels, J.Z.H.; Sadaghian Sadabad, M.; Bourgonje, A.R.; Blokzijl, T.; Dijkstra, G.; Faber, K.N.;
Harmsen, H.J.M. The role of gut microbiota in health and disease: In vitro modeling of host-microbe
interactions at the aerobe-anaerobe interphase of the human gut. Anaerobe 2017, 44, 3–12. [CrossRef]

http://dx.doi.org/10.1136/gutjnl-2018-316723
http://www.ncbi.nlm.nih.gov/pubmed/29934437
http://dx.doi.org/10.1016/j.cell.2012.01.035
http://dx.doi.org/10.3748/wjg.v21.i29.8787
http://dx.doi.org/10.1016/j.anaerobe.2017.01.001


Cells 2020, 9, 853 12 of 21

5. Rajilic-Stojanovic, M. Function of the microbiota. Best Pr. Res. Clin. Gastroenterol. 2013, 27, 5–16. [CrossRef]
6. Musso, G.; Gambino, R.; Cassader, M. Obesity, diabetes, and gut microbiota: The hygiene hypothesis

expanded? Diabetes Care 2010, 33, 2277–2284. [CrossRef]
7. Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer.

Nat. Rev. Microbiol. 2014, 12, 661–672. [CrossRef]
8. Correa-Oliveira, R.; Fachi, J.L.; Vieira, A.; Sato, F.T.; Vinolo, M.A. Regulation of immune cell function by

short-chain fatty acids. Clin. Transl. Immunol. 2016, 5, e73. [CrossRef] [PubMed]
9. Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003, 62,

67–72. [CrossRef] [PubMed]
10. Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on

human metabolism. Gut Microbes 2016, 7, 189–200. [CrossRef] [PubMed]
11. Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol.

2017, 19, 29–41. [CrossRef] [PubMed]
12. Derrien, M.; Vaughan, E.E.; Plugge, C.M.; de Vos, W.M. Akkermansia muciniphila gen. nov., sp. nov., a

human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 2004, 54, 1469–1476. [CrossRef]
[PubMed]

13. Guarner, F.; Malagelada, J.R. Gut flora in health and disease. Lancet 2003, 361, 512–519. [CrossRef]
14. Lin, L.; Zhang, J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

BMC Immunol. 2017, 18, 2. [CrossRef]
15. Donohoe, D.R.; Collins, L.B.; Wali, A.; Bigler, R.; Sun, W.; Bultman, S.J. The Warburg effect dictates the

mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol. Cell 2012, 48, 612–626.
[CrossRef] [PubMed]

16. Chambers, E.S.; Morrison, D.J.; Frost, G. Control of appetite and energy intake by SCFA: What are the
potential underlying mechanisms? Proc. Nutr. Soc. 2015, 74, 328–336. [CrossRef] [PubMed]

17. Pingitore, A.; Chambers, E.S.; Hill, T.; Maldonado, I.R.; Liu, B.; Bewick, G.; Morrison, D.J.; Preston, T.;
Wallis, G.A.; Tedford, C.; et al. The diet-derived short chain fatty acid propionate improves beta-cell function
in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 2017, 19,
257–265. [CrossRef]

18. Byrne, C.S.; Chambers, E.S.; Alhabeeb, H.; Chhina, N.; Morrison, D.J.; Preston, T.; Tedford, C.; Fitzpatrick, J.;
Irani, C.; Busza, A.; et al. Increased colonic propionate reduces anticipatory reward responses in the human
striatum to high-energy foods. Am. J. Clin. Nutr. 2016, 104, 5–14. [CrossRef]

19. Nagai, M.; Obata, Y.; Takahashi, D.; Hase, K. Fine-tuning of the mucosal barrier and metabolic systems using
the diet-microbial metabolite axis. Int. Immunopharm. 2016, 37, 79–86. [CrossRef]

20. Mazmanian, S.K.; Liu, C.H.; Tzianabos, A.O.; Kasper, D.L. An immunomodulatory molecule of symbiotic
bacteria directs maturation of the host immune system. Cell 2005, 122, 107–118. [CrossRef]

21. Hevia, A.; Delgado, S.; Sanchez, B.; Margolles, A. Molecular Players Involved in the Interaction Between
Beneficial Bacteria and the Immune System. Front. Microbiol. 2015, 6, 1285. [CrossRef] [PubMed]

22. Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.;
Muccioli, G.G.; Delzenne, N.M.; et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium
controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [CrossRef] [PubMed]

23. Zhao, S.; Liu, W.; Wang, J.; Shi, J.; Sun, Y.; Wang, W.; Ning, G.; Liu, R.; Hong, J. Akkermansia muciniphila
improves metabolic profiles by reducing inflammation in chow diet-fed mice. J. Mol. Endocrinol. 2017, 58,
1–14. [CrossRef] [PubMed]

24. Candela, M.; Biagi, E.; Maccaferri, S.; Turroni, S.; Brigidi, P. Intestinal microbiota is a plastic factor responding
to environmental changes. Trends Microbiol. 2012, 20, 385–391. [CrossRef]

25. Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.;
Batto, J.M.; Kennedy, S.; et al. Richness of human gut microbiome correlates with metabolic markers. Nature
2013, 500, 541–546. [CrossRef]

26. Wang, L.; Christophersen, C.T.; Sorich, M.J.; Gerber, J.P.; Angley, M.T.; Conlon, M.A. Low relative abundances
of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with
autism. Appl. Environ. Microbiol. 2011, 77, 6718–6721. [CrossRef]

27. Derrien, M.; Belzer, C.; de Vos, W.M. Akkermansia muciniphila and its role in regulating host functions.
Microb. Pathog. 2017, 106, 171–181. [CrossRef]

http://dx.doi.org/10.1016/j.bpg.2013.03.006
http://dx.doi.org/10.2337/dc10-0556
http://dx.doi.org/10.1038/nrmicro3344
http://dx.doi.org/10.1038/cti.2016.17
http://www.ncbi.nlm.nih.gov/pubmed/27195116
http://dx.doi.org/10.1079/PNS2002207
http://www.ncbi.nlm.nih.gov/pubmed/12740060
http://dx.doi.org/10.1080/19490976.2015.1134082
http://www.ncbi.nlm.nih.gov/pubmed/26963409
http://dx.doi.org/10.1111/1462-2920.13589
http://www.ncbi.nlm.nih.gov/pubmed/27928878
http://dx.doi.org/10.1099/ijs.0.02873-0
http://www.ncbi.nlm.nih.gov/pubmed/15388697
http://dx.doi.org/10.1016/S0140-6736(03)12489-0
http://dx.doi.org/10.1186/s12865-016-0187-3
http://dx.doi.org/10.1016/j.molcel.2012.08.033
http://www.ncbi.nlm.nih.gov/pubmed/23063526
http://dx.doi.org/10.1017/S0029665114001657
http://www.ncbi.nlm.nih.gov/pubmed/25497601
http://dx.doi.org/10.1111/dom.12811
http://dx.doi.org/10.3945/ajcn.115.126706
http://dx.doi.org/10.1016/j.intimp.2016.04.001
http://dx.doi.org/10.1016/j.cell.2005.05.007
http://dx.doi.org/10.3389/fmicb.2015.01285
http://www.ncbi.nlm.nih.gov/pubmed/26635753
http://dx.doi.org/10.1073/pnas.1219451110
http://www.ncbi.nlm.nih.gov/pubmed/23671105
http://dx.doi.org/10.1530/JME-16-0054
http://www.ncbi.nlm.nih.gov/pubmed/27821438
http://dx.doi.org/10.1016/j.tim.2012.05.003
http://dx.doi.org/10.1038/nature12506
http://dx.doi.org/10.1128/AEM.05212-11
http://dx.doi.org/10.1016/j.micpath.2016.02.005


Cells 2020, 9, 853 13 of 21

28. Sokol, H.; Seksik, P.; Furet, J.P.; Firmesse, O.; Nion-Larmurier, I.; Beaugerie, L.; Cosnes, J.; Corthier, G.;
Marteau, P.; Dore, J. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel. Dis.
2009, 15, 1183–1189. [CrossRef]

29. Lopez-Siles, M.; Duncan, S.H.; Garcia-Gil, L.J.; Martinez-Medina, M. Faecalibacterium prausnitzii: From
microbiology to diagnostics and prognostics. ISME J. 2017, 11, 841–852. [CrossRef]

30. Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct Target 2017, 2.
[CrossRef]

31. Lakhdari, O.; Tap, J.; Beguet-Crespel, F.; Le Roux, K.; de Wouters, T.; Cultrone, A.; Nepelska, M.; Lefevre, F.;
Dore, J.; Blottiere, H.M. Identification of NF-kappaB modulation capabilities within human intestinal
commensal bacteria. J. Biomed. Biotechnol. 2011, 2011, 282356. [CrossRef] [PubMed]

32. Erkosar, B.; Defaye, A.; Bozonnet, N.; Puthier, D.; Royet, J.; Leulier, F. Drosophila microbiota modulates host
metabolic gene expression via IMD/NF-kappaB signaling. PLoS ONE 2014, 9, e94729. [CrossRef]

33. Yan, F.; Polk, D.B. Disruption of NF-kappaB signalling by ancient microbial molecules: Novel therapies of
the future? Gut 2010, 59, 421–426. [CrossRef] [PubMed]

34. Quevrain, E.; Maubert, M.A.; Michon, C.; Chain, F.; Marquant, R.; Tailhades, J.; Miquel, S.; Carlier, L.;
Bermudez-Humaran, L.G.; Pigneur, B.; et al. Identification of an anti-inflammatory protein from
Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 2016, 65, 415–425.
[CrossRef]

35. Baumler, A.J.; Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature
2016, 535, 85–93. [CrossRef]

36. Ferreyra, J.A.; Wu, K.J.; Hryckowian, A.J.; Bouley, D.M.; Weimer, B.C.; Sonnenburg, J.L.
Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility
disturbance. Cell Host Microbe 2014, 16, 770–777. [CrossRef]

37. Ng, K.M.; Ferreyra, J.A.; Higginbottom, S.K.; Lynch, J.B.; Kashyap, P.C.; Gopinath, S.; Naidu, N.;
Choudhury, B.; Weimer, B.C.; Monack, D.M.; et al. Microbiota-liberated host sugars facilitate post-antibiotic
expansion of enteric pathogens. Nature 2013, 502, 96–99. [CrossRef]

38. Huang, Y.L.; Chassard, C.; Hausmann, M.; von Itzstein, M.; Hennet, T. Sialic acid catabolism drives intestinal
inflammation and microbial dysbiosis in mice. Nat. Commun. 2015, 6, 8141. [CrossRef]

39. Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.;
Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier
and Enhances Pathogen Susceptibility. Cell 2016, 167, 1339–1353 e1321. [CrossRef]

40. Hooper, L.V.; Macpherson, A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota.
Nat. Rev. Immunol. 2010, 10, 159–169. [CrossRef]

41. Mathias, A.; Pais, B.; Favre, L.; Benyacoub, J.; Corthesy, B. Role of secretory IgA in the mucosal sensing of
commensal bacteria. Gut Microbes 2014, 5, 688–695. [CrossRef] [PubMed]

42. Rios, D.; Wood, M.B.; Li, J.; Chassaing, B.; Gewirtz, A.T.; Williams, I.R. Antigen sampling by intestinal M cells
is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal. Immunol.
2016, 9, 907–916. [CrossRef] [PubMed]

43. Rogier, E.W.; Frantz, A.L.; Bruno, M.E.; Kaetzel, C.S. Secretory IgA is Concentrated in the Outer Layer of
Colonic Mucus along with Gut Bacteria. Pathogens 2014, 3, 390–403. [CrossRef] [PubMed]

44. Moos, W.H.; Faller, D.V.; Harpp, D.N.; Kanara, I.; Pernokas, J.; Powers, W.R.; Steliou, K. Microbiota and
Neurological Disorders: A Gut Feeling. Biores. Open Access. 2016, 5, 137–145. [CrossRef]

45. Penders, J.; Thijs, C.; Vink, C.; Stelma, F.F.; Snijders, B.; Kummeling, I.; van den Brandt, P.A.; Stobberingh, E.E.
Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006, 118, 511–521.
[CrossRef]

46. Tanaka, S.; Kobayashi, T.; Songjinda, P.; Tateyama, A.; Tsubouchi, M.; Kiyohara, C.; Shirakawa, T.;
Sonomoto, K.; Nakayama, J. Influence of antibiotic exposure in the early postnatal period on the development
of intestinal microbiota. FEMS Immunol. Med. Microbiol. 2009, 56, 80–87. [CrossRef]

47. Penders, J.; Vink, C.; Driessen, C.; London, N.; Thijs, C.; Stobberingh, E.E. Quantification of Bifidobacterium
spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by
real-time PCR. FEMS Microbiol. Lett. 2005, 243, 141–147. [CrossRef]

http://dx.doi.org/10.1002/ibd.20903
http://dx.doi.org/10.1038/ismej.2016.176
http://dx.doi.org/10.1038/sigtrans.2017.23
http://dx.doi.org/10.1155/2011/282356
http://www.ncbi.nlm.nih.gov/pubmed/21765633
http://dx.doi.org/10.1371/journal.pone.0094729
http://dx.doi.org/10.1136/gut.2009.179614
http://www.ncbi.nlm.nih.gov/pubmed/20332512
http://dx.doi.org/10.1136/gutjnl-2014-307649
http://dx.doi.org/10.1038/nature18849
http://dx.doi.org/10.1016/j.chom.2014.11.003
http://dx.doi.org/10.1038/nature12503
http://dx.doi.org/10.1038/ncomms9141
http://dx.doi.org/10.1016/j.cell.2016.10.043
http://dx.doi.org/10.1038/nri2710
http://dx.doi.org/10.4161/19490976.2014.983763
http://www.ncbi.nlm.nih.gov/pubmed/25536286
http://dx.doi.org/10.1038/mi.2015.121
http://www.ncbi.nlm.nih.gov/pubmed/26601902
http://dx.doi.org/10.3390/pathogens3020390
http://www.ncbi.nlm.nih.gov/pubmed/25437806
http://dx.doi.org/10.1089/biores.2016.0010
http://dx.doi.org/10.1542/peds.2005-2824
http://dx.doi.org/10.1111/j.1574-695X.2009.00553.x
http://dx.doi.org/10.1016/j.femsle.2004.11.052


Cells 2020, 9, 853 14 of 21

48. Turnbaugh, P.J.; Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Knight, R.; Gordon, J.I. The effect of diet on the human
gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 2009, 1, 6ra14.
[CrossRef]

49. O’Mahony, S.M.; Marchesi, J.R.; Scully, P.; Codling, C.; Ceolho, A.M.; Quigley, E.M.; Cryan, J.F.; Dinan, T.G.
Early life stress alters behavior, immunity, and microbiota in rats: Implications for irritable bowel syndrome
and psychiatric illnesses. Biol. Psychiatry 2009, 65, 263–267. [CrossRef]

50. Schmidt, B.; Mulder, I.E.; Musk, C.C.; Aminov, R.I.; Lewis, M.; Stokes, C.R.; Bailey, M.; Prosser, J.I.; Gill, B.P.;
Pluske, J.R.; et al. Establishment of normal gut microbiota is compromised under excessive hygiene
conditions. PLoS ONE 2011, 6, e28284. [CrossRef]

51. Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R.
Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in
newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [CrossRef] [PubMed]

52. Salminen, S.; Gibson, G.R.; McCartney, A.L.; Isolauri, E. Influence of mode of delivery on gut microbiota
composition in seven year old children. Gut 2004, 53, 1388–1389. [CrossRef] [PubMed]

53. Fallani, M.; Young, D.; Scott, J.; Norin, E.; Amarri, S.; Adam, R.; Aguilera, M.; Khanna, S.; Gil, A.;
Edwards, C.A.; et al. Intestinal microbiota of 6-week-old infants across Europe: Geographic influence beyond
delivery mode, breast-feeding, and antibiotics. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 77–84. [CrossRef]
[PubMed]

54. Zhang, C.; Zhang, M.; Wang, S.; Han, R.; Cao, Y.; Hua, W.; Mao, Y.; Zhang, X.; Pang, X.; Wei, C.; et al.
Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes
in mice. ISME J. 2010, 4, 232–241. [CrossRef]

55. Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 2010,
90, 859–904. [CrossRef]

56. Hildebrandt, M.A.; Hoffmann, C.; Sherrill-Mix, S.A.; Keilbaugh, S.A.; Hamady, M.; Chen, Y.Y.; Knight, R.;
Ahima, R.S.; Bushman, F.; Wu, G.D. High-fat diet determines the composition of the murine gut microbiome
independently of obesity. Gastroenterology 2009, 137, 1716–1724. [CrossRef]

57. Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.;
Walters, W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbial enterotypes. Science
2011, 334, 105–108. [CrossRef]

58. Simoes, C.D.; Maukonen, J.; Kaprio, J.; Rissanen, A.; Pietilainen, K.H.; Saarela, M. Habitual dietary intake is
associated with stool microbiota composition in monozygotic twins. J. Nutr. 2013, 143, 417–423. [CrossRef]

59. Gerard, P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 2013, 3, 14–24. [CrossRef]
60. Blaut, M.; Klaus, S. Intestinal microbiota and obesity. Handb Exp. Pharm. 2012, 251–273. [CrossRef]
61. Shang, Y.; Khafipour, E.; Derakhshani, H.; Sarna, L.K.; Woo, C.W.; Siow, Y.L.; O, K. Short Term High Fat Diet

Induces Obesity-Enhancing Changes in Mouse Gut Microbiota that Are Partially Reversed by Cessation of
the High Fat Diet. Lipids 2017, 52, 499–511. [CrossRef] [PubMed]

62. Arias-Jayo, N.; Abecia, L.; Alonso-Saez, L.; Ramirez-Garcia, A.; Rodriguez, A.; Pardo, M.A. High-Fat Diet
Consumption Induces Microbiota Dysbiosis and Intestinal Inflammation in Zebrafish. Microb. Ecol. 2018, 76,
1089–1101. [CrossRef] [PubMed]

63. Alhasson, F.; Das, S.; Seth, R.; Dattaroy, D.; Chandrashekaran, V.; Ryan, C.N.; Chan, L.S.; Testerman, T.;
Burch, J.; Hofseth, L.J.; et al. Altered gut microbiome in a mouse model of Gulf War Illness causes
neuroinflammation and intestinal injury via leaky gut and TLR4 activation. PLoS ONE 2017, 12, e0172914.
[CrossRef] [PubMed]

64. Anitha, M.; Reichardt, F.; Tabatabavakili, S.; Nezami, B.G.; Chassaing, B.; Mwangi, S.; Vijay-Kumar, M.;
Gewirtz, A.; Srinivasan, S. Intestinal dysbiosis contributes to the delayed gastrointestinal transit in high-fat
diet fed mice. Cell Mol. Gastroenterol. Hepatol. 2016, 2, 328–339. [CrossRef]

65. He, Q.; Wang, L.; Wang, F.; Wang, C.; Tang, C.; Li, Q.; Li, J.; Zhao, Q. Microbial fingerprinting detects
intestinal microbiota dysbiosis in Zebrafish models with chemically-induced enterocolitis. BMC Microbiol.
2013, 13, 289. [CrossRef]

66. Fawley, J.; Koehler, S.; Cabrera, S.; Lam, V.; Fredrich, K.; Hessner, M.; Salzman, N.; Gourlay, D.
Intestinal alkaline phosphatase deficiency leads to dysbiosis and bacterial translocation in the newborn
intestine. J. Surg. Res. 2017, 218, 35–42. [CrossRef]

http://dx.doi.org/10.1126/scitranslmed.3000322
http://dx.doi.org/10.1016/j.biopsych.2008.06.026
http://dx.doi.org/10.1371/journal.pone.0028284
http://dx.doi.org/10.1073/pnas.1002601107
http://www.ncbi.nlm.nih.gov/pubmed/20566857
http://dx.doi.org/10.1136/gut.2004.041640
http://www.ncbi.nlm.nih.gov/pubmed/15306608
http://dx.doi.org/10.1097/MPG.0b013e3181d1b11e
http://www.ncbi.nlm.nih.gov/pubmed/20479681
http://dx.doi.org/10.1038/ismej.2009.112
http://dx.doi.org/10.1152/physrev.00045.2009
http://dx.doi.org/10.1053/j.gastro.2009.08.042
http://dx.doi.org/10.1126/science.1208344
http://dx.doi.org/10.3945/jn.112.166322
http://dx.doi.org/10.3390/pathogens3010014
http://dx.doi.org/10.1007/978-3-642-24716-3_11
http://dx.doi.org/10.1007/s11745-017-4253-2
http://www.ncbi.nlm.nih.gov/pubmed/28429150
http://dx.doi.org/10.1007/s00248-018-1198-9
http://www.ncbi.nlm.nih.gov/pubmed/29736898
http://dx.doi.org/10.1371/journal.pone.0172914
http://www.ncbi.nlm.nih.gov/pubmed/28328972
http://dx.doi.org/10.1016/j.jcmgh.2015.12.008
http://dx.doi.org/10.1186/1471-2180-13-289
http://dx.doi.org/10.1016/j.jss.2017.03.049


Cells 2020, 9, 853 15 of 21

67. Porter, C.K.; Thura, N.; Riddle, M.S. Quantifying the incidence and burden of postinfectious enteric sequelae.
Mil. Med. 2013, 178, 452–469. [CrossRef]

68. Phua, L.C.; Wilder-Smith, C.H.; Tan, Y.M.; Gopalakrishnan, T.; Wong, R.K.; Li, X.; Kan, M.E.; Lu, J.;
Keshavarzian, A.; Chan, E.C. Gastrointestinal Symptoms and Altered Intestinal Permeability Induced by
Combat Training Are Associated with Distinct Metabotypic Changes. J. Proteome. Res. 2015, 14, 4734–4742.
[CrossRef]

69. Mackos, A.R.; Maltz, R.; Bailey, M.T. The role of the commensal microbiota in adaptive and maladaptive
stressor-induced immunomodulation. Horm. Behav. 2017, 88, 70–78. [CrossRef]

70. Li, X.; Kan, E.M.; Lu, J.; Cao, Y.; Wong, R.K.; Keshavarzian, A.; Wilder-Smith, C.H. Combat-training increases
intestinal permeability, immune activation and gastrointestinal symptoms in soldiers. Aliment. Pharm. 2013,
37, 799–809. [CrossRef]

71. Karl, J.P.; Margolis, L.M.; Murphy, N.E.; Carrigan, C.T.; Castellani, J.W.; Madslien, E.H.; Teien, H.K.; Martini, S.;
Montain, S.J.; Pasiakos, S.M. Military training elicits marked increases in plasma metabolomic signatures of
energy metabolism, lipolysis, fatty acid oxidation, and ketogenesis. Physiol. Rep. 2017, 5. [CrossRef]

72. Karl, J.P.; Margolis, L.M.; Madslien, E.H.; Murphy, N.E.; Castellani, J.W.; Gundersen, Y.; Hoke, A.V.;
Levangie, M.W.; Kumar, R.; Chakraborty, N.; et al. Changes in intestinal microbiota composition and
metabolism coincide with increased intestinal permeability in young adults under prolonged physiological
stress. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G559–G571. [CrossRef]

73. Jacobs, J.M.; Cameron, K.L.; Bojescul, J.A. Lower extremity stress fractures in the military. Clin. Sports Med.
2014, 33, 591–613. [CrossRef]

74. Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: Implications for health.
Nat. Rev. Immunol. 2005, 5, 243–251. [CrossRef]

75. Russell, A.; Deuster, P.A. Human Performance Optimization and Precision Performance: The Future of
Special Operations Human Performance Efforts. J. Spec. Oper. Med. 2017, 17, 80–89.

76. Henning, P.C.; Park, B.S.; Kim, J.S. Physiological decrements during sustained military operational stress.
Mil. Med. 2011, 176, 991–997. [CrossRef]

77. Glaven, S.; Racicot, K.; Leary, D.H.; Karl, J.P.; Arcidiacono, S.; Dancy, B.C.R.; Chrisey, L.A.; Soares, J.W.
The Current and Future State of Department of Defense (DoD) Microbiome Research: A Summary of the
Inaugural DoD Tri-Service Microbiome Consortium Informational Meeting. mSystems 2018, 3. [CrossRef]
[PubMed]

78. Clark, A.; Mach, N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review
for athletes. J. Int. Soc. Sports Nutr. 2016, 13, 43. [CrossRef] [PubMed]

79. Alexander, D.A.; Klein, S. First responders after disasters: A review of stress reactions, at-risk, vulnerability,
and resilience factors. Prehosp. Disaster Med. 2009, 24, 87–94. [CrossRef] [PubMed]

80. Segerstrom, S.C.; Miller, G.E. Psychological stress and the human immune system: A meta-analytic study of
30 years of inquiry. Psychol. Bull. 2004, 130, 601–630. [CrossRef] [PubMed]

81. Mawdsley, J.E.; Rampton, D.S. Psychological stress in IBD: New insights into pathogenic and therapeutic
implications. Gut 2005, 54, 1481–1491. [CrossRef] [PubMed]

82. Konturek, P.C.; Brzozowski, T.; Konturek, S.J. Stress and the gut: Pathophysiology, clinical consequences,
diagnostic approach and treatment options. J. Physiol. Pharm. 2011, 62, 591–599.

83. Hammamieh, R.; Chakraborty, N.; De Lima, T.C.; Meyerhoff, J.; Gautam, A.; Muhie, S.; D’Arpa, P.; Lumley, L.;
Carroll, E.; Jett, M. Murine model of repeated exposures to conspecific trained aggressors simulates features
of post-traumatic stress disorder. Behav. Brain Res. 2012, 235, 55–66. [CrossRef] [PubMed]

84. Gautam, A.; D’Arpa, P.; Donohue, D.E.; Muhie, S.; Chakraborty, N.; Luke, B.T.; Grapov, D.; Carroll, E.E.;
Meyerhoff, J.L.; Hammamieh, R.; et al. Acute and chronic plasma metabolomic and liver transcriptomic
stress effects in a mouse model with features of post-traumatic stress disorder. PLoS ONE 2015, 10, e0117092.
[CrossRef] [PubMed]

85. Gareau, M.G.; Silva, M.A.; Perdue, M.H. Pathophysiological mechanisms of stress-induced intestinal damage.
Curr. Mol. Med. 2008, 8, 274–281. [CrossRef]

86. Kelly, J.R.; Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G.; Hyland, N.P. Breaking down the barriers:
The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front. Cell Neurosci.
2015, 9, 392. [CrossRef] [PubMed]

http://dx.doi.org/10.7205/MILMED-D-12-00510
http://dx.doi.org/10.1021/acs.jproteome.5b00603
http://dx.doi.org/10.1016/j.yhbeh.2016.10.006
http://dx.doi.org/10.1111/apt.12269
http://dx.doi.org/10.14814/phy2.13407
http://dx.doi.org/10.1152/ajpgi.00066.2017
http://dx.doi.org/10.1016/j.csm.2014.06.002
http://dx.doi.org/10.1038/nri1571
http://dx.doi.org/10.7205/MILMED-D-11-00053
http://dx.doi.org/10.1128/mSystems.00086-18
http://www.ncbi.nlm.nih.gov/pubmed/30003144
http://dx.doi.org/10.1186/s12970-016-0155-6
http://www.ncbi.nlm.nih.gov/pubmed/27924137
http://dx.doi.org/10.1017/S1049023X00006610
http://www.ncbi.nlm.nih.gov/pubmed/19591301
http://dx.doi.org/10.1037/0033-2909.130.4.601
http://www.ncbi.nlm.nih.gov/pubmed/15250815
http://dx.doi.org/10.1136/gut.2005.064261
http://www.ncbi.nlm.nih.gov/pubmed/16162953
http://dx.doi.org/10.1016/j.bbr.2012.07.022
http://www.ncbi.nlm.nih.gov/pubmed/22824590
http://dx.doi.org/10.1371/journal.pone.0117092
http://www.ncbi.nlm.nih.gov/pubmed/25629821
http://dx.doi.org/10.2174/156652408784533760
http://dx.doi.org/10.3389/fncel.2015.00392
http://www.ncbi.nlm.nih.gov/pubmed/26528128


Cells 2020, 9, 853 16 of 21

87. Kato-Kataoka, A.; Nishida, K.; Takada, M.; Kawai, M.; Kikuchi-Hayakawa, H.; Suda, K.; Ishikawa, H.;
Gondo, Y.; Shimizu, K.; Matsuki, T.; et al. Fermented Milk Containing Lactobacillus casei Strain Shirota
Preserves the Diversity of the Gut Microbiota and Relieves Abdominal Dysfunction in Healthy Medical
Students Exposed to Academic Stress. Appl. Environ. Microbiol. 2016, 82, 3649–3658. [CrossRef] [PubMed]

88. Forsythe, P.; Kunze, W.; Bienenstock, J. Moody microbes or fecal phrenology: What do we know about the
microbiota-gut-brain axis? BMC Med. 2016, 14, 58. [CrossRef]

89. Cryan, J.F.; Dinan, T.G. Mind-altering microorganisms: The impact of the gut microbiota on brain and
behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [CrossRef]

90. Sket, R.; Treichel, N.; Kublik, S.; Debevec, T.; Eiken, O.; Mekjavic, I.; Schloter, M.; Vital, M.; Chandler, J.;
Tiedje, J.M.; et al. Hypoxia and inactivity related physiological changes precede or take place in absence of
significant rearrangements in bacterial community structure: The PlanHab randomized trial pilot study.
PLoS ONE 2017, 12, e0188556. [CrossRef]

91. Sket, R.; Treichel, N.; Debevec, T.; Eiken, O.; Mekjavic, I.; Schloter, M.; Vital, M.; Chandler, J.; Tiedje, J.M.;
Murovec, B.; et al. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are
Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab
Study. Front. Physiol. 2017, 8, 250. [CrossRef] [PubMed]

92. Sket, R.; Debevec, T.; Kublik, S.; Schloter, M.; Schoeller, A.; Murovec, B.; Vogel Mikus, K.; Makuc, D.;
Pecnik, K.; Plavec, J.; et al. Intestinal Metagenomes and Metabolomes in Healthy Young Males: Inactivity
and Hypoxia Generated Negative Physiological Symptoms Precede Microbial Dysbiosis. Front. Physiol.
2018, 9, 198. [CrossRef] [PubMed]

93. Millet, G.P.; Faiss, R.; Pialoux, V. Point: Hypobaric hypoxia induces different physiological responses from
normobaric hypoxia. J. Appl. Physiol. 2012, 112, 1783–1784. [CrossRef] [PubMed]

94. Kleessen, B.; Schroedl, W.; Stueck, M.; Richter, A.; Rieck, O.; Krueger, M. Microbial and immunological
responses relative to high-altitude exposure in mountaineers. Med. Sci. Sports Exerc. 2005, 37, 1313–1318.
[CrossRef]

95. Adak, A.; Maity, C.; Ghosh, K.; Pati, B.R.; Mondal, K.C. Dynamics of predominant microbiota in the human
gastrointestinal tract and change in luminal enzymes and immunoglobulin profile during high-altitude
adaptation. Folia.Microbiol. (Praha) 2013, 58, 523–528. [CrossRef]

96. Wilson, T.E.; Sauder, C.L.; Kearney, M.L.; Kuipers, N.T.; Leuenberger, U.A.; Monahan, K.D.; Ray, C.A.
Skin-surface cooling elicits peripheral and visceral vasoconstriction in humans. J. Appl. Physiol. 2007, 103,
1257–1262. [CrossRef]

97. Senay, E.C.; Levine, R.J. Synergism between cold and restraint for rapid production of stress ulcers in rats.
Proc. Soc. Exp. Biol. Med. 1967, 124, 1221–1223. [CrossRef]

98. Saunders, P.R.; Kosecka, U.; McKay, D.M.; Perdue, M.H. Acute stressors stimulate ion secretion and increase
epithelial permeability in rat intestine. Am. J. Physiol. 1994, 267, G794–G799. [CrossRef]

99. Coskun, T.; Yegen, B.C.; Alican, I.; Peker, O.; Kurtel, H. Cold restraint stress-induced gastric mucosal
dysfunction. Role of nitric oxide. Dig. Dis. Sci. 1996, 41, 956–963. [CrossRef]

100. Castellani, J.W.; Young, A.J. Human physiological responses to cold exposure: Acute responses and
acclimatization to prolonged exposure. Auton. Neurosci. 2016, 196, 63–74. [CrossRef]

101. Zietak, M.; Kovatcheva-Datchary, P.; Markiewicz, L.H.; Stahlman, M.; Kozak, L.P.; Backhed, F. Altered
Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure. Cell Metab. 2016, 23,
1216–1223. [CrossRef] [PubMed]

102. Kokou, F.; Sasson, G.; Nitzan, T.; Doron-Faigenboim, A.; Harpaz, S.; Cnaani, A.; Mizrahi, I. Host genetic
selection for cold tolerance shapes microbiome composition and modulates its response to temperature. Elife
2018, 7. [CrossRef] [PubMed]

103. Zhang, X.Y.; Sukhchuluun, G.; Bo, T.B.; Chi, Q.S.; Yang, J.J.; Chen, B.; Zhang, L.; Wang, D.H. Huddling
remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure.
Microbiome 2018, 6, 103. [CrossRef]

104. Sanders, J.W.; Putnam, S.D.; Riddle, M.S.; Tribble, D.R.; Jobanputra, N.K.; Jones, J.J.; Scott, D.A.;
Frenck, R.W. The epidemiology of self-reported diarrhea in operations Iraqi freedom and enduring freedom.
Diagn. Microbiol. Infect. Dis. 2004, 50, 89–93. [CrossRef] [PubMed]

105. Riddle, M.S.; Tribble, D.R.; Putnam, S.D.; Mostafa, M.; Brown, T.R.; Letizia, A.; Armstrong, A.W.; Sanders, J.W.
Past trends and current status of self-reported incidence and impact of disease and nonbattle injury in military

http://dx.doi.org/10.1128/AEM.04134-15
http://www.ncbi.nlm.nih.gov/pubmed/27208120
http://dx.doi.org/10.1186/s12916-016-0604-8
http://dx.doi.org/10.1038/nrn3346
http://dx.doi.org/10.1371/journal.pone.0188556
http://dx.doi.org/10.3389/fphys.2017.00250
http://www.ncbi.nlm.nih.gov/pubmed/28522975
http://dx.doi.org/10.3389/fphys.2018.00198
http://www.ncbi.nlm.nih.gov/pubmed/29593560
http://dx.doi.org/10.1152/japplphysiol.00067.2012
http://www.ncbi.nlm.nih.gov/pubmed/22267386
http://dx.doi.org/10.1249/01.mss.0000174888.22930.e0
http://dx.doi.org/10.1007/s12223-013-0241-y
http://dx.doi.org/10.1152/japplphysiol.00401.2007
http://dx.doi.org/10.3181/00379727-124-31970
http://dx.doi.org/10.1152/ajpgi.1994.267.5.G794
http://dx.doi.org/10.1007/BF02091537
http://dx.doi.org/10.1016/j.autneu.2016.02.009
http://dx.doi.org/10.1016/j.cmet.2016.05.001
http://www.ncbi.nlm.nih.gov/pubmed/27304513
http://dx.doi.org/10.7554/eLife.36398
http://www.ncbi.nlm.nih.gov/pubmed/30454554
http://dx.doi.org/10.1186/s40168-018-0473-9
http://dx.doi.org/10.1016/j.diagmicrobio.2004.06.008
http://www.ncbi.nlm.nih.gov/pubmed/15474316


Cells 2020, 9, 853 17 of 21

operations in Southwest Asia and the Middle East. Am. J. Public Health 2008, 98, 2199–2206. [CrossRef]
[PubMed]

106. Riddle, M.S.; Martin, G.J.; Murray, C.K.; Burgess, T.H.; Connor, P.; Mancuso, J.D.; Schnaubelt, E.R.; Ballard, T.P.;
Fraser, J.; Tribble, D.R. Management of Acute Diarrheal Illness During Deployment: A Deployment Health
Guideline and Expert Panel Report. Mil. Med. 2017, 182, 34–52. [CrossRef] [PubMed]

107. Riddle, M.S.; DuPont, H.L.; Connor, B.A. ACG Clinical Guideline: Diagnosis, Treatment, and Prevention of
Acute Diarrheal Infections in Adults. Am. J. Gastroenterol. 2016, 111, 602–622. [CrossRef] [PubMed]

108. Porter, C.K.; Olson, S.; Hall, A.; Riddle, M.S. Travelers’ Diarrhea: An Update on the Incidence, Etiology,
and Risk in Military Deployments and Similar Travel Populations. Mil. Med. 2017, 182, 4–10. [CrossRef]

109. Navaneethan, U.; Giannella, R.A. Mechanisms of infectious diarrhea. Nat. Clin. Pr. Gastroenterol. Hepatol.
2008, 5, 637–647. [CrossRef]

110. Ferrer, M.; Mendez-Garcia, C.; Rojo, D.; Barbas, C.; Moya, A. Antibiotic use and microbiome function.
Biochem. Pharm. 2017, 134, 114–126. [CrossRef]

111. Zaura, E.; Brandt, B.W.; Teixeira de Mattos, M.J.; Buijs, M.J.; Caspers, M.P.; Rashid, M.U.; Weintraub, A.;
Nord, C.E.; Savell, A.; Hu, Y.; et al. Same Exposure but Two Radically Different Responses to Antibiotics:
Resilience of the Salivary Microbiome versus Long-Term Microbial Shifts in Feces. mBio 2015, 6, e01693-15.
[CrossRef] [PubMed]

112. Ladirat, S.E.; Schoterman, M.H.; Rahaoui, H.; Mars, M.; Schuren, F.H.; Gruppen, H.; Nauta, A.; Schols, H.A.
Exploring the effects of galacto-oligosaccharides on the gut microbiota of healthy adults receiving amoxicillin
treatment. Br. J. Nutr. 2014, 112, 536–546. [CrossRef] [PubMed]

113. Jernberg, C.; Lofmark, S.; Edlund, C.; Jansson, J.K. Long-term ecological impacts of antibiotic administration
on the human intestinal microbiota. ISME J. 2007, 1, 56–66. [CrossRef] [PubMed]

114. Jakobsson, H.E.; Jernberg, C.; Andersson, A.F.; Sjolund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-term
antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE
2010, 5, e9836. [CrossRef] [PubMed]

115. Dethlefsen, L.; Relman, D.A. Incomplete recovery and individualized responses of the human distal gut
microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. 1), 4554–4561.
[CrossRef]

116. Modi, S.R.; Collins, J.J.; Relman, D.A. Antibiotics and the gut microbiota. J. Clin. Investig. 2014, 124,
4212–4218. [CrossRef]

117. Ribiere, C.; Peyret, P.; Parisot, N.; Darcha, C.; Dechelotte, P.J.; Barnich, N.; Peyretaillade, E.; Boucher, D.
Oral exposure to environmental pollutant benzo [a] pyrene impacts the intestinal epithelium and induces
gut microbial shifts in murine model. Sci. Rep. 2016, 6, 31027. [CrossRef]

118. Joly, C.; Gay-Queheillard, J.; Leke, A.; Chardon, K.; Delanaud, S.; Bach, V.; Khorsi-Cauet, H. Impact of chronic
exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal
Microbial Ecosystem (SHIME) and in the rat. Environ. Sci. Pollut. Res. Int. 2013, 20, 2726–2734. [CrossRef]

119. Huderson, A.C.; Myers, J.N.; Niaz, M.S.; Washington, M.K.; Ramesh, A. Chemoprevention of
benzo(a)pyrene-induced colon polyps in ApcMin mice by resveratrol. J. Nutr. Biochem. 2013, 24, 713–724.
[CrossRef]

120. Defois, C.; Ratel, J.; Denis, S.; Batut, B.; Beugnot, R.; Peyretaillade, E.; Engel, E.; Peyret, P. Environmental
Pollutant Benzo [a] Pyrene Impacts the Volatile Metabolome and Transcriptome of the Human Gut Microbiota.
Front. Microbiol. 2017, 8, 1562. [CrossRef]

121. Bijlsma, P.B.; van Raaij, M.T.; Dobbe, C.J.; Timmerman, A.; Kiliaan, A.J.; Taminiau, J.A.; Groot, J.A.
Subchronic mild noise stress increases HRP permeability in rat small intestine in vitro. Physiol. Behav. 2001,
73, 43–49. [CrossRef]

122. Cui, B.; Su, D.; Li, W.; She, X.; Zhang, M.; Wang, R.; Zhai, Q. Effects of chronic noise exposure on the
microbiome-gut-brain axis in senescence-accelerated prone mice: Implications for Alzheimer’s disease.
J. Neuroinflamm. 2018, 15, 190. [CrossRef] [PubMed]

123. Gue, M.; Peeters, T.; Depoortere, I.; Vantrappen, G.; Bueno, L. Stress-induced changes in gastric emptying,
postprandial motility, and plasma gut hormone levels in dogs. Gastroenterology 1989, 97, 1101–1107. [CrossRef]

124. Ising, H.; Kruppa, B. Health effects caused by noise: Evidence in the literature from the past 25 years.
Noise Health 2004, 6, 5–13.

http://dx.doi.org/10.2105/AJPH.2007.131680
http://www.ncbi.nlm.nih.gov/pubmed/18923114
http://dx.doi.org/10.7205/MILMED-D-17-00077
http://www.ncbi.nlm.nih.gov/pubmed/28885922
http://dx.doi.org/10.1038/ajg.2016.126
http://www.ncbi.nlm.nih.gov/pubmed/27068718
http://dx.doi.org/10.7205/MILMED-D-17-00064
http://dx.doi.org/10.1038/ncpgasthep1264
http://dx.doi.org/10.1016/j.bcp.2016.09.007
http://dx.doi.org/10.1128/mBio.01693-15
http://www.ncbi.nlm.nih.gov/pubmed/26556275
http://dx.doi.org/10.1017/S0007114514001135
http://www.ncbi.nlm.nih.gov/pubmed/24925303
http://dx.doi.org/10.1038/ismej.2007.3
http://www.ncbi.nlm.nih.gov/pubmed/18043614
http://dx.doi.org/10.1371/journal.pone.0009836
http://www.ncbi.nlm.nih.gov/pubmed/20352091
http://dx.doi.org/10.1073/pnas.1000087107
http://dx.doi.org/10.1172/JCI72333
http://dx.doi.org/10.1038/srep31027
http://dx.doi.org/10.1007/s11356-012-1283-4
http://dx.doi.org/10.1016/j.jnutbio.2012.04.005
http://dx.doi.org/10.3389/fmicb.2017.01562
http://dx.doi.org/10.1016/S0031-9384(01)00424-3
http://dx.doi.org/10.1186/s12974-018-1223-4
http://www.ncbi.nlm.nih.gov/pubmed/29933742
http://dx.doi.org/10.1016/0016-5085(89)91678-8


Cells 2020, 9, 853 18 of 21

125. Kight, C.R.; Swaddle, J.P. How and why environmental noise impacts animals: An integrative, mechanistic
review. Ecol. Lett. 2011, 14, 1052–1061. [CrossRef]

126. Liu, G.S.; Huang, Y.X.; Li, S.W.; Pan, B.R.; Wang, X.; Sun, D.Y.; Wang, Q.L. Experimental study on mechanism
and protection of stress ulcer produced by explosive noise. World J. Gastroenterol. 1998, 4, 519–523. [CrossRef]

127. Miranda, S.; Roux, M.E. Acoustic stress induces long term severe intestinal inflammation in the mouse.
Toxicol. Lett. 2017, 280, 1–9. [CrossRef]

128. Mu, Z.B.; Huang, Y.X.; Zhao, B.M.; Liu, Z.X.; Zhang, B.H.; Wang, Q.L. Effect of explosive noise on
gastrointestinal transit and plasma levels of polypeptide hormones. World J. Gastroenterol. 2006, 12,
2284–2287. [CrossRef]

129. Theodoroff, S.M.; Lewis, M.S.; Folmer, R.L.; Henry, J.A.; Carlson, K.F. Hearing impairment and tinnitus:
Prevalence, risk factors, and outcomes in US service members and veterans deployed to the Iraq and
Afghanistan wars. Epidemiol. Rev. 2015, 37, 71–85. [CrossRef]

130. Zhao, Y.; Jaber, V.; Lukiw, W.J. Secretory Products of the Human GI Tract Microbiome and Their Potential
Impact on Alzheimer’s Disease (AD): Detection of Lipopolysaccharide (LPS) in AD Hippocampus. Front. Cell
Infect. Microbiol. 2017, 7, 318. [CrossRef]

131. Zhan, X.; Stamova, B.; Jin, L.W.; DeCarli, C.; Phinney, B.; Sharp, F.R. Gram-negative bacterial molecules
associate with Alzheimer disease pathology. Neurology 2016, 87, 2324–2332. [CrossRef] [PubMed]

132. Lukiw, W.J. Bacteroides fragilis Lipopolysaccharide and Inflammatory Signaling in Alzheimer’s Disease.
Front. Microbiol. 2016, 7, 1544. [CrossRef] [PubMed]

133. Lin, L.; Zheng, L.J.; Zhang, L.J. Neuroinflammation, Gut Microbiome, and Alzheimer’s Disease. Mol. Neurobiol.
2018, 55, 8243–8250. [CrossRef] [PubMed]

134. Kowalski, K.; Mulak, A. Brain-Gut-Microbiota Axis in Alzheimer’s Disease. J. Neurogastroenterol. Motil. 2019,
25, 48–60. [CrossRef] [PubMed]

135. Itzhaki, R.F.; Wozniak, M.A.; Appelt, D.M.; Balin, B.J. Infiltration of the brain by pathogens causes Alzheimer’s
disease. Neurobiol. Aging 2004, 25, 619–627. [CrossRef] [PubMed]

136. Fox, M.; Knorr, D.A.; Haptonstall, K.M. Alzheimer’s disease and symbiotic microbiota: An evolutionary
medicine perspective. Ann. N. Y. Acad. Sci. 2019, 1449, 3–24. [CrossRef]

137. Zhou, Y.; Smith, D.; Leong, B.J.; Brannstrom, K.; Almqvist, F.; Chapman, M.R. Promiscuous cross-seeding
between bacterial amyloids promotes interspecies biofilms. J. Biol. Chem. 2012, 287, 35092–35103. [CrossRef]

138. Walker, L.C.; Schelle, J.; Jucker, M. The Prion-Like Properties of Amyloid-beta Assemblies: Implications for
Alzheimer’s Disease. Cold Spring Harb. Perspect. Med. 2016, 6. [CrossRef]

139. Thevaranjan, N.; Puchta, A.; Schulz, C.; Naidoo, A.; Szamosi, J.C.; Verschoor, C.P.; Loukov, D.; Schenck, L.P.;
Jury, J.; Foley, K.P.; et al. Age-Associated Microbial Dysbiosis Promotes Intestinal Permeability, Systemic
Inflammation, and Macrophage Dysfunction. Cell Host Microbe 2017, 21, 455–466. [CrossRef]

140. Sochocka, M.; Donskow-Lysoniewska, K.; Diniz, B.S.; Kurpas, D.; Brzozowska, E.; Leszek, J. The Gut
Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease-a Critical Review.
Mol. Neurobiol. 2019, 56, 1841–1851. [CrossRef]

141. O’Toole, G.; Kaplan, H.B.; Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 2000,
54, 49–79. [CrossRef] [PubMed]

142. Pan, P.; Oshima, K.; Huang, Y.-W.; Yearsley, M.; Zhang, J.; Arnold, M.; Yu, J.; Wang, L.-S. Gut bacteria are
required for the benefits of black raspberries in ApcMin/+ mice. J. Berry Res. 2018, 8, 239–249. [CrossRef]
[PubMed]

143. Jiang, B.; Zheng, S.; An, L.; Guo, J.; Asakawa, T. Changes in striatal dopamine transporter and tyrosine
hydroxylase expression associated with fatigue and their reversal by blueberry juice. J. Berry Res. 2019, 9,
321–332. [CrossRef]

144. Woodward, G.; Kroon, P.; Cassidy, A.; Kay, C. Anthocyanin stability and recovery: Implications for the
analysis of clinical and experimental samples. J. Agric. Food Chem. 2009, 57, 5271–5278. [CrossRef]

145. Welch, C.R.; Wu, Q.; Simon, J.E. Recent Advances in Anthocyanin Analysis and Characterization.
Curr. Anal. Chem. 2008, 4, 75–101. [CrossRef]

146. Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr. 2015, 6, 620–622. [CrossRef]
147. Tedesco, I.; Carbone, V.; Spagnuolo, C.; Minasi, P.; Russo, G.L. Identification and Quantification of Flavonoids

from Two Southern Italian Cultivars of Allium cepa L., Tropea (Red Onion) and Montoro (Copper Onion),

http://dx.doi.org/10.1111/j.1461-0248.2011.01664.x
http://dx.doi.org/10.3748/wjg.v4.i6.519
http://dx.doi.org/10.1016/j.toxlet.2017.07.898
http://dx.doi.org/10.3748/wjg.v12.i14.2284
http://dx.doi.org/10.1093/epirev/mxu005
http://dx.doi.org/10.3389/fcimb.2017.00318
http://dx.doi.org/10.1212/WNL.0000000000003391
http://www.ncbi.nlm.nih.gov/pubmed/27784770
http://dx.doi.org/10.3389/fmicb.2016.01544
http://www.ncbi.nlm.nih.gov/pubmed/27725817
http://dx.doi.org/10.1007/s12035-018-0983-2
http://www.ncbi.nlm.nih.gov/pubmed/29524051
http://dx.doi.org/10.5056/jnm18087
http://www.ncbi.nlm.nih.gov/pubmed/30646475
http://dx.doi.org/10.1016/j.neurobiolaging.2003.12.021
http://www.ncbi.nlm.nih.gov/pubmed/15172740
http://dx.doi.org/10.1111/nyas.14129
http://dx.doi.org/10.1074/jbc.M112.383737
http://dx.doi.org/10.1101/cshperspect.a024398
http://dx.doi.org/10.1016/j.chom.2017.03.002
http://dx.doi.org/10.1007/s12035-018-1188-4
http://dx.doi.org/10.1146/annurev.micro.54.1.49
http://www.ncbi.nlm.nih.gov/pubmed/11018124
http://dx.doi.org/10.3233/JBR-180337
http://www.ncbi.nlm.nih.gov/pubmed/30636993
http://dx.doi.org/10.3233/JBR-180350
http://dx.doi.org/10.1021/jf900602b
http://dx.doi.org/10.2174/157341108784587795
http://dx.doi.org/10.3945/an.115.009233


Cells 2020, 9, 853 19 of 21

and their Capacity to Protect Human Erythrocytes from Oxidative Stress. J. Agric. Food Chem. 2015, 63,
5229–5238. [CrossRef]

148. Samadi, A.K.; Bilsland, A.; Georgakilas, A.G.; Amedei, A.; Amin, A.; Bishayee, A.; Azmi, A.S.; Lokeshwar, B.L.;
Grue, B.; Panis, C.; et al. A multi-targeted approach to suppress tumor-promoting inflammation.
Semin. Cancer Biol. 2015, 3, S151–S184. [CrossRef]

149. Morais, C.A.; de Rosso, V.V.; Estadella, D.; Pisani, L.P. Anthocyanins as inflammatory modulators and the
role of the gut microbiota. J. Nutr. Biochem. 2016, 33, 1–7. [CrossRef]

150. McGhie, T.K.; Walton, M.C. The bioavailability and absorption of anthocyanins: Towards a better
understanding. Mol. Nutr. Food Res. 2007, 51, 702–713. [CrossRef]

151. Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food,
pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [CrossRef]
[PubMed]

152. Junker, L.V.; Ensminger, I. Relationship between leaf optical properties, chlorophyll fluorescence and pigment
changes in senescing Acer saccharum leaves. Tree Physiol. 2016, 36, 694–711. [CrossRef] [PubMed]

153. He, J.; Giusti, M.M. Anthocyanins: Natural colorants with health-promoting properties. Annu. Rev. Food
Sci. Technol. 2010, 1, 163–187. [CrossRef] [PubMed]

154. Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Chemistry, Pharmacology and Health Benefits of
Anthocyanins. Phytother. Res. 2016, 30, 1265–1286. [CrossRef] [PubMed]

155. Kong, J.M.; Chia, L.S.; Goh, N.K.; Chia, T.F.; Brouillard, R. Analysis and biological activities of anthocyanins.
Phytochemistry 2003, 64, 923–933. [CrossRef]

156. Fang, J. Bioavailability of anthocyanins. Drug Metab. Rev. 2014, 46, 508–520. [CrossRef]
157. Blando, F.; Calabriso, N.; Berland, H.; Maiorano, G.; Gerardi, C.; Carluccio, M.A.; Andersen, O.M.

Radical Scavenging and Anti-Inflammatory Activities of Representative Anthocyanin Groupings from
Pigment-Rich Fruits and Vegetables. Int. J. Mol. Sci. 2018, 19, 169. [CrossRef]

158. Zamora-Ros, R.; Knaze, V.; Lujan-Barroso, L.; Slimani, N.; Romieu, I.; Touillaud, M.; Kaaks, R.; Teucher, B.;
Mattiello, A.; Grioni, S.; et al. Estimation of the intake of anthocyanidins and their food sources in the
European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br. J. Nutr. 2011, 106, 1090–1099.
[CrossRef]

159. Umeda, K.; Matsui, T.; Nakayama, M.; Furuse, K.; Sasaki, H.; Furuse, M.; Tsukita, S. Establishment and
characterization of cultured epithelial cells lacking expression of ZO-1. J. Biol. Chem. 2004, 279, 44785–44794.
[CrossRef]

160. Turksen, K.; Troy, T.C. Barriers built on claudins. J. Cell Sci. 2004, 117, 2435–2447. [CrossRef]
161. Song, C.; Ring, L.; Hoffmann, T.; Huang, F.C.; Slovin, J.; Schwab, W. Acylphloroglucinol Biosynthesis in

Strawberry Fruit. Plant Physiol. 2015, 169, 1656–1670. [CrossRef] [PubMed]
162. Sebastian, R.S.; Wilkinson Enns, C.; Goldman, J.D.; Martin, C.L.; Steinfeldt, L.C.; Murayi, T.; Moshfegh, A.J.

A New Database Facilitates Characterization of Flavonoid Intake, Sources, and Positive Associations with
Diet Quality among US Adults. J. Nutr. 2015, 145, 1239–1248. [CrossRef] [PubMed]

163. Morita, K.; Furuse, M.; Fujimoto, K.; Tsukita, S. Claudin multigene family encoding four-transmembrane
domain protein components of tight junction strands. Proc. Natl. Acad. Sci. USA 1999, 96, 511–516. [CrossRef]
[PubMed]

164. Monk, J.M.; Wu, W.; Hutchinson, A.L.; Pauls, P.; Robinson, L.E.; Power, K.A. Navy and black bean
supplementation attenuates colitis-associated inflammation and colonic epithelial damage. J. Nutr. Biochem.
2018, 56, 215–223. [CrossRef]

165. Jezek, M.; Zorb, C.; Merkt, N.; Geilfus, C.M. Anthocyanin Management in Fruits by Fertilization. J. Agric.
Food Chem. 2018, 66, 753–764. [CrossRef]

166. Feldman, G.J.; Mullin, J.M.; Ryan, M.P. Occludin: Structure, function and regulation. Adv. Drug Deliv. Rev.
2005, 57, 883–917. [CrossRef]

167. Bibi, S.; Kang, Y.; Du, M.; Zhu, M.J. Dietary red raspberries attenuate dextran sulfate sodium-induced acute
colitis. J. Nutr. Biochem. 2018, 51, 40–46. [CrossRef]

168. Bartl, P.; Albreht, A.; Skrt, M.; Tremlova, B.; Ostadalova, M.; Smejkal, K.; Vovk, I.; Ulrih, N.P. Anthocyanins
in purple and blue wheat grains and in resulting bread: Quantity, composition, and thermal stability. Int. J.
Food Sci. Nutr. 2015, 66, 514–519. [CrossRef]

http://dx.doi.org/10.1021/acs.jafc.5b01206
http://dx.doi.org/10.1016/j.semcancer.2015.03.006
http://dx.doi.org/10.1016/j.jnutbio.2015.11.008
http://dx.doi.org/10.1002/mnfr.200700092
http://dx.doi.org/10.1080/16546628.2017.1361779
http://www.ncbi.nlm.nih.gov/pubmed/28970777
http://dx.doi.org/10.1093/treephys/tpv148
http://www.ncbi.nlm.nih.gov/pubmed/26928514
http://dx.doi.org/10.1146/annurev.food.080708.100754
http://www.ncbi.nlm.nih.gov/pubmed/22129334
http://dx.doi.org/10.1002/ptr.5642
http://www.ncbi.nlm.nih.gov/pubmed/27221033
http://dx.doi.org/10.1016/S0031-9422(03)00438-2
http://dx.doi.org/10.3109/03602532.2014.978080
http://dx.doi.org/10.3390/ijms19010169
http://dx.doi.org/10.1017/S0007114511001437
http://dx.doi.org/10.1074/jbc.M406563200
http://dx.doi.org/10.1242/jcs.01235
http://dx.doi.org/10.1104/pp.15.00794
http://www.ncbi.nlm.nih.gov/pubmed/26169681
http://dx.doi.org/10.3945/jn.115.213025
http://www.ncbi.nlm.nih.gov/pubmed/25948787
http://dx.doi.org/10.1073/pnas.96.2.511
http://www.ncbi.nlm.nih.gov/pubmed/9892664
http://dx.doi.org/10.1016/j.jnutbio.2018.02.013
http://dx.doi.org/10.1021/acs.jafc.7b03813
http://dx.doi.org/10.1016/j.addr.2005.01.009
http://dx.doi.org/10.1016/j.jnutbio.2017.08.017
http://dx.doi.org/10.3109/09637486.2015.1056108


Cells 2020, 9, 853 20 of 21

169. Al-Asmakh, M.; Hedin, L. Microbiota and the control of blood-tissue barriers. Tissue Barriers 2015, 3, e1039691.
[CrossRef]

170. Zhao, L.; Zhang, Y.; Liu, G.; Hao, S.; Wang, C.; Wang, Y. Black rice anthocyanin-rich extract and rosmarinic
acid, alone and in combination, protect against DSS-induced colitis in mice. Food Funct. 2018, 9, 2796–2808.
[CrossRef]

171. Zhang, C.; Monk, J.M.; Lu, J.T.; Zarepoor, L.; Wu, W.; Liu, R.; Pauls, K.P.; Wood, G.A.; Robinson, L.; Tsao, R.;
et al. Cooked navy and black bean diets improve biomarkers of colon health and reduce inflammation
during colitis. Br. J. Nutr. 2014, 111, 1549–1563. [CrossRef] [PubMed]

172. Sun, X.; Du, M.; Navarre, D.A.; Zhu, M.J. Purple Potato Extract Promotes Intestinal Epithelial Differentiation
and Barrier Function by Activating AMP-Activated Protein Kinase. Mol. Nutr. Food Res. 2018, 62. [CrossRef]
[PubMed]

173. Shan, Q.; Zheng, Y.; Lu, J.; Zhang, Z.; Wu, D.; Fan, S.; Hu, B.; Cai, X.; Cai, H.; Liu, P.; et al. Purple sweet
potato color ameliorates kidney damage via inhibiting oxidative stress mediated NLRP3 inflammasome
activation in high fat diet mice. Food Chem. Toxicol. 2014, 69, 339–346. [CrossRef] [PubMed]

174. Parkar, S.G.; Trower, T.M.; Stevenson, D.E. Fecal microbial metabolism of polyphenols and its effects on
human gut microbiota. Anaerobe 2013, 23, 12–19. [CrossRef] [PubMed]

175. Hidalgo, M.; Oruna-Concha, M.J.; Kolida, S.; Walton, G.E.; Kallithraka, S.; Spencer, J.P.; de Pascual-Teresa, S.
Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J. Agric.
Food Chem. 2012, 60, 3882–3890. [CrossRef] [PubMed]

176. Camelo-Mendez, G.A.; Agama-Acevedo, E.; Sanchez-Rivera, M.M.; Bello-Perez, L.A. Effect on in vitro starch
digestibility of Mexican blue maize anthocyanins. Food Chem. 2016, 211, 281–284. [CrossRef]

177. Bialonska, D.; Ramnani, P.; Kasimsetty, S.G.; Muntha, K.R.; Gibson, G.R.; Ferreira, D. The influence of
pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int. J.
Food Microbiol. 2010, 140, 175–182. [CrossRef]

178. Zhang, W.; Xu, J.H.; Yu, T.; Chen, Q.K. Effects of berberine and metformin on intestinal inflammation and
gut microbiome composition in db/db mice. Biomed. Pharm. 2019, 118, 109131. [CrossRef]

179. Wisniewski, P.J.; Dowden, R.A.; Campbell, S.C. Role of Dietary Lipids in Modulating Inflammation through
the Gut Microbiota. Nutrients 2019, 11, 117. [CrossRef]

180. Huang, H.Y.; Zhang, Z.J.; Cao, C.B.; Wang, N.; Liu, F.F.; Peng, J.Q.; Ren, X.J.; Qian, J. The TLR4/NF-kappaB
signaling pathway mediates the growth of colon cancer. Eur. Rev. Med. Pharm. Sci. 2014, 18, 3834–3843.

181. Badshah, H.; Ali, T.; Kim, M.O. Osmotin attenuates LPS-induced neuroinflammation and memory
impairments via the TLR4/NFkappaB signaling pathway. Sci. Rep. 2016, 6, 24493. [CrossRef] [PubMed]

182. McGeer, E.G.; McGeer, P.L. Inflammatory processes in Alzheimer’s disease. Prog. Neuropsychopharm.
Biol. Psychiatry 2003, 27, 741–749. [CrossRef]

183. Pratico, D.; Trojanowski, J.Q. Inflammatory hypotheses: Novel mechanisms of Alzheimer’s
neurodegeneration and new therapeutic targets? Neurobiol. Aging 2000, 21, 441–445. [CrossRef]

184. Pistollato, F.; Sumalla Cano, S.; Elio, I.; Masias Vergara, M.; Giampieri, F.; Battino, M. Role of gut microbiota
and nutrients in amyloid formation and pathogenesis of Alzheimer disease. Nutr. Rev. 2016, 74, 624–634.
[CrossRef]

185. Zhao, Y.; Lukiw, W.J. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s
disease (AD). J. Nat. Sci. 2015, 1, e138.

186. Giau, V.V.; Wu, S.Y.; Jamerlan, A.; An, S.S.A.; Kim, S.Y.; Hulme, J. Gut Microbiota and Their Neuroinflammatory
Implications in Alzheimer’s Disease. Nutrients 2018, 10, 1765. [CrossRef]

187. Cerovic, M.; Forloni, G.; Balducci, C. Neuroinflammation and the Gut Microbiota: Possible Alternative
Therapeutic Targets to Counteract Alzheimer’s Disease? Front. Aging Neurosci. 2019, 11, 284. [CrossRef]

188. Khan, M.S.; Ali, T.; Kim, M.W.; Jo, M.H.; Jo, M.G.; Badshah, H.; Kim, M.O. Anthocyanins protect against
LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex.
Neurochem. Int. 2016, 100, 1–10. [CrossRef]

189. Zhao, L.; Chen, S.; Liu, T.; Wang, X.; Huang, H.; Liu, W. Callistephin enhances the protective effects of
isoflurane on microglial injury through downregulation of inflammation and apoptosis. Mol. Med. Rep.
2019, 20, 802–812. [CrossRef]

190. Shukitt-Hale, B.; Kelly, M.E.; Bielinski, D.F.; Fisher, D.R. Tart Cherry Extracts Reduce Inflammatory and
Oxidative Stress Signaling in Microglial Cells. Antioxid. Basel 2016, 5, 33. [CrossRef]

http://dx.doi.org/10.1080/21688370.2015.1039691
http://dx.doi.org/10.1039/C7FO01490B
http://dx.doi.org/10.1017/S0007114513004352
http://www.ncbi.nlm.nih.gov/pubmed/24521520
http://dx.doi.org/10.1002/mnfr.201700536
http://www.ncbi.nlm.nih.gov/pubmed/29193691
http://dx.doi.org/10.1016/j.fct.2014.04.033
http://www.ncbi.nlm.nih.gov/pubmed/24795233
http://dx.doi.org/10.1016/j.anaerobe.2013.07.009
http://www.ncbi.nlm.nih.gov/pubmed/23916722
http://dx.doi.org/10.1021/jf3002153
http://www.ncbi.nlm.nih.gov/pubmed/22439618
http://dx.doi.org/10.1016/j.foodchem.2016.05.024
http://dx.doi.org/10.1016/j.ijfoodmicro.2010.03.038
http://dx.doi.org/10.1016/j.biopha.2019.109131
http://dx.doi.org/10.3390/nu11010117
http://dx.doi.org/10.1038/srep24493
http://www.ncbi.nlm.nih.gov/pubmed/27093924
http://dx.doi.org/10.1016/S0278-5846(03)00124-6
http://dx.doi.org/10.1016/S0197-4580(00)00141-X
http://dx.doi.org/10.1093/nutrit/nuw023
http://dx.doi.org/10.3390/nu10111765
http://dx.doi.org/10.3389/fnagi.2019.00284
http://dx.doi.org/10.1016/j.neuint.2016.08.005
http://dx.doi.org/10.3892/mmr.2019.10282
http://dx.doi.org/10.3390/antiox5040033


Cells 2020, 9, 853 21 of 21

191. Poulose, S.M.; Fisher, D.R.; Larson, J.; Bielinski, D.F.; Rimando, A.M.; Carey, A.N.; Schauss, A.G.;
Shukitt-Hale, B. Anthocyanin-rich acai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory
stress signaling in mouse brain BV-2 microglial cells. J. Agric. Food Chem. 2012, 60, 1084–1093. [CrossRef]
[PubMed]

192. Ma, H.; Johnson, S.L.; Liu, W.; DaSilva, N.A.; Meschwitz, S.; Dain, J.A.; Seeram, N.P. Evaluation of
Polyphenol Anthocyanin-Enriched Extracts of Blackberry, Black Raspberry, Blueberry, Cranberry, Red
Raspberry, and Strawberry for Free Radical Scavenging, Reactive Carbonyl Species Trapping, Anti-Glycation,
Anti-beta-Amyloid Aggregation, and Microglial Neuroprotective Effects. Int. J. Mol. Sci. 2018, 19, 461.
[CrossRef]

193. Khan, M.S.; Ali, T.; Kim, M.W.; Jo, M.H.; Chung, J.I.; Kim, M.O. Anthocyanins Improve
Hippocampus-Dependent Memory Function and Prevent Neurodegeneration via JNK/Akt/GSK3beta
Signaling in LPS-Treated Adult Mice. Mol. Neurobiol. 2019, 56, 671–687. [CrossRef] [PubMed]

194. Jeong, J.W.; Lee, W.S.; Shin, S.C.; Kim, G.Y.; Choi, B.T.; Choi, Y.H. Anthocyanins downregulate
lipopolysaccharide-induced inflammatory responses in BV2 microglial cells by suppressing the NF-kappaB
and Akt/MAPKs signaling pathways. Int. J. Mol. Sci. 2013, 14, 1502–1515. [CrossRef]

195. Chitnis, T.; Weiner, H.L. CNS inflammation and neurodegeneration. J. Clin. Investig. 2017, 127, 3577–3587.
[CrossRef]

196. Carey, A.N.; Fisher, D.R.; Rimando, A.M.; Gomes, S.M.; Bielinski, D.F.; Shukitt-Hale, B. Stilbenes and
anthocyanins reduce stress signaling in BV-2 mouse microglia. J. Agric. Food Chem. 2013, 61, 5979–5986.
[CrossRef]

197. Pugin, B.; Barcik, W.; Westermann, P.; Heider, A.; Wawrzyniak, M.; Hellings, P.; Akdis, C.A.; O’Mahony, L.
A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microb. Ecol.
Health Dis. 2017, 28, 1353881. [CrossRef]

198. Ali, T.; Kim, T.; Rehman, S.U.; Khan, M.S.; Amin, F.U.; Khan, M.; Ikram, M.; Kim, M.O. Natural
Dietary Supplementation of Anthocyanins via PI3K/Akt/Nrf2/HO-1 Pathways Mitigate Oxidative Stress,
Neurodegeneration, and Memory Impairment in a Mouse Model of Alzheimer’s Disease. Mol. Neurobiol.
2018, 55, 6076–6093. [CrossRef]

199. Badshah, H.; Kim, T.H.; Kim, M.O. Protective effects of anthocyanins against amyloid beta-induced
neurotoxicity in vivo and in vitro. Neurochem. Int. 2015, 80, 51–59. [CrossRef]

200. Pistollato, F.; Iglesias, R.C.; Ruiz, R.; Aparicio, S.; Crespo, J.; Lopez, L.D.; Manna, P.P.; Giampieri, F.; Battino, M.
Nutritional patterns associated with the maintenance of neurocognitive functions and the risk of dementia
and Alzheimer’s disease: A focus on human studies. Pharm. Res. 2018, 131, 32–43. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/jf203989k
http://www.ncbi.nlm.nih.gov/pubmed/22224493
http://dx.doi.org/10.3390/ijms19020461
http://dx.doi.org/10.1007/s12035-018-1101-1
http://www.ncbi.nlm.nih.gov/pubmed/29779175
http://dx.doi.org/10.3390/ijms14011502
http://dx.doi.org/10.1172/JCI90609
http://dx.doi.org/10.1021/jf400342g
http://dx.doi.org/10.1080/16512235.2017.1353881
http://dx.doi.org/10.1007/s12035-017-0798-6
http://dx.doi.org/10.1016/j.neuint.2014.10.009
http://dx.doi.org/10.1016/j.phrs.2018.03.012
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Normal Gut-Microbiota Functions in Human Body 
	Dysbiosis and Its Pathogenesis Factors 
	Congenital Factors 
	Dietary Factors 
	Effects of Chemical Exposure on Gut Microbiota 
	Effects of General Stress on Gut Microbiota 
	Mental Stress and Gut Microbiota 
	Altitude and Temperature Effects on Normal Gut Microbiota 
	Intestinal Infection (Enteric Pathogens) Accelerates Gut Dysbiosis and Alters Gastrointestinal-Wall Integrity 
	Environmental Pollution and Toxins Affect Animal Health and Increase the Number of Opportunistic Gut Microbes 
	Effects of Noise on Gut Dysbiosis and Normal Microflora 
	Gut Dysbiosis Induces Neuroinflammation and Alzheimer’s Disease Pathology 

	Daily Use of Natural Dietary Anthocyanins Increases Beneficial-Microbe Population, Prevents Leaky Gut, and Inhibits Circulatory Inflammagen (LPS) and Proinflammatory Cytokines 
	Anthocyanins Mitigate Gut Dysbiosis that Induces Neuroinflammation and Alzheimer’s Pathology 

	Conclusions and Future Perspectives 
	References

